Analysis of the influence of population distribution characteristics on swarm intelligence optimization algorithms

The distribution characteristic of populations is one of the main characteristics of population. The pattern of distribution characteristics determines the probability law of individual values. At the same time, the initialization of the population lays a foundation for the iterative process of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences Jg. 645; S. 119340
Hauptverfasser: Hu, Rongxin, Bao, Liyong, Ding, Hongwei, Zhou, Dongmin, Kong, Yan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.10.2023
Schlagworte:
ISSN:0020-0255
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The distribution characteristic of populations is one of the main characteristics of population. The pattern of distribution characteristics determines the probability law of individual values. At the same time, the initialization of the population lays a foundation for the iterative process of the swarm intelligence optimization algorithm. To reveal the influence of population distribution characteristics on the swarm intelligence optimization algorithm, this paper proposes a variety of search strategies based on the populations with different distribution characteristics and analyzes the influence of population distribution characteristics on optimization process by comparing the test results of the optimization algorithm after implementing these strategies. First, a new population generator is designed that can transform the same initial population into a population with uniform and central peaking distributions. On this basis, the two kinds of populations are applied to the global and local search stages of the optimization process, and four different search strategies are formed. Among them, the global and local search strategies based on a uniformly distributed population are the traditional methods. Finally, the performance of the optimization algorithm using different search strategies is evaluated through 29 test problems from the CEC2017 benchmark for 10, 30, 50 and 100 dimensions. In addition, the algorithms are applied to solve the TSP problem. For CEC2017 in 100D, only 13 of the 29 test functions achieve the best optimization effect by using the traditional method, while the other 16 test functions achieve better search results by using the other three search strategies. The analysis shows that the population distribution characteristics have a great influence on the population optimization algorithm. The performance of the algorithm with different population distribution combination strategies is statistically superior to the traditional algorithm with a uniform distribution population, as revealed in the test functions ranging from 38.7% to 62.9% for different dimensions. By reconstructing populations with different distribution characteristics, the overall efficiency of the swarm intelligence optimization algorithm can be greatly improved.
AbstractList The distribution characteristic of populations is one of the main characteristics of population. The pattern of distribution characteristics determines the probability law of individual values. At the same time, the initialization of the population lays a foundation for the iterative process of the swarm intelligence optimization algorithm. To reveal the influence of population distribution characteristics on the swarm intelligence optimization algorithm, this paper proposes a variety of search strategies based on the populations with different distribution characteristics and analyzes the influence of population distribution characteristics on optimization process by comparing the test results of the optimization algorithm after implementing these strategies. First, a new population generator is designed that can transform the same initial population into a population with uniform and central peaking distributions. On this basis, the two kinds of populations are applied to the global and local search stages of the optimization process, and four different search strategies are formed. Among them, the global and local search strategies based on a uniformly distributed population are the traditional methods. Finally, the performance of the optimization algorithm using different search strategies is evaluated through 29 test problems from the CEC2017 benchmark for 10, 30, 50 and 100 dimensions. In addition, the algorithms are applied to solve the TSP problem. For CEC2017 in 100D, only 13 of the 29 test functions achieve the best optimization effect by using the traditional method, while the other 16 test functions achieve better search results by using the other three search strategies. The analysis shows that the population distribution characteristics have a great influence on the population optimization algorithm. The performance of the algorithm with different population distribution combination strategies is statistically superior to the traditional algorithm with a uniform distribution population, as revealed in the test functions ranging from 38.7% to 62.9% for different dimensions. By reconstructing populations with different distribution characteristics, the overall efficiency of the swarm intelligence optimization algorithm can be greatly improved.
ArticleNumber 119340
Author Zhou, Dongmin
Bao, Liyong
Ding, Hongwei
Hu, Rongxin
Kong, Yan
Author_xml – sequence: 1
  givenname: Rongxin
  surname: Hu
  fullname: Hu, Rongxin
– sequence: 2
  givenname: Liyong
  orcidid: 0000-0002-7339-3832
  surname: Bao
  fullname: Bao, Liyong
  email: bly.yx@163.com
– sequence: 3
  givenname: Hongwei
  surname: Ding
  fullname: Ding, Hongwei
– sequence: 4
  givenname: Dongmin
  surname: Zhou
  fullname: Zhou, Dongmin
– sequence: 5
  givenname: Yan
  surname: Kong
  fullname: Kong, Yan
BookMark eNp9kMlqwzAURbVIoUnaD-jOP2BXg6fQVQgdAoFu2rWQNSQvyLKRlJb062vHXXWR1eNdOBfuWaCZ65xG6IHgjGBSPh4zcCGjmLKMkBXL8QzNMaY4xbQobtEihCPGOK_Kco782gl7DhCSziTxoBNwxp60k3oM-q4_WRGhc4mCED00p8sjD8ILGbUfQpAD65LwLXw70FFbC_upoI_Qws_EC7vvPMRDG-7QjRE26Pu_u0SfL88fm7d09_663ax3qaSrKqamUAozpWtBCpXXjLJVbUpRqlxVVBWNZopWumIVEaoxjSQFaUoldE4bRk1dsyUiU6_0XQheG957aIU_c4L5KIof-SCKj6L4JGpgqn-MhHgZEL0Ae5V8mkg9TPoC7XmQMGpQ4LWMXHVwhf4FqwCLhw
CitedBy_id crossref_primary_10_1109_JSEN_2024_3464513
crossref_primary_10_1177_00202940241258821
crossref_primary_10_1016_j_eswa_2024_124429
crossref_primary_10_1038_s41598_024_75347_8
crossref_primary_10_1016_j_matcom_2024_02_008
crossref_primary_10_1038_s41598_024_57518_9
Cites_doi 10.1007/s11071-021-06688-6
10.1016/j.ins.2014.12.043
10.1109/TCYB.2020.3026716
10.1109/ICNN.1995.488968
10.1016/j.eswa.2022.116924
10.1109/JAS.2021.1004129
10.1109/CEC48606.2020.9185901
10.1016/j.asoc.2014.06.035
10.1109/ACCESS.2021.3076091
10.1016/j.knosys.2018.11.024
10.1016/j.egyr.2021.05.030
10.1080/0305215X.2017.1417400
10.1109/TSMCB.2012.2222373
10.1016/j.swevo.2011.02.002
10.1007/s11831-020-09432-2
10.1109/CEC.1999.782657
10.1016/j.advengsoft.2013.12.007
10.1109/ACCESS.2021.3056407
10.1016/j.cie.2019.106040
10.1166/jctn.2016.5791
10.1155/2015/892937
10.1109/TIE.2021.3060645
10.1109/ACCESS.2020.2971249
10.1109/ACCESS.2020.3035058
10.1080/21642583.2019.1708830
10.1007/s13042-019-01053-x
10.1016/j.ins.2014.11.018
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright_xml – notice: 2023 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2023.119340
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
ExternalDocumentID 10_1016_j_ins_2023_119340
S0020025523009258
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
ADVLN
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c297t-f5dd03de8a15d4832398f6a6d4d72d5be3d27e7371adbfbc151b6dae42b32f883
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001029283100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 02:44:07 EST 2025
Tue Nov 18 21:19:01 EST 2025
Sat Nov 09 15:59:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords TSP
Chaotic mapping
CEC2017
Population distribution characteristics
Swarm intelligence optimization algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-f5dd03de8a15d4832398f6a6d4d72d5be3d27e7371adbfbc151b6dae42b32f883
ORCID 0000-0002-7339-3832
ParticipantIDs crossref_primary_10_1016_j_ins_2023_119340
crossref_citationtrail_10_1016_j_ins_2023_119340
elsevier_sciencedirect_doi_10_1016_j_ins_2023_119340
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Mohamed, Abutarboush, Hadi, Mohamed (b0045) 2021; 9
Cao, Hu, Tong (b0160) 2011; 60
Derrac, García, Molina, Herrera (b0205) 2011; 1
Gao, Liu, Huang (b0120) 2013; 43
Halim, Ismail, Das, Journal (b0010) 2021; 54
M. Dorigo, G.D. Caro, Ant colony optimization: a new meta-heuristic, in: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 1999, pp. 1470-1477 Vol. 1472.
Karaboga, Gorkemli (b0190) 2014; 23
Dokeroglu, Sevinc, Kucukyilmaz, Cosar, Engineering (b0015) 2019; 137
Tang, Liu, Pan (b0070) 2021; 8
Mohamed, A.W., Hadi, A.A., Mohamed, A.K., Awad, N.H.: Evaluating the performance of adaptive gaining sharing knowledge based algorithm on CEC 2020 benchmark problems, 2020 IEEE Congress on Evolutionary Computation, (2020) 1-8.
Memon, Siddique, Mekhilef, Mubin (b0115) 2022; 69
Bao, Tang, Ding, He, Zhao (b0180) 2021; 105
ElQuliti, Mohamed (b0060) 2016; 13
Zou, Li, Li, Li (b0175) 2021; 21
Guo, Hou, Ye (b0215) 2020; 8
Fu, Liu (b0150) 2022; 37
W. Yan, X.J.J.o.M.T.C. Kaigui, Simulated Annealing Algorithm, (1999).
Gao, Fu, Pun, Zhang, Kwong (b0135) 2022; 52
Liang, Li, Shi (b0165) 2003; 30
N. H. Awad1, M. Z. Ali2, P. N. Suganthan1, J. J. Liang3 and B. Y. Qu3.Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization . http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017.
D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report - TR06, Technical Report, Erciyes University, (2005).
Chopra, Mohsin Ansari (b0105) 2022; 198
Volgenant (b0225) 1996; 50
El-Quliti, Ragab, Abdelaal, Mohamed, Mashat, Noaman, Altalhi (b0055) 2015; 2015
Dhiman, Kumar (b0095) 2019; 165
Hichem, Elkamel, Rafik, Mesaaoud, Ouahiba (b0110) 2022; 34
Ewees, Abd Elaziz, Al-Qaness, Khalil, Kim (b0145) 2020; 8
Zhang, Jia, Xu, Hu (b0140) 2017; 33
Kiran, Hakli, Gunduz, Uguz (b0125) 2015; 300
Mirjalili, Mirjalili, Lewis (b0090) 2014; 69
J.J.C. Holland, A. Intelligence, Adaptation in natural and artificial systems : an introductory analysis with application to biology, (1975).
J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN'95 - International Conference on Neural Networks, 1995, pp. 1942-1948 vol.1944.
Xue, Shen (b0100) 2020; 8
Agrawal, Abutarboush, Ganesh, Mohamed (b0040) 2021; 9
Duan, Xiang, Chen (b0220) 2016; 25
Zhang, Wang, Kang, Cheng (b0200) 2018; 46
Mohamed, Hadi, Mohamed (b0020) 2020; 11
Xiong, Li, Mohamed, Yuan, Zhang (b0065) 2021; 7
Zang, Chai (b0170) 2016; 65
Hua, Zhou, Pun, Chen (b0155) 2015; 297
Yu, Liu, Qian, Li, Huang, Shi, Cai, Wu, Du, Wan (b0185) 2020; 2020
Sheskin (b0230) 2011
Panagant, Bureerat (b0130) 2018; 50
Rahimi, Gandomi (b0005) 2021; 28
L.J. Fogel, A.J. Owens, M.J.J.W.-I.P. Walsh, Artificial Intelligence through Simulated Evolution.
Sheng, Chen, Zhang (b0210) 2018; 46
Bao (10.1016/j.ins.2023.119340_b0180) 2021; 105
10.1016/j.ins.2023.119340_b0025
Memon (10.1016/j.ins.2023.119340_b0115) 2022; 69
Karaboga (10.1016/j.ins.2023.119340_b0190) 2014; 23
Guo (10.1016/j.ins.2023.119340_b0215) 2020; 8
Xiong (10.1016/j.ins.2023.119340_b0065) 2021; 7
Mohamed (10.1016/j.ins.2023.119340_b0045) 2021; 9
Liang (10.1016/j.ins.2023.119340_b0165) 2003; 30
10.1016/j.ins.2023.119340_b0080
Kiran (10.1016/j.ins.2023.119340_b0125) 2015; 300
Sheng (10.1016/j.ins.2023.119340_b0210) 2018; 46
Duan (10.1016/j.ins.2023.119340_b0220) 2016; 25
Gao (10.1016/j.ins.2023.119340_b0135) 2022; 52
Zou (10.1016/j.ins.2023.119340_b0175) 2021; 21
10.1016/j.ins.2023.119340_b0085
Derrac (10.1016/j.ins.2023.119340_b0205) 2011; 1
Mohamed (10.1016/j.ins.2023.119340_b0020) 2020; 11
ElQuliti (10.1016/j.ins.2023.119340_b0060) 2016; 13
El-Quliti (10.1016/j.ins.2023.119340_b0055) 2015; 2015
Xue (10.1016/j.ins.2023.119340_b0100) 2020; 8
Cao (10.1016/j.ins.2023.119340_b0160) 2011; 60
Zhang (10.1016/j.ins.2023.119340_b0200) 2018; 46
Volgenant (10.1016/j.ins.2023.119340_b0225) 1996; 50
Agrawal (10.1016/j.ins.2023.119340_b0040) 2021; 9
Gao (10.1016/j.ins.2023.119340_b0120) 2013; 43
10.1016/j.ins.2023.119340_b0035
Tang (10.1016/j.ins.2023.119340_b0070) 2021; 8
Fu (10.1016/j.ins.2023.119340_b0150) 2022; 37
Zang (10.1016/j.ins.2023.119340_b0170) 2016; 65
Panagant (10.1016/j.ins.2023.119340_b0130) 2018; 50
Sheskin (10.1016/j.ins.2023.119340_b0230) 2011
10.1016/j.ins.2023.119340_b0050
10.1016/j.ins.2023.119340_b0030
10.1016/j.ins.2023.119340_b0195
Dhiman (10.1016/j.ins.2023.119340_b0095) 2019; 165
Chopra (10.1016/j.ins.2023.119340_b0105) 2022; 198
10.1016/j.ins.2023.119340_b0075
Zhang (10.1016/j.ins.2023.119340_b0140) 2017; 33
Ewees (10.1016/j.ins.2023.119340_b0145) 2020; 8
Yu (10.1016/j.ins.2023.119340_b0185) 2020; 2020
Hichem (10.1016/j.ins.2023.119340_b0110) 2022; 34
Rahimi (10.1016/j.ins.2023.119340_b0005) 2021; 28
Halim (10.1016/j.ins.2023.119340_b0010) 2021; 54
Dokeroglu (10.1016/j.ins.2023.119340_b0015) 2019; 137
Mirjalili (10.1016/j.ins.2023.119340_b0090) 2014; 69
Hua (10.1016/j.ins.2023.119340_b0155) 2015; 297
References_xml – volume: 9
  start-page: 65934
  year: 2021
  end-page: 65946
  ident: b0045
  article-title: Gaining-Sharing knowledge based algorithm with adaptive parameters for engineering optimization
  publication-title: IEEE Access
– volume: 7
  start-page: 3286
  year: 2021
  end-page: 3301
  ident: b0065
  article-title: A new method for parameter extraction of solar photovoltaic models using gaining–sharing knowledge based algorithm
  publication-title: Energy Rep.
– volume: 23
  start-page: 227
  year: 2014
  end-page: 238
  ident: b0190
  article-title: A quick artificial bee colony (qABC) algorithm and its performance on optimization problems
  publication-title: Appl. Soft Comput.
– volume: 33
  start-page: 8
  year: 2017
  end-page: 12
  ident: b0140
  article-title: Application of improved artificial bee colony algorithm in path optimization
  publication-title: J. Natl. Sci. Harbin Normal Univers.
– volume: 25
  start-page: 141
  year: 2016
  end-page: 146
  ident: b0220
  article-title: A discrete artificial bee colony algorithm for traveling salesman problem, operations research and management
  publication-title: Science
– reference: W. Yan, X.J.J.o.M.T.C. Kaigui, Simulated Annealing Algorithm, (1999).
– year: 2011
  ident: b0230
  article-title: Handbook of parametric and nonparametric statistical procedures
– volume: 50
  start-page: 1645
  year: 2018
  end-page: 1661
  ident: b0130
  article-title: Truss topology, shape and sizing optimization by fully stressed design based on hybrid grey wolf optimization and adaptive differential evolution
  publication-title: Eng. Optimiz.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b0205
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evolution. Comput.
– volume: 60
  year: 2011
  ident: b0160
  article-title: Image scrambling based on Logistic uniform distribution
  publication-title: Acta Phys. Sin.
– reference: M. Dorigo, G.D. Caro, Ant colony optimization: a new meta-heuristic, in: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 1999, pp. 1470-1477 Vol. 1472.
– volume: 30
  start-page: 289
  year: 2003
  end-page: 292
  ident: b0165
  article-title: A compact closed form of standard normal distribution
  publication-title: J Xidian Univer.
– reference: D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report - TR06, Technical Report, Erciyes University, (2005).
– reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN'95 - International Conference on Neural Networks, 1995, pp. 1942-1948 vol.1944.
– reference: J.J.C. Holland, A. Intelligence, Adaptation in natural and artificial systems : an introductory analysis with application to biology, (1975).
– volume: 8
  start-page: 199081
  year: 2020
  end-page: 199096
  ident: b0215
  article-title: MEATSP: A membrane evolutionary algorithm for solving TSP
  publication-title: IEEE Access
– volume: 28
  start-page: 1667
  year: 2021
  end-page: 1688
  ident: b0005
  article-title: A Comprehensive review and analysis of operating room and surgery scheduling
  publication-title: Arch. Comput. Meth. Eng.
– volume: 165
  start-page: 169
  year: 2019
  end-page: 196
  ident: b0095
  article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems
  publication-title: Knowl.-Based Syst.
– volume: 34
  start-page: 316
  year: 2022
  end-page: 328
  ident: b0110
  article-title: A new binary grasshopper optimization algorithm for feature selection problem
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– volume: 65
  year: 2016
  ident: b0170
  article-title: Homogenization and entropy analysis of a quadratic polynomial chaotic system
  publication-title: Acta Phys. Sin.
– reference: N. H. Awad1, M. Z. Ali2, P. N. Suganthan1, J. J. Liang3 and B. Y. Qu3.Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization . http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017.
– reference: Mohamed, A.W., Hadi, A.A., Mohamed, A.K., Awad, N.H.: Evaluating the performance of adaptive gaining sharing knowledge based algorithm on CEC 2020 benchmark problems, 2020 IEEE Congress on Evolutionary Computation, (2020) 1-8.
– volume: 43
  start-page: 1011
  year: 2013
  end-page: 1024
  ident: b0120
  article-title: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning
  publication-title: IEEE T. Cybern.
– volume: 137
  year: 2019
  ident: b0015
  article-title: A survey on new generation metaheuristic algorithms
  publication-title: Comput. Ind. Eng.
– volume: 8
  start-page: 26304
  year: 2020
  end-page: 26315
  ident: b0145
  article-title: Improved artificial bee colony using sine-cosine algorithm for multi-level thresholding image segmentation
  publication-title: IEEE Access
– volume: 50
  year: 1996
  ident: b0225
  article-title: The travelling salesman, computational solutions for TSP applications
  publication-title: Optima
– volume: 54
  year: 2021
  ident: b0010
  article-title: Performance assessment of the metaheuristic optimization algorithms
  publication-title: Exhaust. Rev.
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 13
  ident: b0055
  article-title: A nonlinear goal programming model for university admission capacity planning with modified differential evolution algorithm
  publication-title: Math. Probl. Eng.
– volume: 9
  start-page: 26766
  year: 2021
  end-page: 26791
  ident: b0040
  article-title: Metaheuristic algorithms on feature selection: a survey of one decade of research (2009-2019)
  publication-title: IEEE Access
– volume: 13
  start-page: 7909
  year: 2016
  end-page: 7921
  ident: b0060
  article-title: A large-scale nonlinear mixed-binary goal programming model to assess candidate locations for solar energy stations: an improved real-binary differential evolution algorithm with a case study
  publication-title: J. Comput. Theor. Nanosci.
– volume: 8
  start-page: 22
  year: 2020
  end-page: 34
  ident: b0100
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
– volume: 105
  start-page: 1911
  year: 2021
  end-page: 1935
  ident: b0180
  article-title: The N-level (N >= 4) logistic cascade homogenized mapping for image encryption
  publication-title: Nonlinear Dyn.
– volume: 21
  start-page: 12175
  year: 2021
  end-page: 12184
  ident: b0175
  article-title: Image encryption algorithm based on improved one-dimensional logical sinusoidal chaotic mapping system
  publication-title: Sci. Technol. Eng.
– volume: 2020
  year: 2020
  ident: b0185
  article-title: Chaos-Based Application of a Novel Multistable 5D Memristive Hyperchaotic System with Coexisting Multiple Attractors
  publication-title: Complexity
– volume: 8
  start-page: 1627
  year: 2021
  end-page: 1643
  ident: b0070
  article-title: A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 69
  start-page: 1477
  year: 2022
  end-page: 1487
  ident: b0115
  article-title: Asynchronous particle swarm optimization-genetic algorithm (APSO-GA) based selective harmonic elimination in a cascaded H-Bridge multilevel inverter
  publication-title: IEEE Trans. Ind. Electron.
– reference: L.J. Fogel, A.J. Owens, M.J.J.W.-I.P. Walsh, Artificial Intelligence through Simulated Evolution.
– volume: 52
  start-page: 4400
  year: 2022
  end-page: 4414
  ident: b0135
  article-title: An efficient artificial bee colony algorithm with an improved linkage identification method
  publication-title: IEEE T. Cybern.
– volume: 300
  start-page: 140
  year: 2015
  end-page: 157
  ident: b0125
  article-title: Artificial bee colony algorithm with variable search strategy for continuous optimization
  publication-title: Inf. Sci.
– volume: 37
  start-page: 87
  year: 2022
  end-page: 96
  ident: b0150
  article-title: Improved sparrow search algorithm with multi-strategy integration and its application
  publication-title: Control Decision
– volume: 46
  start-page: 23
  year: 2018
  end-page: 29
  ident: b0210
  article-title: Research on maximum power point tracking strategy based on differential evolution artificial bee colony algorithm of photovoltaic system
  publication-title: Power Syst. Protect. Control
– volume: 11
  start-page: 1501
  year: 2020
  end-page: 1529
  ident: b0020
  article-title: Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0090
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 198
  year: 2022
  ident: b0105
  article-title: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications
  publication-title: Expert Syst. Appl.
– volume: 297
  start-page: 80
  year: 2015
  end-page: 94
  ident: b0155
  article-title: 2D Sine Logistic modulation map for image encryption
  publication-title: Inf. Sci.
– volume: 46
  start-page: 2430
  year: 2018
  end-page: 2442
  ident: b0200
  article-title: Hybrid grey wolf optimizer with artificial bee colony and its application to clustering optimization
  publication-title: Acta Electron. Sin.
– volume: 105
  start-page: 1911
  year: 2021
  ident: 10.1016/j.ins.2023.119340_b0180
  article-title: The N-level (N >= 4) logistic cascade homogenized mapping for image encryption
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06688-6
– ident: 10.1016/j.ins.2023.119340_b0025
– volume: 60
  year: 2011
  ident: 10.1016/j.ins.2023.119340_b0160
  article-title: Image scrambling based on Logistic uniform distribution
  publication-title: Acta Phys. Sin.
– volume: 300
  start-page: 140
  year: 2015
  ident: 10.1016/j.ins.2023.119340_b0125
  article-title: Artificial bee colony algorithm with variable search strategy for continuous optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.12.043
– volume: 65
  year: 2016
  ident: 10.1016/j.ins.2023.119340_b0170
  article-title: Homogenization and entropy analysis of a quadratic polynomial chaotic system
  publication-title: Acta Phys. Sin.
– volume: 52
  start-page: 4400
  issue: 6
  year: 2022
  ident: 10.1016/j.ins.2023.119340_b0135
  article-title: An efficient artificial bee colony algorithm with an improved linkage identification method
  publication-title: IEEE T. Cybern.
  doi: 10.1109/TCYB.2020.3026716
– volume: 50
  year: 1996
  ident: 10.1016/j.ins.2023.119340_b0225
  article-title: The travelling salesman, computational solutions for TSP applications
  publication-title: Optima
– volume: 54
  year: 2021
  ident: 10.1016/j.ins.2023.119340_b0010
  article-title: Performance assessment of the metaheuristic optimization algorithms
  publication-title: Exhaust. Rev.
– volume: 46
  start-page: 23
  year: 2018
  ident: 10.1016/j.ins.2023.119340_b0210
  article-title: Research on maximum power point tracking strategy based on differential evolution artificial bee colony algorithm of photovoltaic system
  publication-title: Power Syst. Protect. Control
– ident: 10.1016/j.ins.2023.119340_b0080
  doi: 10.1109/ICNN.1995.488968
– volume: 46
  start-page: 2430
  year: 2018
  ident: 10.1016/j.ins.2023.119340_b0200
  article-title: Hybrid grey wolf optimizer with artificial bee colony and its application to clustering optimization
  publication-title: Acta Electron. Sin.
– volume: 198
  year: 2022
  ident: 10.1016/j.ins.2023.119340_b0105
  article-title: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116924
– ident: 10.1016/j.ins.2023.119340_b0035
– ident: 10.1016/j.ins.2023.119340_b0195
– year: 2011
  ident: 10.1016/j.ins.2023.119340_b0230
– volume: 8
  start-page: 1627
  issue: 10
  year: 2021
  ident: 10.1016/j.ins.2023.119340_b0070
  article-title: A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2021.1004129
– volume: 30
  start-page: 289
  year: 2003
  ident: 10.1016/j.ins.2023.119340_b0165
  article-title: A compact closed form of standard normal distribution
  publication-title: J Xidian Univer.
– ident: 10.1016/j.ins.2023.119340_b0050
  doi: 10.1109/CEC48606.2020.9185901
– volume: 23
  start-page: 227
  year: 2014
  ident: 10.1016/j.ins.2023.119340_b0190
  article-title: A quick artificial bee colony (qABC) algorithm and its performance on optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.06.035
– volume: 37
  start-page: 87
  year: 2022
  ident: 10.1016/j.ins.2023.119340_b0150
  article-title: Improved sparrow search algorithm with multi-strategy integration and its application
  publication-title: Control Decision
– volume: 21
  start-page: 12175
  year: 2021
  ident: 10.1016/j.ins.2023.119340_b0175
  article-title: Image encryption algorithm based on improved one-dimensional logical sinusoidal chaotic mapping system
  publication-title: Sci. Technol. Eng.
– volume: 9
  start-page: 65934
  year: 2021
  ident: 10.1016/j.ins.2023.119340_b0045
  article-title: Gaining-Sharing knowledge based algorithm with adaptive parameters for engineering optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3076091
– volume: 165
  start-page: 169
  year: 2019
  ident: 10.1016/j.ins.2023.119340_b0095
  article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.11.024
– volume: 7
  start-page: 3286
  year: 2021
  ident: 10.1016/j.ins.2023.119340_b0065
  article-title: A new method for parameter extraction of solar photovoltaic models using gaining–sharing knowledge based algorithm
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.05.030
– volume: 50
  start-page: 1645
  issue: 10
  year: 2018
  ident: 10.1016/j.ins.2023.119340_b0130
  article-title: Truss topology, shape and sizing optimization by fully stressed design based on hybrid grey wolf optimization and adaptive differential evolution
  publication-title: Eng. Optimiz.
  doi: 10.1080/0305215X.2017.1417400
– volume: 43
  start-page: 1011
  year: 2013
  ident: 10.1016/j.ins.2023.119340_b0120
  article-title: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning
  publication-title: IEEE T. Cybern.
  doi: 10.1109/TSMCB.2012.2222373
– ident: 10.1016/j.ins.2023.119340_b0030
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.ins.2023.119340_b0205
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evolution. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 28
  start-page: 1667
  year: 2021
  ident: 10.1016/j.ins.2023.119340_b0005
  article-title: A Comprehensive review and analysis of operating room and surgery scheduling
  publication-title: Arch. Comput. Meth. Eng.
  doi: 10.1007/s11831-020-09432-2
– volume: 2020
  year: 2020
  ident: 10.1016/j.ins.2023.119340_b0185
  article-title: Chaos-Based Application of a Novel Multistable 5D Memristive Hyperchaotic System with Coexisting Multiple Attractors
  publication-title: Complexity
– ident: 10.1016/j.ins.2023.119340_b0075
  doi: 10.1109/CEC.1999.782657
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.ins.2023.119340_b0090
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 34
  start-page: 316
  year: 2022
  ident: 10.1016/j.ins.2023.119340_b0110
  article-title: A new binary grasshopper optimization algorithm for feature selection problem
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– volume: 25
  start-page: 141
  year: 2016
  ident: 10.1016/j.ins.2023.119340_b0220
  article-title: A discrete artificial bee colony algorithm for traveling salesman problem, operations research and management
  publication-title: Science
– volume: 9
  start-page: 26766
  year: 2021
  ident: 10.1016/j.ins.2023.119340_b0040
  article-title: Metaheuristic algorithms on feature selection: a survey of one decade of research (2009-2019)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3056407
– ident: 10.1016/j.ins.2023.119340_b0085
– volume: 137
  year: 2019
  ident: 10.1016/j.ins.2023.119340_b0015
  article-title: A survey on new generation metaheuristic algorithms
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.106040
– volume: 13
  start-page: 7909
  issue: 11
  year: 2016
  ident: 10.1016/j.ins.2023.119340_b0060
  article-title: A large-scale nonlinear mixed-binary goal programming model to assess candidate locations for solar energy stations: an improved real-binary differential evolution algorithm with a case study
  publication-title: J. Comput. Theor. Nanosci.
  doi: 10.1166/jctn.2016.5791
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10.1016/j.ins.2023.119340_b0055
  article-title: A nonlinear goal programming model for university admission capacity planning with modified differential evolution algorithm
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2015/892937
– volume: 69
  start-page: 1477
  year: 2022
  ident: 10.1016/j.ins.2023.119340_b0115
  article-title: Asynchronous particle swarm optimization-genetic algorithm (APSO-GA) based selective harmonic elimination in a cascaded H-Bridge multilevel inverter
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3060645
– volume: 8
  start-page: 26304
  year: 2020
  ident: 10.1016/j.ins.2023.119340_b0145
  article-title: Improved artificial bee colony using sine-cosine algorithm for multi-level thresholding image segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2971249
– volume: 8
  start-page: 199081
  year: 2020
  ident: 10.1016/j.ins.2023.119340_b0215
  article-title: MEATSP: A membrane evolutionary algorithm for solving TSP
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3035058
– volume: 33
  start-page: 8
  year: 2017
  ident: 10.1016/j.ins.2023.119340_b0140
  article-title: Application of improved artificial bee colony algorithm in path optimization
  publication-title: J. Natl. Sci. Harbin Normal Univers.
– volume: 8
  start-page: 22
  year: 2020
  ident: 10.1016/j.ins.2023.119340_b0100
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2019.1708830
– volume: 11
  start-page: 1501
  year: 2020
  ident: 10.1016/j.ins.2023.119340_b0020
  article-title: Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-019-01053-x
– volume: 297
  start-page: 80
  year: 2015
  ident: 10.1016/j.ins.2023.119340_b0155
  article-title: 2D Sine Logistic modulation map for image encryption
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.11.018
SSID ssj0004766
Score 2.4592652
Snippet The distribution characteristic of populations is one of the main characteristics of population. The pattern of distribution characteristics determines the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119340
SubjectTerms CEC2017
Chaotic mapping
Population distribution characteristics
Swarm intelligence optimization algorithm
TSP
Title Analysis of the influence of population distribution characteristics on swarm intelligence optimization algorithms
URI https://dx.doi.org/10.1016/j.ins.2023.119340
Volume 645
WOSCitedRecordID wos001029283100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004766
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFLZKxwEOCAZoA4Z8QByYglrHiZ3jQEMDoYnDQL1FdmyXVG0ytd1W7vxwnmM7yQpD7MAlip6Slyjvy_Oz_d73EHqljWZjodJIjHQCE5S0iLKCmojHko5kAUFv0zPy22d2esonk-zLYPAz1MJczllV8c0mO_-vpgYZGNuWzt7C3K1SEMA5GB2OYHY4_pPh-zQjNqosQxuSJrm57ddlt2bable2_vcabzOIVldiuWjoJFrKzhr8y8IXbh6K-bReluvvnu58FlLi23LIQz-6rjrouFzuaropW0y-E7VbG_hR-0HUhtW-08oJyK502a1u1xcu6q-mC6_Cr1iQLvetqyAAAXH0vMELpzTp-dExxJWOxuk3F-9WG2YwL7Fs6yR-2117nU57a5hrkw9DXtssBxW5VZE7FXfQDmFJxodo5-jj8eRTV1_L3J53eO-wO97kCW69x5_jm17McvYQPfCTDXzkQPIIDXS1i-73KCh30YEvXMGvcc902Lv8x2gZ4IRrgwFOuIWTFXRwwn044S04YRA1cMJ9OOE-nHAHpyfo64fjs_cnke_TERUkY-vIJEqNYqW5GCeKwhARZ9ykIlVUMaISqWNFmGaxdQrSyAKCTJkqoSmRMTGcx0_RsKorvYdwIWBEEYabRBrKqJSpycTYUG4oUapQ-2gUvm5eeBJ720tlnt9o1X30pr3l3DG4_O1iGkyW-5_EhZY5wO_m257d5hnP0b3ur3iBhuvlhT5Ad4vLdblavvTY-wU4f678
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+influence+of+population+distribution+characteristics+on+swarm+intelligence+optimization+algorithms&rft.jtitle=Information+sciences&rft.au=Hu%2C+Rongxin&rft.au=Bao%2C+Liyong&rft.au=Ding%2C+Hongwei&rft.au=Zhou%2C+Dongmin&rft.date=2023-10-01&rft.issn=0020-0255&rft.volume=645&rft.spage=119340&rft_id=info:doi/10.1016%2Fj.ins.2023.119340&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2023_119340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon