Entropy based evolutionary algorithm with adaptive reference points for many-objective optimization problems
Many-objective optimization problems (MaOPs) have attracted more and more attention due to its challenges for multi-objective evolutionary algorithms. Reference points or weight vectors based evolutionary algorithms have been developed successfully for solving MaOPs. However, these algorithms do not...
Gespeichert in:
| Veröffentlicht in: | Information sciences Jg. 465; S. 232 - 247 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.10.2018
|
| Schlagworte: | |
| ISSN: | 0020-0255, 1872-6291 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Many-objective optimization problems (MaOPs) have attracted more and more attention due to its challenges for multi-objective evolutionary algorithms. Reference points or weight vectors based evolutionary algorithms have been developed successfully for solving MaOPs. However, these algorithms do not solve efficiently the MaOPs with irregular Pareto fronts, such as disconnected, degenerate, and inverted. Although some algorithms with adaptive weight vectors or reference points are designed to handle the problems with irregular shapes of Pareto fronts, they still exist some drawbacks. These adaptive algorithms do not obtain good performance in solving regular problem. For solving regular and irregular Pareto fronts of the problems, a novel entropy based evolutionary algorithm with adaptive reference points, named EARPEA, is proposed to solve regular and irregular many-objective optimization problems. Entropy computed based on reference points and a learning period are employed to control adaptation of the reference points. In addition, in order to maintain diversity of the reference points, a reference point adaptation method based on cosine similarity is designed in the adjusting reference point phase. The proposed algorithm is empirically compared with eight state-of-the-art many-objective evolutionary algorithms on 72 instances of 18 benchmark problems. The comparative results demonstrate that the overall performance of the proposed algorithm is superior to the counterparts on MaOPs with regular and irregular Pareto fronts. |
|---|---|
| AbstractList | Many-objective optimization problems (MaOPs) have attracted more and more attention due to its challenges for multi-objective evolutionary algorithms. Reference points or weight vectors based evolutionary algorithms have been developed successfully for solving MaOPs. However, these algorithms do not solve efficiently the MaOPs with irregular Pareto fronts, such as disconnected, degenerate, and inverted. Although some algorithms with adaptive weight vectors or reference points are designed to handle the problems with irregular shapes of Pareto fronts, they still exist some drawbacks. These adaptive algorithms do not obtain good performance in solving regular problem. For solving regular and irregular Pareto fronts of the problems, a novel entropy based evolutionary algorithm with adaptive reference points, named EARPEA, is proposed to solve regular and irregular many-objective optimization problems. Entropy computed based on reference points and a learning period are employed to control adaptation of the reference points. In addition, in order to maintain diversity of the reference points, a reference point adaptation method based on cosine similarity is designed in the adjusting reference point phase. The proposed algorithm is empirically compared with eight state-of-the-art many-objective evolutionary algorithms on 72 instances of 18 benchmark problems. The comparative results demonstrate that the overall performance of the proposed algorithm is superior to the counterparts on MaOPs with regular and irregular Pareto fronts. |
| Author | Zhang, Cuijun Li, Xiangping Ma, Ke Zhou, Chong Dai, Guangming |
| Author_xml | – sequence: 1 givenname: Chong orcidid: 0000-0002-9971-4550 surname: Zhou fullname: Zhou, Chong email: zc0315@foxmail.com organization: School of Computer, China University of Geosciences, Wuhan 430074, China – sequence: 2 givenname: Guangming surname: Dai fullname: Dai, Guangming email: cugdgm@126.com organization: School of Computer, China University of Geosciences, Wuhan 430074, China – sequence: 3 givenname: Cuijun surname: Zhang fullname: Zhang, Cuijun email: cuijun_zhang@163.com organization: School of Information Engineering, Hebei GEO University, Shijiazhuang 050031, China – sequence: 4 givenname: Xiangping surname: Li fullname: Li, Xiangping organization: School of Computer, China University of Geosciences, Wuhan 430074, China – sequence: 5 givenname: Ke surname: Ma fullname: Ma, Ke organization: School of Computer, China University of Geosciences, Wuhan 430074, China |
| BookMark | eNp9kL9OwzAQhy1UJNrCA7D5BRLOTmMnYkJV-SNVYoHZsh0HXCV2ZIei8vQ4LRNDl7sbft_p7lugmfPOIHRLICdA2N0uty7mFEiVA8-B0As0JxWnGaM1maE5AIUMaFleoUWMOwBYccbmqNu4MfjhgJWMpsFm77uv0XonwwHL7sMHO372-DtVLBs5jHZvcDCtCcZpgwdv3Rhx6wPupTtkXu2MPmZ8ivb2R0678BC86kwfr9FlK7tobv76Er0_bt7Wz9n29ell_bDNNK35mLVMcl1DDZymkRUNZaauWmbKUlFNi2alVFFWvDGcyZbwlQRGOdGVKlRFSlosET_t1cHHmM4V2o7HU8YgbScIiEma2IkkTUzSBHCRpCWS_COHYPsk4yxzf2JMemlvTRBR20lPY0OyIRpvz9C_pUyKZw |
| CitedBy_id | crossref_primary_10_1109_TCYB_2021_3086501 crossref_primary_10_1016_j_swevo_2022_101161 crossref_primary_10_1016_j_eswa_2022_118267 crossref_primary_10_1007_s13748_019_00174_2 crossref_primary_10_1016_j_eswa_2022_119258 crossref_primary_10_1016_j_asoc_2023_110581 crossref_primary_10_1109_TEVC_2020_2978158 crossref_primary_10_1109_ACCESS_2021_3126292 crossref_primary_10_1016_j_ins_2024_120143 crossref_primary_10_1155_2021_8870356 crossref_primary_10_3390_math12111680 crossref_primary_10_1109_JAS_2021_1003817 crossref_primary_10_1080_17509653_2021_1884913 crossref_primary_10_1016_j_asoc_2022_109771 crossref_primary_10_1016_j_swevo_2021_100980 crossref_primary_10_1016_j_ins_2019_06_010 crossref_primary_10_1016_j_eswa_2022_119080 crossref_primary_10_1007_s10732_021_09470_4 crossref_primary_10_1016_j_ejor_2021_10_033 crossref_primary_10_1016_j_ymssp_2022_109173 crossref_primary_10_1016_j_knosys_2021_107392 crossref_primary_10_1002_rvr2_119 crossref_primary_10_1016_j_asoc_2023_110295 crossref_primary_10_1007_s00158_022_03307_9 crossref_primary_10_3390_e27050524 crossref_primary_10_1016_j_asoc_2021_108297 crossref_primary_10_1016_j_swevo_2024_101601 crossref_primary_10_1007_s40747_024_01353_y |
| Cites_doi | 10.1162/EVCO_a_00038 10.1109/TEVC.2013.2281534 10.1109/TCYB.2016.2638902 10.1016/j.ejor.2014.05.019 10.1109/CEC.2016.7748352 10.2307/3001968 10.1109/MCI.2017.2742868 10.1109/TEVC.2012.2204264 10.1109/CEC.2002.1007032 10.1109/TEVC.2005.861417 10.1007/978-3-540-30217-9_84 10.1109/CEC.2007.4424985 10.1109/TEVC.2016.2587749 10.1109/TEVC.2014.2350987 10.1109/TEVC.2005.851275 10.1109/TEVC.2015.2505784 10.1109/CEC.2001.934293 10.1016/j.knosys.2011.02.013 10.1109/TEVC.2016.2549267 10.1162/EVCO_a_00109 10.1137/S1052623496307510 10.1109/TEVC.2012.2227145 10.1007/978-3-540-70928-2_58 10.1016/j.ins.2016.09.026 10.1109/TEVC.2015.2459718 10.1109/CEC.2016.7744109 10.1109/CEC.2002.1007015 10.1016/j.eswa.2017.02.042 10.1109/TEVC.2014.2339823 10.1109/TEVC.2013.2281535 10.1145/2792984 10.1109/TEVC.2016.2519378 10.1145/2463372.2463560 10.1109/TEVC.2014.2373386 10.1109/TEVC.2015.2420112 10.1162/106365602760234108 10.1109/TEVC.2014.2378512 10.1145/584091.584093 10.1109/TEVC.2007.892759 10.1109/TEVC.2015.2480780 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Inc. |
| Copyright_xml | – notice: 2018 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2018.07.012 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 247 |
| ExternalDocumentID | 10_1016_j_ins_2018_07_012 S0020025518305255 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-f6a7c909072f6a63d26e98f6e55b2c23d4bb3587de76af174a06271c8b3b81523 |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000445713900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Tue Nov 18 21:58:01 EST 2025 Sat Nov 29 06:58:02 EST 2025 Fri Feb 23 02:49:13 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Many-objective optimization problem Irregular and regular Pareto front Adaptive reference points Entropy Evolutionary algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-f6a7c909072f6a63d26e98f6e55b2c23d4bb3587de76af174a06271c8b3b81523 |
| ORCID | 0000-0002-9971-4550 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2018_07_012 crossref_primary_10_1016_j_ins_2018_07_012 elsevier_sciencedirect_doi_10_1016_j_ins_2018_07_012 |
| PublicationCentury | 2000 |
| PublicationDate | October 2018 2018-10-00 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: October 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Information sciences |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | E.J. Hughes, MSOPS-II: a general-purpose many-objective optimiser, in: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE, 2007, pp. 3944–3951. Zhang, Tian, Jin (bib0046) 2015; 19 Li, Tang, Li, Yao (bib0021) 2016; 20 Huband, Hingston, Barone, While (bib0013) 2006; 10 Das, Dennis (bib0006) 1998; 8 Jain, Deb (bib0018) 2014; 18 Wang, Purshouse, Fleming (bib0039) 2015; 243 Yang, Li, Liu, Zheng (bib0042) 2013; 17 L. Chen, C. Zhou, G. Dai, Y. Zhang, R. Hu, Entropy determined hybrid two-stage multi-objective evolutionary algorithm combining locally linear embedding, in: Proceedings of the Evolutionary Computation, 2016, pp. 2565–2572. Yuan, Xu, Wang, Yao (bib0043) 2016; 20 Qi, Ma, Liu, Jiao, Sun, Wu (bib0026) 2014; 22 Zhang, Zhou, Jin (bib0045) 2008 Cheng, Jin, Olhofer, Sendhoff (bib0005) 2016; 20 Li, Deb, Zhang, Kwong (bib0023) 2015; 19 (2017). Laumanns, Thiele, Deb, Zitzler (bib0019) 2014; 10 A. Farhang-Mehr, S. Azarm, Diversity assessment of Pareto optimal solution sets: an entropy approach, in: Proceedings of the Congress on Evolutionary Computation, vol. 1, IEEE, 2002, pp. 723–728. Liu, Gong, Jing, Jin (bib0024) 2017; 47 Oliva, Hinojosa, Cuevas, Pajares, Avalos, Glvez (bib0025) 2017; 79 A. Aleti, I. Moser, Entropy-based adaptive range parameter control for evolutionary algorithms, in: Proceedings of the Conference on Genetic & Evolutionary Computation, 2013, pp. 1501–1508. Y. Tian, R. Cheng, X. Zhang, Y. Jin, PlatEMO: a MATLAB platform for evolutionary multi-objective optimization, arXiv Li, Landa-Silva (bib0022) 2011; 19 D.K. Saxena, K. Deb, Non-linear dimensionality reduction procedures for certain large-dimensional multi-objective optimization problems: employing correntropy and a novel maximum variance unfolding, in: Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, Springer, 2007, pp. 772–787. K. Ikeda, H. Kita, S. Kobayashi, Failure of Pareto-based MOEAs: does non-dominated really mean near to optimal?, in: Proceedings of the Congress on Evolutionary Computation, 2001, pp. 957–962 vol. 2. Thamaraiselvi, Kaliammal (bib0033) 2004 Wilcoxon (bib0041) 1945; 1 Shannon (bib0031) 2001; 5 Santos, Takahashi (bib0027) 2016 K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multi-objective optimization test problems, in: Proceedings of the Congress on Evolutionary Computation, vol. 1, IEEE, 2002, pp. 825–830. Li, Li, Tang, Yao (bib0020) 2015; 48 Tian, Cheng, Zhang, Cheng, Jin (bib0034) 2017 While, Hingston, Barone, Huband (bib0040) 2006; 10 Zitzler, Knzli (bib0048) 2004; 3242 Zhang, Li (bib0044) 2007; 11 Tang, Yuan, Sun, Yang, Gao (bib0032) 2011; 24 Deb, Goyal (bib0008) 1996; 26 Asafuddoula, Singh, Ray (bib0003) 2017 Deb (bib0007) 2001; 16 Figueiredo, Ludermir, Bastos-Filho (bib0012) 2016; 374 Ishibuchi, Masuda, Nojima (bib0016) 2016; 20 Asafuddoula, Ray, Sarker (bib0002) 2015; 19 Wang, Jiao, Yao (bib0037) 2015; 19 Seada, Deb (bib0030) 2016; 20 Deb, Jain (bib0009) 2014; 18 Wang, Purshouse, Fleming (bib0038) 2013; 17 A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, E. Tsang, Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion, in: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE, 2006, pp. 892–899. Ishibuchi, Setoguchi, Masuda, Nojima (bib0017) 2017; 21 Saxena, Sinha, Duro, Zhang (bib0029) 2016; 20 Y. Tian, X. Zhang, R. Cheng, Y. Jin, A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric, in: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), IEEE, 2016, pp. 5222–5229. Zitzler (10.1016/j.ins.2018.07.012_bib0048) 2004; 3242 Wang (10.1016/j.ins.2018.07.012_bib0037) 2015; 19 Wilcoxon (10.1016/j.ins.2018.07.012_bib0041) 1945; 1 Zhang (10.1016/j.ins.2018.07.012_bib0044) 2007; 11 Li (10.1016/j.ins.2018.07.012_bib0020) 2015; 48 10.1016/j.ins.2018.07.012_bib0001 Huband (10.1016/j.ins.2018.07.012_bib0013) 2006; 10 10.1016/j.ins.2018.07.012_bib0047 10.1016/j.ins.2018.07.012_bib0004 10.1016/j.ins.2018.07.012_bib0028 Santos (10.1016/j.ins.2018.07.012_bib0027) 2016 Saxena (10.1016/j.ins.2018.07.012_bib0029) 2016; 20 Tian (10.1016/j.ins.2018.07.012_bib0034) 2017 Yuan (10.1016/j.ins.2018.07.012_bib0043) 2016; 20 Deb (10.1016/j.ins.2018.07.012_bib0008) 1996; 26 Zhang (10.1016/j.ins.2018.07.012_bib0045) 2008 Thamaraiselvi (10.1016/j.ins.2018.07.012_bib0033) 2004 Ishibuchi (10.1016/j.ins.2018.07.012_bib0017) 2017; 21 Wang (10.1016/j.ins.2018.07.012_bib0038) 2013; 17 Cheng (10.1016/j.ins.2018.07.012_bib0005) 2016; 20 Asafuddoula (10.1016/j.ins.2018.07.012_bib0002) 2015; 19 Liu (10.1016/j.ins.2018.07.012_bib0024) 2017; 47 Li (10.1016/j.ins.2018.07.012_bib0023) 2015; 19 While (10.1016/j.ins.2018.07.012_bib0040) 2006; 10 Yang (10.1016/j.ins.2018.07.012_bib0042) 2013; 17 Deb (10.1016/j.ins.2018.07.012_bib0007) 2001; 16 Qi (10.1016/j.ins.2018.07.012_bib0026) 2014; 22 Das (10.1016/j.ins.2018.07.012_bib0006) 1998; 8 Deb (10.1016/j.ins.2018.07.012_bib0009) 2014; 18 Tang (10.1016/j.ins.2018.07.012_bib0032) 2011; 24 Ishibuchi (10.1016/j.ins.2018.07.012_bib0016) 2016; 20 Wang (10.1016/j.ins.2018.07.012_bib0039) 2015; 243 Asafuddoula (10.1016/j.ins.2018.07.012_bib0003) 2017 10.1016/j.ins.2018.07.012_bib0010 10.1016/j.ins.2018.07.012_bib0011 Shannon (10.1016/j.ins.2018.07.012_bib0031) 2001; 5 10.1016/j.ins.2018.07.012_bib0035 10.1016/j.ins.2018.07.012_bib0014 10.1016/j.ins.2018.07.012_bib0036 10.1016/j.ins.2018.07.012_bib0015 Oliva (10.1016/j.ins.2018.07.012_bib0025) 2017; 79 Li (10.1016/j.ins.2018.07.012_bib0021) 2016; 20 Jain (10.1016/j.ins.2018.07.012_bib0018) 2014; 18 Laumanns (10.1016/j.ins.2018.07.012_bib0019) 2014; 10 Figueiredo (10.1016/j.ins.2018.07.012_bib0012) 2016; 374 Seada (10.1016/j.ins.2018.07.012_bib0030) 2016; 20 Li (10.1016/j.ins.2018.07.012_bib0022) 2011; 19 Zhang (10.1016/j.ins.2018.07.012_bib0046) 2015; 19 |
| References_xml | – reference: D.K. Saxena, K. Deb, Non-linear dimensionality reduction procedures for certain large-dimensional multi-objective optimization problems: employing correntropy and a novel maximum variance unfolding, in: Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, Springer, 2007, pp. 772–787. – volume: 19 start-page: 524 year: 2015 end-page: 541 ident: bib0037 article-title: Two_Arch2: an improved two-archive algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 18 start-page: 577 year: 2014 end-page: 601 ident: bib0009 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. – volume: 18 start-page: 602 year: 2014 end-page: 622 ident: bib0018 article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach. publication-title: IEEE Trans. Evol. Comput. – volume: 19 start-page: 561 year: 2011 end-page: 595 ident: bib0022 article-title: An adaptive evolutionary multi-objective approach based on simulated annealing publication-title: Evol. Comput. – volume: 21 start-page: 169 year: 2017 end-page: 190 ident: bib0017 article-title: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes publication-title: IEEE Trans. Evol. Comput. – volume: 24 start-page: 1131 year: 2011 end-page: 1138 ident: bib0032 article-title: An improved scheme for minimum cross entropy threshold selection based on genetic algorithm publication-title: Knowl. Based Syst. – volume: 243 start-page: 423 year: 2015 end-page: 441 ident: bib0039 article-title: Preference-inspired co-evolutionary algorithms using weight vectors publication-title: Eur. J. Oper. Res. – year: 2016 ident: bib0027 article-title: On the performance degradation of dominance-based evolutionary algorithms in many-objective optimization publication-title: IEEE Trans. Evol. Comput. – year: 2017 ident: bib0034 article-title: An indicator based multi-objective evolutionary algorithm with reference point adaptation for better versatility publication-title: IEEE Trans. Evol. Comput. – volume: 10 start-page: 477 year: 2006 end-page: 506 ident: bib0013 article-title: A review of multiobjective test problems and a scalable test problem toolkit publication-title: IEEE Trans. Evol. Comput. – volume: 47 start-page: 2689 year: 2017 end-page: 2702 ident: bib0024 article-title: A many-objective evolutionary algorithm using a one-by-one selection strategy publication-title: IEEE Trans. Cybern. – volume: 20 start-page: 485 year: 2016 end-page: 498 ident: bib0029 article-title: Entropy-based termination criterion for multiobjective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. – reference: L. Chen, C. Zhou, G. Dai, Y. Zhang, R. Hu, Entropy determined hybrid two-stage multi-objective evolutionary algorithm combining locally linear embedding, in: Proceedings of the Evolutionary Computation, 2016, pp. 2565–2572. – volume: 10 start-page: 263 year: 2014 end-page: 282 ident: bib0019 article-title: Combining convergence and diversity in evolutionary multiobjective optimization publication-title: Evol. Comput. – year: 2008 ident: bib0045 article-title: RM-MEDA: A Regularity Model-Based Multiobjective Estimation of Distribution Algorithm – volume: 20 start-page: 773 year: 2016 end-page: 791 ident: bib0005 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 19 start-page: 445 year: 2015 end-page: 460 ident: bib0002 article-title: A decomposition-based evolutionary algorithm for many objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 8 start-page: 631 year: 1998 end-page: 657 ident: bib0006 article-title: Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems publication-title: SIAM J. Optim. – volume: 1 start-page: 80 year: 1945 end-page: 83 ident: bib0041 article-title: Individual comparisons by ranking methods publication-title: Biomet. Bull. – reference: A. Farhang-Mehr, S. Azarm, Diversity assessment of Pareto optimal solution sets: an entropy approach, in: Proceedings of the Congress on Evolutionary Computation, vol. 1, IEEE, 2002, pp. 723–728. – reference: (2017). – volume: 20 start-page: 16 year: 2016 end-page: 37 ident: bib0043 article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – reference: A. Aleti, I. Moser, Entropy-based adaptive range parameter control for evolutionary algorithms, in: Proceedings of the Conference on Genetic & Evolutionary Computation, 2013, pp. 1501–1508. – volume: 22 start-page: 231 year: 2014 end-page: 264 ident: bib0026 article-title: MOEA/D with adaptive weight adjustment publication-title: Evol. Comput. – volume: 79 year: 2017 ident: bib0025 article-title: Cross entropy based thresholding for magnetic resonance brain images using crow search algorithm publication-title: Expert Syst. Appl. – volume: 20 start-page: 358 year: 2016 end-page: 369 ident: bib0030 article-title: A unified evolutionary optimization procedure for single, multiple, and many objectives publication-title: IEEE Trans. Evol. Comput. – volume: 19 start-page: 761 year: 2015 end-page: 776 ident: bib0046 article-title: A knee point-driven evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 20 start-page: 924 year: 2016 end-page: 938 ident: bib0021 article-title: Stochastic ranking algorithm for many-objective optimization based on multiple indicators publication-title: IEEE Trans. Evol. Comput. – volume: 48 start-page: 13 year: 2015 ident: bib0020 article-title: Many-objective evolutionary algorithms: a survey publication-title: ACM Comput. Surv. (CSUR) – reference: A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, E. Tsang, Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion, in: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE, 2006, pp. 892–899. – volume: 16 year: 2001 ident: bib0007 article-title: Multi-Objective Optimization Using Evolutionary Algorithms – year: 2004 ident: bib0033 article-title: Data Mining: Concepts and Techniques – volume: 26 start-page: 30 year: 1996 end-page: 45 ident: bib0008 article-title: A combined genetic adaptive search (geneas) for engineering design publication-title: Comput. Sci. Inform. – volume: 17 start-page: 474 year: 2013 end-page: 494 ident: bib0038 article-title: Preference-inspired coevolutionary algorithms for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 5 start-page: 3 year: 2001 end-page: 55 ident: bib0031 article-title: A mathematical theory of communication publication-title: ACM SIGMOBILE Mob. Comput. Commun. Rev. – reference: K. Ikeda, H. Kita, S. Kobayashi, Failure of Pareto-based MOEAs: does non-dominated really mean near to optimal?, in: Proceedings of the Congress on Evolutionary Computation, 2001, pp. 957–962 vol. 2. – reference: Y. Tian, R. Cheng, X. Zhang, Y. Jin, PlatEMO: a MATLAB platform for evolutionary multi-objective optimization, arXiv: – volume: 17 start-page: 721 year: 2013 end-page: 736 ident: bib0042 article-title: A grid-based evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 19 start-page: 694 year: 2015 end-page: 716 ident: bib0023 article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition publication-title: IEEE Trans. Evol. Comput. – year: 2017 ident: bib0003 article-title: An enhanced decomposition-based evolutionary algorithm with adaptive reference vectors publication-title: IEEE Trans. Cybern. – reference: E.J. Hughes, MSOPS-II: a general-purpose many-objective optimiser, in: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE, 2007, pp. 3944–3951. – volume: 10 start-page: 29 year: 2006 end-page: 38 ident: bib0040 article-title: A faster algorithm for calculating hypervolume publication-title: IEEE Trans. Evol. Comput. – volume: 3242 start-page: 832 year: 2004 end-page: 842 ident: bib0048 article-title: Indicator-based selection in multiobjective search publication-title: Lect. Notes Comput. Sci. – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: bib0044 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – reference: Y. Tian, X. Zhang, R. Cheng, Y. Jin, A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric, in: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), IEEE, 2016, pp. 5222–5229. – volume: 374 start-page: 115 year: 2016 end-page: 134 ident: bib0012 article-title: Many objective particle swarm optimization publication-title: Inf. Sci. (NY) – reference: K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multi-objective optimization test problems, in: Proceedings of the Congress on Evolutionary Computation, vol. 1, IEEE, 2002, pp. 825–830. – volume: 20 start-page: 807 year: 2016 end-page: 813 ident: bib0016 article-title: Pareto fronts of many-objective degenerate test problems publication-title: IEEE Trans. Evol. Comput. – volume: 19 start-page: 561 issue: 4 year: 2011 ident: 10.1016/j.ins.2018.07.012_bib0022 article-title: An adaptive evolutionary multi-objective approach based on simulated annealing publication-title: Evol. Comput. doi: 10.1162/EVCO_a_00038 – volume: 18 start-page: 602 issue: 4 year: 2014 ident: 10.1016/j.ins.2018.07.012_bib0018 article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach. publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281534 – volume: 47 start-page: 2689 issue: 9 year: 2017 ident: 10.1016/j.ins.2018.07.012_bib0024 article-title: A many-objective evolutionary algorithm using a one-by-one selection strategy publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2638902 – volume: 243 start-page: 423 issue: 2 year: 2015 ident: 10.1016/j.ins.2018.07.012_bib0039 article-title: Preference-inspired co-evolutionary algorithms using weight vectors publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2014.05.019 – ident: 10.1016/j.ins.2018.07.012_bib0036 doi: 10.1109/CEC.2016.7748352 – volume: 1 start-page: 80 issue: 6 year: 1945 ident: 10.1016/j.ins.2018.07.012_bib0041 article-title: Individual comparisons by ranking methods publication-title: Biomet. Bull. doi: 10.2307/3001968 – ident: 10.1016/j.ins.2018.07.012_bib0035 doi: 10.1109/MCI.2017.2742868 – volume: 17 start-page: 474 issue: 4 year: 2013 ident: 10.1016/j.ins.2018.07.012_bib0038 article-title: Preference-inspired coevolutionary algorithms for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2012.2204264 – year: 2008 ident: 10.1016/j.ins.2018.07.012_bib0045 – year: 2017 ident: 10.1016/j.ins.2018.07.012_bib0034 article-title: An indicator based multi-objective evolutionary algorithm with reference point adaptation for better versatility publication-title: IEEE Trans. Evol. Comput. – ident: 10.1016/j.ins.2018.07.012_bib0010 doi: 10.1109/CEC.2002.1007032 – volume: 10 start-page: 477 issue: 5 year: 2006 ident: 10.1016/j.ins.2018.07.012_bib0013 article-title: A review of multiobjective test problems and a scalable test problem toolkit publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.861417 – volume: 3242 start-page: 832 year: 2004 ident: 10.1016/j.ins.2018.07.012_bib0048 article-title: Indicator-based selection in multiobjective search publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-540-30217-9_84 – ident: 10.1016/j.ins.2018.07.012_bib0014 doi: 10.1109/CEC.2007.4424985 – volume: 21 start-page: 169 issue: 2 year: 2017 ident: 10.1016/j.ins.2018.07.012_bib0017 article-title: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2587749 – volume: 19 start-page: 524 issue: 4 year: 2015 ident: 10.1016/j.ins.2018.07.012_bib0037 article-title: Two_Arch2: an improved two-archive algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2350987 – volume: 10 start-page: 29 issue: 1 year: 2006 ident: 10.1016/j.ins.2018.07.012_bib0040 article-title: A faster algorithm for calculating hypervolume publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.851275 – volume: 20 start-page: 807 issue: 5 year: 2016 ident: 10.1016/j.ins.2018.07.012_bib0016 article-title: Pareto fronts of many-objective degenerate test problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2505784 – ident: 10.1016/j.ins.2018.07.012_bib0015 doi: 10.1109/CEC.2001.934293 – volume: 24 start-page: 1131 issue: 8 year: 2011 ident: 10.1016/j.ins.2018.07.012_bib0032 article-title: An improved scheme for minimum cross entropy threshold selection based on genetic algorithm publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2011.02.013 – volume: 20 start-page: 924 issue: 6 year: 2016 ident: 10.1016/j.ins.2018.07.012_bib0021 article-title: Stochastic ranking algorithm for many-objective optimization based on multiple indicators publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2549267 – volume: 22 start-page: 231 issue: 2 year: 2014 ident: 10.1016/j.ins.2018.07.012_bib0026 article-title: MOEA/D with adaptive weight adjustment publication-title: Evol. Comput. doi: 10.1162/EVCO_a_00109 – volume: 8 start-page: 631 issue: 3 year: 1998 ident: 10.1016/j.ins.2018.07.012_bib0006 article-title: Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems publication-title: SIAM J. Optim. doi: 10.1137/S1052623496307510 – volume: 17 start-page: 721 issue: 5 year: 2013 ident: 10.1016/j.ins.2018.07.012_bib0042 article-title: A grid-based evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2012.2227145 – year: 2016 ident: 10.1016/j.ins.2018.07.012_bib0027 article-title: On the performance degradation of dominance-based evolutionary algorithms in many-objective optimization publication-title: IEEE Trans. Evol. Comput. – ident: 10.1016/j.ins.2018.07.012_bib0028 doi: 10.1007/978-3-540-70928-2_58 – volume: 16 year: 2001 ident: 10.1016/j.ins.2018.07.012_bib0007 – volume: 374 start-page: 115 year: 2016 ident: 10.1016/j.ins.2018.07.012_bib0012 article-title: Many objective particle swarm optimization publication-title: Inf. Sci. (NY) doi: 10.1016/j.ins.2016.09.026 – volume: 20 start-page: 358 issue: 3 year: 2016 ident: 10.1016/j.ins.2018.07.012_bib0030 article-title: A unified evolutionary optimization procedure for single, multiple, and many objectives publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2459718 – ident: 10.1016/j.ins.2018.07.012_bib0004 doi: 10.1109/CEC.2016.7744109 – ident: 10.1016/j.ins.2018.07.012_bib0011 doi: 10.1109/CEC.2002.1007015 – volume: 79 year: 2017 ident: 10.1016/j.ins.2018.07.012_bib0025 article-title: Cross entropy based thresholding for magnetic resonance brain images using crow search algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.02.042 – volume: 19 start-page: 445 issue: 3 year: 2015 ident: 10.1016/j.ins.2018.07.012_bib0002 article-title: A decomposition-based evolutionary algorithm for many objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2339823 – volume: 18 start-page: 577 issue: 4 year: 2014 ident: 10.1016/j.ins.2018.07.012_bib0009 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281535 – volume: 48 start-page: 13 issue: 1 year: 2015 ident: 10.1016/j.ins.2018.07.012_bib0020 article-title: Many-objective evolutionary algorithms: a survey publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/2792984 – volume: 20 start-page: 773 issue: 5 year: 2016 ident: 10.1016/j.ins.2018.07.012_bib0005 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2519378 – ident: 10.1016/j.ins.2018.07.012_bib0001 doi: 10.1145/2463372.2463560 – volume: 19 start-page: 694 issue: 5 year: 2015 ident: 10.1016/j.ins.2018.07.012_bib0023 article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2373386 – volume: 20 start-page: 16 issue: 1 year: 2016 ident: 10.1016/j.ins.2018.07.012_bib0043 article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2420112 – volume: 26 start-page: 30 year: 1996 ident: 10.1016/j.ins.2018.07.012_bib0008 article-title: A combined genetic adaptive search (geneas) for engineering design publication-title: Comput. Sci. Inform. – volume: 10 start-page: 263 issue: 3 year: 2014 ident: 10.1016/j.ins.2018.07.012_bib0019 article-title: Combining convergence and diversity in evolutionary multiobjective optimization publication-title: Evol. Comput. doi: 10.1162/106365602760234108 – volume: 19 start-page: 761 issue: 6 year: 2015 ident: 10.1016/j.ins.2018.07.012_bib0046 article-title: A knee point-driven evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2378512 – volume: 5 start-page: 3 issue: 1 year: 2001 ident: 10.1016/j.ins.2018.07.012_bib0031 article-title: A mathematical theory of communication publication-title: ACM SIGMOBILE Mob. Comput. Commun. Rev. doi: 10.1145/584091.584093 – year: 2004 ident: 10.1016/j.ins.2018.07.012_bib0033 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.ins.2018.07.012_bib0044 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – year: 2017 ident: 10.1016/j.ins.2018.07.012_bib0003 article-title: An enhanced decomposition-based evolutionary algorithm with adaptive reference vectors publication-title: IEEE Trans. Cybern. – volume: 20 start-page: 485 issue: 4 year: 2016 ident: 10.1016/j.ins.2018.07.012_bib0029 article-title: Entropy-based termination criterion for multiobjective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2480780 – ident: 10.1016/j.ins.2018.07.012_bib0047 |
| SSID | ssj0004766 |
| Score | 2.4207551 |
| Snippet | Many-objective optimization problems (MaOPs) have attracted more and more attention due to its challenges for multi-objective evolutionary algorithms.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 232 |
| SubjectTerms | Adaptive reference points Entropy Evolutionary algorithm Irregular and regular Pareto front Many-objective optimization problem |
| Title | Entropy based evolutionary algorithm with adaptive reference points for many-objective optimization problems |
| URI | https://dx.doi.org/10.1016/j.ins.2018.07.012 |
| Volume | 465 |
| WOSCitedRecordID | wos000445713900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcECwgFljkA-JAZCl1Ej-Oq1URILTisEgVlyjOo5uqTaJuWy1_hN_L-JWmvARIXKIotZOo82VmPP5mBqGXlNEi5lwS0JCcxFXFiRS5ImBb6AQsXsmUkfQHfnEhZjP5cTT66nNhdkveNOLmRnb_VdRwDYStU2f_Qtz9TeECnIPQ4Qhih-MfCX6quefdl0DbpyIod-5hmh2XLeftut5crVxKW5F1hjnU9xoJurbWvBjNPVyBmiCtWliNGLQwdOWSNgPXhuZ66Nq6xCbzu7Orvb_--ard2s391llKExw3TAIAaTNf1fvrfQz7fFsvtnvKkBk9AzjPOz_ahSsmoie-uRiaz6M5oHlqp5Xo1Y21SlYVC04Jo7aXl9fVMUuG2taFRq3hprZ05w82wYYnFrCQ0eXZJ8IUa3Xc7cNS23rn2iyyQM_p_n7JLXREeSLFGB2dvZvO3u8zbrndBffv7ffLDXPwuwf93OMZeDGX99E9t_zAZxY2D9CobI7R3UFRymN06lJZ8Cs8ECl2RuAhWjqAYQMwPAQY7gGGNcCwBxjuAYYtwDDcFx8CDA8Bhj3AHqFPb6aX52-J69lBcir5hlQs47kMZcgpnLKooKyUomJlkiia06iIlYoSwYuSs6yC5XCm62RPcqEiJcCXjB6jcdM25ROEwZwomkUqF0zEqghFGSYqVjq_NcqrTJ6g0P-vae4K2uu-KsvUMxcXKYgi1aJIQ56CKE7Q635KZ6u5_G5w7IWVus_GupkpIOvX057-27Rn6M7-c3mOxpv1tjxFt_Pdpr5ev3D4-wbFtbNH |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy+based+evolutionary+algorithm+with+adaptive+reference+points+for+many-objective+optimization+problems&rft.jtitle=Information+sciences&rft.au=Zhou%2C+Chong&rft.au=Dai%2C+Guangming&rft.au=Zhang%2C+Cuijun&rft.au=Li%2C+Xiangping&rft.date=2018-10-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=465&rft.spage=232&rft.epage=247&rft_id=info:doi/10.1016%2Fj.ins.2018.07.012&rft.externalDocID=S0020025518305255 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |