Entropy based evolutionary algorithm with adaptive reference points for many-objective optimization problems

Many-objective optimization problems (MaOPs) have attracted more and more attention due to its challenges for multi-objective evolutionary algorithms. Reference points or weight vectors based evolutionary algorithms have been developed successfully for solving MaOPs. However, these algorithms do not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences Jg. 465; S. 232 - 247
Hauptverfasser: Zhou, Chong, Dai, Guangming, Zhang, Cuijun, Li, Xiangping, Ma, Ke
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.10.2018
Schlagworte:
ISSN:0020-0255, 1872-6291
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Many-objective optimization problems (MaOPs) have attracted more and more attention due to its challenges for multi-objective evolutionary algorithms. Reference points or weight vectors based evolutionary algorithms have been developed successfully for solving MaOPs. However, these algorithms do not solve efficiently the MaOPs with irregular Pareto fronts, such as disconnected, degenerate, and inverted. Although some algorithms with adaptive weight vectors or reference points are designed to handle the problems with irregular shapes of Pareto fronts, they still exist some drawbacks. These adaptive algorithms do not obtain good performance in solving regular problem. For solving regular and irregular Pareto fronts of the problems, a novel entropy based evolutionary algorithm with adaptive reference points, named EARPEA, is proposed to solve regular and irregular many-objective optimization problems. Entropy computed based on reference points and a learning period are employed to control adaptation of the reference points. In addition, in order to maintain diversity of the reference points, a reference point adaptation method based on cosine similarity is designed in the adjusting reference point phase. The proposed algorithm is empirically compared with eight state-of-the-art many-objective evolutionary algorithms on 72 instances of 18 benchmark problems. The comparative results demonstrate that the overall performance of the proposed algorithm is superior to the counterparts on MaOPs with regular and irregular Pareto fronts.
AbstractList Many-objective optimization problems (MaOPs) have attracted more and more attention due to its challenges for multi-objective evolutionary algorithms. Reference points or weight vectors based evolutionary algorithms have been developed successfully for solving MaOPs. However, these algorithms do not solve efficiently the MaOPs with irregular Pareto fronts, such as disconnected, degenerate, and inverted. Although some algorithms with adaptive weight vectors or reference points are designed to handle the problems with irregular shapes of Pareto fronts, they still exist some drawbacks. These adaptive algorithms do not obtain good performance in solving regular problem. For solving regular and irregular Pareto fronts of the problems, a novel entropy based evolutionary algorithm with adaptive reference points, named EARPEA, is proposed to solve regular and irregular many-objective optimization problems. Entropy computed based on reference points and a learning period are employed to control adaptation of the reference points. In addition, in order to maintain diversity of the reference points, a reference point adaptation method based on cosine similarity is designed in the adjusting reference point phase. The proposed algorithm is empirically compared with eight state-of-the-art many-objective evolutionary algorithms on 72 instances of 18 benchmark problems. The comparative results demonstrate that the overall performance of the proposed algorithm is superior to the counterparts on MaOPs with regular and irregular Pareto fronts.
Author Zhang, Cuijun
Li, Xiangping
Ma, Ke
Zhou, Chong
Dai, Guangming
Author_xml – sequence: 1
  givenname: Chong
  orcidid: 0000-0002-9971-4550
  surname: Zhou
  fullname: Zhou, Chong
  email: zc0315@foxmail.com
  organization: School of Computer, China University of Geosciences, Wuhan 430074, China
– sequence: 2
  givenname: Guangming
  surname: Dai
  fullname: Dai, Guangming
  email: cugdgm@126.com
  organization: School of Computer, China University of Geosciences, Wuhan 430074, China
– sequence: 3
  givenname: Cuijun
  surname: Zhang
  fullname: Zhang, Cuijun
  email: cuijun_zhang@163.com
  organization: School of Information Engineering, Hebei GEO University, Shijiazhuang 050031, China
– sequence: 4
  givenname: Xiangping
  surname: Li
  fullname: Li, Xiangping
  organization: School of Computer, China University of Geosciences, Wuhan 430074, China
– sequence: 5
  givenname: Ke
  surname: Ma
  fullname: Ma, Ke
  organization: School of Computer, China University of Geosciences, Wuhan 430074, China
BookMark eNp9kL9OwzAQhy1UJNrCA7D5BRLOTmMnYkJV-SNVYoHZsh0HXCV2ZIei8vQ4LRNDl7sbft_p7lugmfPOIHRLICdA2N0uty7mFEiVA8-B0As0JxWnGaM1maE5AIUMaFleoUWMOwBYccbmqNu4MfjhgJWMpsFm77uv0XonwwHL7sMHO372-DtVLBs5jHZvcDCtCcZpgwdv3Rhx6wPupTtkXu2MPmZ8ivb2R0678BC86kwfr9FlK7tobv76Er0_bt7Wz9n29ell_bDNNK35mLVMcl1DDZymkRUNZaauWmbKUlFNi2alVFFWvDGcyZbwlQRGOdGVKlRFSlosET_t1cHHmM4V2o7HU8YgbScIiEma2IkkTUzSBHCRpCWS_COHYPsk4yxzf2JMemlvTRBR20lPY0OyIRpvz9C_pUyKZw
CitedBy_id crossref_primary_10_1109_TCYB_2021_3086501
crossref_primary_10_1016_j_swevo_2022_101161
crossref_primary_10_1016_j_eswa_2022_118267
crossref_primary_10_1007_s13748_019_00174_2
crossref_primary_10_1016_j_eswa_2022_119258
crossref_primary_10_1016_j_asoc_2023_110581
crossref_primary_10_1109_TEVC_2020_2978158
crossref_primary_10_1109_ACCESS_2021_3126292
crossref_primary_10_1016_j_ins_2024_120143
crossref_primary_10_1155_2021_8870356
crossref_primary_10_3390_math12111680
crossref_primary_10_1109_JAS_2021_1003817
crossref_primary_10_1080_17509653_2021_1884913
crossref_primary_10_1016_j_asoc_2022_109771
crossref_primary_10_1016_j_swevo_2021_100980
crossref_primary_10_1016_j_ins_2019_06_010
crossref_primary_10_1016_j_eswa_2022_119080
crossref_primary_10_1007_s10732_021_09470_4
crossref_primary_10_1016_j_ejor_2021_10_033
crossref_primary_10_1016_j_ymssp_2022_109173
crossref_primary_10_1016_j_knosys_2021_107392
crossref_primary_10_1002_rvr2_119
crossref_primary_10_1016_j_asoc_2023_110295
crossref_primary_10_1007_s00158_022_03307_9
crossref_primary_10_3390_e27050524
crossref_primary_10_1016_j_asoc_2021_108297
crossref_primary_10_1016_j_swevo_2024_101601
crossref_primary_10_1007_s40747_024_01353_y
Cites_doi 10.1162/EVCO_a_00038
10.1109/TEVC.2013.2281534
10.1109/TCYB.2016.2638902
10.1016/j.ejor.2014.05.019
10.1109/CEC.2016.7748352
10.2307/3001968
10.1109/MCI.2017.2742868
10.1109/TEVC.2012.2204264
10.1109/CEC.2002.1007032
10.1109/TEVC.2005.861417
10.1007/978-3-540-30217-9_84
10.1109/CEC.2007.4424985
10.1109/TEVC.2016.2587749
10.1109/TEVC.2014.2350987
10.1109/TEVC.2005.851275
10.1109/TEVC.2015.2505784
10.1109/CEC.2001.934293
10.1016/j.knosys.2011.02.013
10.1109/TEVC.2016.2549267
10.1162/EVCO_a_00109
10.1137/S1052623496307510
10.1109/TEVC.2012.2227145
10.1007/978-3-540-70928-2_58
10.1016/j.ins.2016.09.026
10.1109/TEVC.2015.2459718
10.1109/CEC.2016.7744109
10.1109/CEC.2002.1007015
10.1016/j.eswa.2017.02.042
10.1109/TEVC.2014.2339823
10.1109/TEVC.2013.2281535
10.1145/2792984
10.1109/TEVC.2016.2519378
10.1145/2463372.2463560
10.1109/TEVC.2014.2373386
10.1109/TEVC.2015.2420112
10.1162/106365602760234108
10.1109/TEVC.2014.2378512
10.1145/584091.584093
10.1109/TEVC.2007.892759
10.1109/TEVC.2015.2480780
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2018.07.012
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 247
ExternalDocumentID 10_1016_j_ins_2018_07_012
S0020025518305255
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-f6a7c909072f6a63d26e98f6e55b2c23d4bb3587de76af174a06271c8b3b81523
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000445713900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 21:58:01 EST 2025
Sat Nov 29 06:58:02 EST 2025
Fri Feb 23 02:49:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Many-objective optimization problem
Irregular and regular Pareto front
Adaptive reference points
Entropy
Evolutionary algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-f6a7c909072f6a63d26e98f6e55b2c23d4bb3587de76af174a06271c8b3b81523
ORCID 0000-0002-9971-4550
PageCount 16
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2018_07_012
crossref_primary_10_1016_j_ins_2018_07_012
elsevier_sciencedirect_doi_10_1016_j_ins_2018_07_012
PublicationCentury 2000
PublicationDate October 2018
2018-10-00
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References E.J. Hughes, MSOPS-II: a general-purpose many-objective optimiser, in: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE, 2007, pp. 3944–3951.
Zhang, Tian, Jin (bib0046) 2015; 19
Li, Tang, Li, Yao (bib0021) 2016; 20
Huband, Hingston, Barone, While (bib0013) 2006; 10
Das, Dennis (bib0006) 1998; 8
Jain, Deb (bib0018) 2014; 18
Wang, Purshouse, Fleming (bib0039) 2015; 243
Yang, Li, Liu, Zheng (bib0042) 2013; 17
L. Chen, C. Zhou, G. Dai, Y. Zhang, R. Hu, Entropy determined hybrid two-stage multi-objective evolutionary algorithm combining locally linear embedding, in: Proceedings of the Evolutionary Computation, 2016, pp. 2565–2572.
Yuan, Xu, Wang, Yao (bib0043) 2016; 20
Qi, Ma, Liu, Jiao, Sun, Wu (bib0026) 2014; 22
Zhang, Zhou, Jin (bib0045) 2008
Cheng, Jin, Olhofer, Sendhoff (bib0005) 2016; 20
Li, Deb, Zhang, Kwong (bib0023) 2015; 19
(2017).
Laumanns, Thiele, Deb, Zitzler (bib0019) 2014; 10
A. Farhang-Mehr, S. Azarm, Diversity assessment of Pareto optimal solution sets: an entropy approach, in: Proceedings of the Congress on Evolutionary Computation, vol.  1, IEEE, 2002, pp. 723–728.
Liu, Gong, Jing, Jin (bib0024) 2017; 47
Oliva, Hinojosa, Cuevas, Pajares, Avalos, Glvez (bib0025) 2017; 79
A. Aleti, I. Moser, Entropy-based adaptive range parameter control for evolutionary algorithms, in: Proceedings of the Conference on Genetic & Evolutionary Computation, 2013, pp. 1501–1508.
Y. Tian, R. Cheng, X. Zhang, Y. Jin, PlatEMO: a MATLAB platform for evolutionary multi-objective optimization, arXiv
Li, Landa-Silva (bib0022) 2011; 19
D.K. Saxena, K. Deb, Non-linear dimensionality reduction procedures for certain large-dimensional multi-objective optimization problems: employing correntropy and a novel maximum variance unfolding, in: Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, Springer, 2007, pp. 772–787.
K. Ikeda, H. Kita, S. Kobayashi, Failure of Pareto-based MOEAs: does non-dominated really mean near to optimal?, in: Proceedings of the Congress on Evolutionary Computation, 2001, pp. 957–962 vol. 2.
Thamaraiselvi, Kaliammal (bib0033) 2004
Wilcoxon (bib0041) 1945; 1
Shannon (bib0031) 2001; 5
Santos, Takahashi (bib0027) 2016
K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multi-objective optimization test problems, in: Proceedings of the Congress on Evolutionary Computation, vol.  1, IEEE, 2002, pp. 825–830.
Li, Li, Tang, Yao (bib0020) 2015; 48
Tian, Cheng, Zhang, Cheng, Jin (bib0034) 2017
While, Hingston, Barone, Huband (bib0040) 2006; 10
Zitzler, Knzli (bib0048) 2004; 3242
Zhang, Li (bib0044) 2007; 11
Tang, Yuan, Sun, Yang, Gao (bib0032) 2011; 24
Deb, Goyal (bib0008) 1996; 26
Asafuddoula, Singh, Ray (bib0003) 2017
Deb (bib0007) 2001; 16
Figueiredo, Ludermir, Bastos-Filho (bib0012) 2016; 374
Ishibuchi, Masuda, Nojima (bib0016) 2016; 20
Asafuddoula, Ray, Sarker (bib0002) 2015; 19
Wang, Jiao, Yao (bib0037) 2015; 19
Seada, Deb (bib0030) 2016; 20
Deb, Jain (bib0009) 2014; 18
Wang, Purshouse, Fleming (bib0038) 2013; 17
A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, E. Tsang, Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion, in: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE, 2006, pp. 892–899.
Ishibuchi, Setoguchi, Masuda, Nojima (bib0017) 2017; 21
Saxena, Sinha, Duro, Zhang (bib0029) 2016; 20
Y. Tian, X. Zhang, R. Cheng, Y. Jin, A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric, in: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), IEEE, 2016, pp. 5222–5229.
Zitzler (10.1016/j.ins.2018.07.012_bib0048) 2004; 3242
Wang (10.1016/j.ins.2018.07.012_bib0037) 2015; 19
Wilcoxon (10.1016/j.ins.2018.07.012_bib0041) 1945; 1
Zhang (10.1016/j.ins.2018.07.012_bib0044) 2007; 11
Li (10.1016/j.ins.2018.07.012_bib0020) 2015; 48
10.1016/j.ins.2018.07.012_bib0001
Huband (10.1016/j.ins.2018.07.012_bib0013) 2006; 10
10.1016/j.ins.2018.07.012_bib0047
10.1016/j.ins.2018.07.012_bib0004
10.1016/j.ins.2018.07.012_bib0028
Santos (10.1016/j.ins.2018.07.012_bib0027) 2016
Saxena (10.1016/j.ins.2018.07.012_bib0029) 2016; 20
Tian (10.1016/j.ins.2018.07.012_bib0034) 2017
Yuan (10.1016/j.ins.2018.07.012_bib0043) 2016; 20
Deb (10.1016/j.ins.2018.07.012_bib0008) 1996; 26
Zhang (10.1016/j.ins.2018.07.012_bib0045) 2008
Thamaraiselvi (10.1016/j.ins.2018.07.012_bib0033) 2004
Ishibuchi (10.1016/j.ins.2018.07.012_bib0017) 2017; 21
Wang (10.1016/j.ins.2018.07.012_bib0038) 2013; 17
Cheng (10.1016/j.ins.2018.07.012_bib0005) 2016; 20
Asafuddoula (10.1016/j.ins.2018.07.012_bib0002) 2015; 19
Liu (10.1016/j.ins.2018.07.012_bib0024) 2017; 47
Li (10.1016/j.ins.2018.07.012_bib0023) 2015; 19
While (10.1016/j.ins.2018.07.012_bib0040) 2006; 10
Yang (10.1016/j.ins.2018.07.012_bib0042) 2013; 17
Deb (10.1016/j.ins.2018.07.012_bib0007) 2001; 16
Qi (10.1016/j.ins.2018.07.012_bib0026) 2014; 22
Das (10.1016/j.ins.2018.07.012_bib0006) 1998; 8
Deb (10.1016/j.ins.2018.07.012_bib0009) 2014; 18
Tang (10.1016/j.ins.2018.07.012_bib0032) 2011; 24
Ishibuchi (10.1016/j.ins.2018.07.012_bib0016) 2016; 20
Wang (10.1016/j.ins.2018.07.012_bib0039) 2015; 243
Asafuddoula (10.1016/j.ins.2018.07.012_bib0003) 2017
10.1016/j.ins.2018.07.012_bib0010
10.1016/j.ins.2018.07.012_bib0011
Shannon (10.1016/j.ins.2018.07.012_bib0031) 2001; 5
10.1016/j.ins.2018.07.012_bib0035
10.1016/j.ins.2018.07.012_bib0014
10.1016/j.ins.2018.07.012_bib0036
10.1016/j.ins.2018.07.012_bib0015
Oliva (10.1016/j.ins.2018.07.012_bib0025) 2017; 79
Li (10.1016/j.ins.2018.07.012_bib0021) 2016; 20
Jain (10.1016/j.ins.2018.07.012_bib0018) 2014; 18
Laumanns (10.1016/j.ins.2018.07.012_bib0019) 2014; 10
Figueiredo (10.1016/j.ins.2018.07.012_bib0012) 2016; 374
Seada (10.1016/j.ins.2018.07.012_bib0030) 2016; 20
Li (10.1016/j.ins.2018.07.012_bib0022) 2011; 19
Zhang (10.1016/j.ins.2018.07.012_bib0046) 2015; 19
References_xml – reference: D.K. Saxena, K. Deb, Non-linear dimensionality reduction procedures for certain large-dimensional multi-objective optimization problems: employing correntropy and a novel maximum variance unfolding, in: Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, Springer, 2007, pp. 772–787.
– volume: 19
  start-page: 524
  year: 2015
  end-page: 541
  ident: bib0037
  article-title: Two_Arch2: an improved two-archive algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: bib0009
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 602
  year: 2014
  end-page: 622
  ident: bib0018
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach.
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 561
  year: 2011
  end-page: 595
  ident: bib0022
  article-title: An adaptive evolutionary multi-objective approach based on simulated annealing
  publication-title: Evol. Comput.
– volume: 21
  start-page: 169
  year: 2017
  end-page: 190
  ident: bib0017
  article-title: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes
  publication-title: IEEE Trans. Evol. Comput.
– volume: 24
  start-page: 1131
  year: 2011
  end-page: 1138
  ident: bib0032
  article-title: An improved scheme for minimum cross entropy threshold selection based on genetic algorithm
  publication-title: Knowl. Based Syst.
– volume: 243
  start-page: 423
  year: 2015
  end-page: 441
  ident: bib0039
  article-title: Preference-inspired co-evolutionary algorithms using weight vectors
  publication-title: Eur. J. Oper. Res.
– year: 2016
  ident: bib0027
  article-title: On the performance degradation of dominance-based evolutionary algorithms in many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– year: 2017
  ident: bib0034
  article-title: An indicator based multi-objective evolutionary algorithm with reference point adaptation for better versatility
  publication-title: IEEE Trans. Evol. Comput.
– volume: 10
  start-page: 477
  year: 2006
  end-page: 506
  ident: bib0013
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans. Evol. Comput.
– volume: 47
  start-page: 2689
  year: 2017
  end-page: 2702
  ident: bib0024
  article-title: A many-objective evolutionary algorithm using a one-by-one selection strategy
  publication-title: IEEE Trans. Cybern.
– volume: 20
  start-page: 485
  year: 2016
  end-page: 498
  ident: bib0029
  article-title: Entropy-based termination criterion for multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
– reference: L. Chen, C. Zhou, G. Dai, Y. Zhang, R. Hu, Entropy determined hybrid two-stage multi-objective evolutionary algorithm combining locally linear embedding, in: Proceedings of the Evolutionary Computation, 2016, pp. 2565–2572.
– volume: 10
  start-page: 263
  year: 2014
  end-page: 282
  ident: bib0019
  article-title: Combining convergence and diversity in evolutionary multiobjective optimization
  publication-title: Evol. Comput.
– year: 2008
  ident: bib0045
  article-title: RM-MEDA: A Regularity Model-Based Multiobjective Estimation of Distribution Algorithm
– volume: 20
  start-page: 773
  year: 2016
  end-page: 791
  ident: bib0005
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 445
  year: 2015
  end-page: 460
  ident: bib0002
  article-title: A decomposition-based evolutionary algorithm for many objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 8
  start-page: 631
  year: 1998
  end-page: 657
  ident: bib0006
  article-title: Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: bib0041
  article-title: Individual comparisons by ranking methods
  publication-title: Biomet. Bull.
– reference: A. Farhang-Mehr, S. Azarm, Diversity assessment of Pareto optimal solution sets: an entropy approach, in: Proceedings of the Congress on Evolutionary Computation, vol.  1, IEEE, 2002, pp. 723–728.
– reference: (2017).
– volume: 20
  start-page: 16
  year: 2016
  end-page: 37
  ident: bib0043
  article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– reference: A. Aleti, I. Moser, Entropy-based adaptive range parameter control for evolutionary algorithms, in: Proceedings of the Conference on Genetic & Evolutionary Computation, 2013, pp. 1501–1508.
– volume: 22
  start-page: 231
  year: 2014
  end-page: 264
  ident: bib0026
  article-title: MOEA/D with adaptive weight adjustment
  publication-title: Evol. Comput.
– volume: 79
  year: 2017
  ident: bib0025
  article-title: Cross entropy based thresholding for magnetic resonance brain images using crow search algorithm
  publication-title: Expert Syst. Appl.
– volume: 20
  start-page: 358
  year: 2016
  end-page: 369
  ident: bib0030
  article-title: A unified evolutionary optimization procedure for single, multiple, and many objectives
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 761
  year: 2015
  end-page: 776
  ident: bib0046
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 20
  start-page: 924
  year: 2016
  end-page: 938
  ident: bib0021
  article-title: Stochastic ranking algorithm for many-objective optimization based on multiple indicators
  publication-title: IEEE Trans. Evol. Comput.
– volume: 48
  start-page: 13
  year: 2015
  ident: bib0020
  article-title: Many-objective evolutionary algorithms: a survey
  publication-title: ACM Comput. Surv. (CSUR)
– reference: A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, E. Tsang, Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion, in: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE, 2006, pp. 892–899.
– volume: 16
  year: 2001
  ident: bib0007
  article-title: Multi-Objective Optimization Using Evolutionary Algorithms
– year: 2004
  ident: bib0033
  article-title: Data Mining: Concepts and Techniques
– volume: 26
  start-page: 30
  year: 1996
  end-page: 45
  ident: bib0008
  article-title: A combined genetic adaptive search (geneas) for engineering design
  publication-title: Comput. Sci. Inform.
– volume: 17
  start-page: 474
  year: 2013
  end-page: 494
  ident: bib0038
  article-title: Preference-inspired coevolutionary algorithms for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 5
  start-page: 3
  year: 2001
  end-page: 55
  ident: bib0031
  article-title: A mathematical theory of communication
  publication-title: ACM SIGMOBILE Mob. Comput. Commun. Rev.
– reference: K. Ikeda, H. Kita, S. Kobayashi, Failure of Pareto-based MOEAs: does non-dominated really mean near to optimal?, in: Proceedings of the Congress on Evolutionary Computation, 2001, pp. 957–962 vol. 2.
– reference: Y. Tian, R. Cheng, X. Zhang, Y. Jin, PlatEMO: a MATLAB platform for evolutionary multi-objective optimization, arXiv:
– volume: 17
  start-page: 721
  year: 2013
  end-page: 736
  ident: bib0042
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 694
  year: 2015
  end-page: 716
  ident: bib0023
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Trans. Evol. Comput.
– year: 2017
  ident: bib0003
  article-title: An enhanced decomposition-based evolutionary algorithm with adaptive reference vectors
  publication-title: IEEE Trans. Cybern.
– reference: E.J. Hughes, MSOPS-II: a general-purpose many-objective optimiser, in: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE, 2007, pp. 3944–3951.
– volume: 10
  start-page: 29
  year: 2006
  end-page: 38
  ident: bib0040
  article-title: A faster algorithm for calculating hypervolume
  publication-title: IEEE Trans. Evol. Comput.
– volume: 3242
  start-page: 832
  year: 2004
  end-page: 842
  ident: bib0048
  article-title: Indicator-based selection in multiobjective search
  publication-title: Lect. Notes Comput. Sci.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: bib0044
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– reference: Y. Tian, X. Zhang, R. Cheng, Y. Jin, A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric, in: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), IEEE, 2016, pp. 5222–5229.
– volume: 374
  start-page: 115
  year: 2016
  end-page: 134
  ident: bib0012
  article-title: Many objective particle swarm optimization
  publication-title: Inf. Sci. (NY)
– reference: K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multi-objective optimization test problems, in: Proceedings of the Congress on Evolutionary Computation, vol.  1, IEEE, 2002, pp. 825–830.
– volume: 20
  start-page: 807
  year: 2016
  end-page: 813
  ident: bib0016
  article-title: Pareto fronts of many-objective degenerate test problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 561
  issue: 4
  year: 2011
  ident: 10.1016/j.ins.2018.07.012_bib0022
  article-title: An adaptive evolutionary multi-objective approach based on simulated annealing
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00038
– volume: 18
  start-page: 602
  issue: 4
  year: 2014
  ident: 10.1016/j.ins.2018.07.012_bib0018
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach.
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281534
– volume: 47
  start-page: 2689
  issue: 9
  year: 2017
  ident: 10.1016/j.ins.2018.07.012_bib0024
  article-title: A many-objective evolutionary algorithm using a one-by-one selection strategy
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2638902
– volume: 243
  start-page: 423
  issue: 2
  year: 2015
  ident: 10.1016/j.ins.2018.07.012_bib0039
  article-title: Preference-inspired co-evolutionary algorithms using weight vectors
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2014.05.019
– ident: 10.1016/j.ins.2018.07.012_bib0036
  doi: 10.1109/CEC.2016.7748352
– volume: 1
  start-page: 80
  issue: 6
  year: 1945
  ident: 10.1016/j.ins.2018.07.012_bib0041
  article-title: Individual comparisons by ranking methods
  publication-title: Biomet. Bull.
  doi: 10.2307/3001968
– ident: 10.1016/j.ins.2018.07.012_bib0035
  doi: 10.1109/MCI.2017.2742868
– volume: 17
  start-page: 474
  issue: 4
  year: 2013
  ident: 10.1016/j.ins.2018.07.012_bib0038
  article-title: Preference-inspired coevolutionary algorithms for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2204264
– year: 2008
  ident: 10.1016/j.ins.2018.07.012_bib0045
– year: 2017
  ident: 10.1016/j.ins.2018.07.012_bib0034
  article-title: An indicator based multi-objective evolutionary algorithm with reference point adaptation for better versatility
  publication-title: IEEE Trans. Evol. Comput.
– ident: 10.1016/j.ins.2018.07.012_bib0010
  doi: 10.1109/CEC.2002.1007032
– volume: 10
  start-page: 477
  issue: 5
  year: 2006
  ident: 10.1016/j.ins.2018.07.012_bib0013
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.861417
– volume: 3242
  start-page: 832
  year: 2004
  ident: 10.1016/j.ins.2018.07.012_bib0048
  article-title: Indicator-based selection in multiobjective search
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-540-30217-9_84
– ident: 10.1016/j.ins.2018.07.012_bib0014
  doi: 10.1109/CEC.2007.4424985
– volume: 21
  start-page: 169
  issue: 2
  year: 2017
  ident: 10.1016/j.ins.2018.07.012_bib0017
  article-title: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2587749
– volume: 19
  start-page: 524
  issue: 4
  year: 2015
  ident: 10.1016/j.ins.2018.07.012_bib0037
  article-title: Two_Arch2: an improved two-archive algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2350987
– volume: 10
  start-page: 29
  issue: 1
  year: 2006
  ident: 10.1016/j.ins.2018.07.012_bib0040
  article-title: A faster algorithm for calculating hypervolume
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.851275
– volume: 20
  start-page: 807
  issue: 5
  year: 2016
  ident: 10.1016/j.ins.2018.07.012_bib0016
  article-title: Pareto fronts of many-objective degenerate test problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2505784
– ident: 10.1016/j.ins.2018.07.012_bib0015
  doi: 10.1109/CEC.2001.934293
– volume: 24
  start-page: 1131
  issue: 8
  year: 2011
  ident: 10.1016/j.ins.2018.07.012_bib0032
  article-title: An improved scheme for minimum cross entropy threshold selection based on genetic algorithm
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2011.02.013
– volume: 20
  start-page: 924
  issue: 6
  year: 2016
  ident: 10.1016/j.ins.2018.07.012_bib0021
  article-title: Stochastic ranking algorithm for many-objective optimization based on multiple indicators
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2549267
– volume: 22
  start-page: 231
  issue: 2
  year: 2014
  ident: 10.1016/j.ins.2018.07.012_bib0026
  article-title: MOEA/D with adaptive weight adjustment
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00109
– volume: 8
  start-page: 631
  issue: 3
  year: 1998
  ident: 10.1016/j.ins.2018.07.012_bib0006
  article-title: Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623496307510
– volume: 17
  start-page: 721
  issue: 5
  year: 2013
  ident: 10.1016/j.ins.2018.07.012_bib0042
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2227145
– year: 2016
  ident: 10.1016/j.ins.2018.07.012_bib0027
  article-title: On the performance degradation of dominance-based evolutionary algorithms in many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– ident: 10.1016/j.ins.2018.07.012_bib0028
  doi: 10.1007/978-3-540-70928-2_58
– volume: 16
  year: 2001
  ident: 10.1016/j.ins.2018.07.012_bib0007
– volume: 374
  start-page: 115
  year: 2016
  ident: 10.1016/j.ins.2018.07.012_bib0012
  article-title: Many objective particle swarm optimization
  publication-title: Inf. Sci. (NY)
  doi: 10.1016/j.ins.2016.09.026
– volume: 20
  start-page: 358
  issue: 3
  year: 2016
  ident: 10.1016/j.ins.2018.07.012_bib0030
  article-title: A unified evolutionary optimization procedure for single, multiple, and many objectives
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2459718
– ident: 10.1016/j.ins.2018.07.012_bib0004
  doi: 10.1109/CEC.2016.7744109
– ident: 10.1016/j.ins.2018.07.012_bib0011
  doi: 10.1109/CEC.2002.1007015
– volume: 79
  year: 2017
  ident: 10.1016/j.ins.2018.07.012_bib0025
  article-title: Cross entropy based thresholding for magnetic resonance brain images using crow search algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.02.042
– volume: 19
  start-page: 445
  issue: 3
  year: 2015
  ident: 10.1016/j.ins.2018.07.012_bib0002
  article-title: A decomposition-based evolutionary algorithm for many objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2339823
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.ins.2018.07.012_bib0009
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– volume: 48
  start-page: 13
  issue: 1
  year: 2015
  ident: 10.1016/j.ins.2018.07.012_bib0020
  article-title: Many-objective evolutionary algorithms: a survey
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/2792984
– volume: 20
  start-page: 773
  issue: 5
  year: 2016
  ident: 10.1016/j.ins.2018.07.012_bib0005
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2519378
– ident: 10.1016/j.ins.2018.07.012_bib0001
  doi: 10.1145/2463372.2463560
– volume: 19
  start-page: 694
  issue: 5
  year: 2015
  ident: 10.1016/j.ins.2018.07.012_bib0023
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2373386
– volume: 20
  start-page: 16
  issue: 1
  year: 2016
  ident: 10.1016/j.ins.2018.07.012_bib0043
  article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2420112
– volume: 26
  start-page: 30
  year: 1996
  ident: 10.1016/j.ins.2018.07.012_bib0008
  article-title: A combined genetic adaptive search (geneas) for engineering design
  publication-title: Comput. Sci. Inform.
– volume: 10
  start-page: 263
  issue: 3
  year: 2014
  ident: 10.1016/j.ins.2018.07.012_bib0019
  article-title: Combining convergence and diversity in evolutionary multiobjective optimization
  publication-title: Evol. Comput.
  doi: 10.1162/106365602760234108
– volume: 19
  start-page: 761
  issue: 6
  year: 2015
  ident: 10.1016/j.ins.2018.07.012_bib0046
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2378512
– volume: 5
  start-page: 3
  issue: 1
  year: 2001
  ident: 10.1016/j.ins.2018.07.012_bib0031
  article-title: A mathematical theory of communication
  publication-title: ACM SIGMOBILE Mob. Comput. Commun. Rev.
  doi: 10.1145/584091.584093
– year: 2004
  ident: 10.1016/j.ins.2018.07.012_bib0033
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.ins.2018.07.012_bib0044
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– year: 2017
  ident: 10.1016/j.ins.2018.07.012_bib0003
  article-title: An enhanced decomposition-based evolutionary algorithm with adaptive reference vectors
  publication-title: IEEE Trans. Cybern.
– volume: 20
  start-page: 485
  issue: 4
  year: 2016
  ident: 10.1016/j.ins.2018.07.012_bib0029
  article-title: Entropy-based termination criterion for multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2480780
– ident: 10.1016/j.ins.2018.07.012_bib0047
SSID ssj0004766
Score 2.4207551
Snippet Many-objective optimization problems (MaOPs) have attracted more and more attention due to its challenges for multi-objective evolutionary algorithms....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 232
SubjectTerms Adaptive reference points
Entropy
Evolutionary algorithm
Irregular and regular Pareto front
Many-objective optimization problem
Title Entropy based evolutionary algorithm with adaptive reference points for many-objective optimization problems
URI https://dx.doi.org/10.1016/j.ins.2018.07.012
Volume 465
WOSCitedRecordID wos000445713900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcECwgFljkA-JAZCl1Ej-Oq1URILTisEgVlyjOo5uqTaJuWy1_hN_L-JWmvARIXKIotZOo82VmPP5mBqGXlNEi5lwS0JCcxFXFiRS5ImBb6AQsXsmUkfQHfnEhZjP5cTT66nNhdkveNOLmRnb_VdRwDYStU2f_Qtz9TeECnIPQ4Qhih-MfCX6quefdl0DbpyIod-5hmh2XLeftut5crVxKW5F1hjnU9xoJurbWvBjNPVyBmiCtWliNGLQwdOWSNgPXhuZ66Nq6xCbzu7Orvb_--ard2s391llKExw3TAIAaTNf1fvrfQz7fFsvtnvKkBk9AzjPOz_ahSsmoie-uRiaz6M5oHlqp5Xo1Y21SlYVC04Jo7aXl9fVMUuG2taFRq3hprZ05w82wYYnFrCQ0eXZJ8IUa3Xc7cNS23rn2iyyQM_p_n7JLXREeSLFGB2dvZvO3u8zbrndBffv7ffLDXPwuwf93OMZeDGX99E9t_zAZxY2D9CobI7R3UFRymN06lJZ8Cs8ECl2RuAhWjqAYQMwPAQY7gGGNcCwBxjuAYYtwDDcFx8CDA8Bhj3AHqFPb6aX52-J69lBcir5hlQs47kMZcgpnLKooKyUomJlkiia06iIlYoSwYuSs6yC5XCm62RPcqEiJcCXjB6jcdM25ROEwZwomkUqF0zEqghFGSYqVjq_NcqrTJ6g0P-vae4K2uu-KsvUMxcXKYgi1aJIQ56CKE7Q635KZ6u5_G5w7IWVus_GupkpIOvX057-27Rn6M7-c3mOxpv1tjxFt_Pdpr5ev3D4-wbFtbNH
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy+based+evolutionary+algorithm+with+adaptive+reference+points+for+many-objective+optimization+problems&rft.jtitle=Information+sciences&rft.au=Zhou%2C+Chong&rft.au=Dai%2C+Guangming&rft.au=Zhang%2C+Cuijun&rft.au=Li%2C+Xiangping&rft.date=2018-10-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=465&rft.spage=232&rft.epage=247&rft_id=info:doi/10.1016%2Fj.ins.2018.07.012&rft.externalDocID=S0020025518305255
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon