Analysis of the influence of population distribution characteristics on swarm intelligence optimization algorithms
The distribution characteristic of populations is one of the main characteristics of population. The pattern of distribution characteristics determines the probability law of individual values. At the same time, the initialization of the population lays a foundation for the iterative process of the...
Gespeichert in:
| Veröffentlicht in: | Information sciences Jg. 645; S. 119340 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.10.2023
|
| Schlagworte: | |
| ISSN: | 0020-0255 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The distribution characteristic of populations is one of the main characteristics of population. The pattern of distribution characteristics determines the probability law of individual values. At the same time, the initialization of the population lays a foundation for the iterative process of the swarm intelligence optimization algorithm. To reveal the influence of population distribution characteristics on the swarm intelligence optimization algorithm, this paper proposes a variety of search strategies based on the populations with different distribution characteristics and analyzes the influence of population distribution characteristics on optimization process by comparing the test results of the optimization algorithm after implementing these strategies. First, a new population generator is designed that can transform the same initial population into a population with uniform and central peaking distributions. On this basis, the two kinds of populations are applied to the global and local search stages of the optimization process, and four different search strategies are formed. Among them, the global and local search strategies based on a uniformly distributed population are the traditional methods. Finally, the performance of the optimization algorithm using different search strategies is evaluated through 29 test problems from the CEC2017 benchmark for 10, 30, 50 and 100 dimensions. In addition, the algorithms are applied to solve the TSP problem. For CEC2017 in 100D, only 13 of the 29 test functions achieve the best optimization effect by using the traditional method, while the other 16 test functions achieve better search results by using the other three search strategies. The analysis shows that the population distribution characteristics have a great influence on the population optimization algorithm. The performance of the algorithm with different population distribution combination strategies is statistically superior to the traditional algorithm with a uniform distribution population, as revealed in the test functions ranging from 38.7% to 62.9% for different dimensions. By reconstructing populations with different distribution characteristics, the overall efficiency of the swarm intelligence optimization algorithm can be greatly improved. |
|---|---|
| AbstractList | The distribution characteristic of populations is one of the main characteristics of population. The pattern of distribution characteristics determines the probability law of individual values. At the same time, the initialization of the population lays a foundation for the iterative process of the swarm intelligence optimization algorithm. To reveal the influence of population distribution characteristics on the swarm intelligence optimization algorithm, this paper proposes a variety of search strategies based on the populations with different distribution characteristics and analyzes the influence of population distribution characteristics on optimization process by comparing the test results of the optimization algorithm after implementing these strategies. First, a new population generator is designed that can transform the same initial population into a population with uniform and central peaking distributions. On this basis, the two kinds of populations are applied to the global and local search stages of the optimization process, and four different search strategies are formed. Among them, the global and local search strategies based on a uniformly distributed population are the traditional methods. Finally, the performance of the optimization algorithm using different search strategies is evaluated through 29 test problems from the CEC2017 benchmark for 10, 30, 50 and 100 dimensions. In addition, the algorithms are applied to solve the TSP problem. For CEC2017 in 100D, only 13 of the 29 test functions achieve the best optimization effect by using the traditional method, while the other 16 test functions achieve better search results by using the other three search strategies. The analysis shows that the population distribution characteristics have a great influence on the population optimization algorithm. The performance of the algorithm with different population distribution combination strategies is statistically superior to the traditional algorithm with a uniform distribution population, as revealed in the test functions ranging from 38.7% to 62.9% for different dimensions. By reconstructing populations with different distribution characteristics, the overall efficiency of the swarm intelligence optimization algorithm can be greatly improved. |
| ArticleNumber | 119340 |
| Author | Zhou, Dongmin Bao, Liyong Ding, Hongwei Hu, Rongxin Kong, Yan |
| Author_xml | – sequence: 1 givenname: Rongxin surname: Hu fullname: Hu, Rongxin – sequence: 2 givenname: Liyong orcidid: 0000-0002-7339-3832 surname: Bao fullname: Bao, Liyong email: bly.yx@163.com – sequence: 3 givenname: Hongwei surname: Ding fullname: Ding, Hongwei – sequence: 4 givenname: Dongmin surname: Zhou fullname: Zhou, Dongmin – sequence: 5 givenname: Yan surname: Kong fullname: Kong, Yan |
| BookMark | eNp9kMlqwzAURbVIoUnaD-jOP2BXg6fQVQgdAoFu2rWQNSQvyLKRlJb062vHXXWR1eNdOBfuWaCZ65xG6IHgjGBSPh4zcCGjmLKMkBXL8QzNMaY4xbQobtEihCPGOK_Kco782gl7DhCSziTxoBNwxp60k3oM-q4_WRGhc4mCED00p8sjD8ILGbUfQpAD65LwLXw70FFbC_upoI_Qws_EC7vvPMRDG-7QjRE26Pu_u0SfL88fm7d09_663ax3qaSrKqamUAozpWtBCpXXjLJVbUpRqlxVVBWNZopWumIVEaoxjSQFaUoldE4bRk1dsyUiU6_0XQheG957aIU_c4L5KIof-SCKj6L4JGpgqn-MhHgZEL0Ae5V8mkg9TPoC7XmQMGpQ4LWMXHVwhf4FqwCLhw |
| CitedBy_id | crossref_primary_10_1109_JSEN_2024_3464513 crossref_primary_10_1177_00202940241258821 crossref_primary_10_1016_j_eswa_2024_124429 crossref_primary_10_1038_s41598_024_75347_8 crossref_primary_10_1016_j_matcom_2024_02_008 crossref_primary_10_1038_s41598_024_57518_9 |
| Cites_doi | 10.1007/s11071-021-06688-6 10.1016/j.ins.2014.12.043 10.1109/TCYB.2020.3026716 10.1109/ICNN.1995.488968 10.1016/j.eswa.2022.116924 10.1109/JAS.2021.1004129 10.1109/CEC48606.2020.9185901 10.1016/j.asoc.2014.06.035 10.1109/ACCESS.2021.3076091 10.1016/j.knosys.2018.11.024 10.1016/j.egyr.2021.05.030 10.1080/0305215X.2017.1417400 10.1109/TSMCB.2012.2222373 10.1016/j.swevo.2011.02.002 10.1007/s11831-020-09432-2 10.1109/CEC.1999.782657 10.1016/j.advengsoft.2013.12.007 10.1109/ACCESS.2021.3056407 10.1016/j.cie.2019.106040 10.1166/jctn.2016.5791 10.1155/2015/892937 10.1109/TIE.2021.3060645 10.1109/ACCESS.2020.2971249 10.1109/ACCESS.2020.3035058 10.1080/21642583.2019.1708830 10.1007/s13042-019-01053-x 10.1016/j.ins.2014.11.018 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Inc. |
| Copyright_xml | – notice: 2023 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2023.119340 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| ExternalDocumentID | 10_1016_j_ins_2023_119340 S0020025523009258 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXKI AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH ADVLN AEBSH AECPX AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c297t-f5dd03de8a15d4832398f6a6d4d72d5be3d27e7371adbfbc151b6dae42b32f883 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001029283100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Sat Nov 29 02:44:07 EST 2025 Tue Nov 18 21:19:01 EST 2025 Sat Nov 09 15:59:13 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | TSP Chaotic mapping CEC2017 Population distribution characteristics Swarm intelligence optimization algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-f5dd03de8a15d4832398f6a6d4d72d5be3d27e7371adbfbc151b6dae42b32f883 |
| ORCID | 0000-0002-7339-3832 |
| ParticipantIDs | crossref_primary_10_1016_j_ins_2023_119340 crossref_citationtrail_10_1016_j_ins_2023_119340 elsevier_sciencedirect_doi_10_1016_j_ins_2023_119340 |
| PublicationCentury | 2000 |
| PublicationDate | October 2023 2023-10-00 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Mohamed, Abutarboush, Hadi, Mohamed (b0045) 2021; 9 Cao, Hu, Tong (b0160) 2011; 60 Derrac, García, Molina, Herrera (b0205) 2011; 1 Gao, Liu, Huang (b0120) 2013; 43 Halim, Ismail, Das, Journal (b0010) 2021; 54 M. Dorigo, G.D. Caro, Ant colony optimization: a new meta-heuristic, in: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 1999, pp. 1470-1477 Vol. 1472. Karaboga, Gorkemli (b0190) 2014; 23 Dokeroglu, Sevinc, Kucukyilmaz, Cosar, Engineering (b0015) 2019; 137 Tang, Liu, Pan (b0070) 2021; 8 Mohamed, A.W., Hadi, A.A., Mohamed, A.K., Awad, N.H.: Evaluating the performance of adaptive gaining sharing knowledge based algorithm on CEC 2020 benchmark problems, 2020 IEEE Congress on Evolutionary Computation, (2020) 1-8. Memon, Siddique, Mekhilef, Mubin (b0115) 2022; 69 Bao, Tang, Ding, He, Zhao (b0180) 2021; 105 ElQuliti, Mohamed (b0060) 2016; 13 Zou, Li, Li, Li (b0175) 2021; 21 Guo, Hou, Ye (b0215) 2020; 8 Fu, Liu (b0150) 2022; 37 W. Yan, X.J.J.o.M.T.C. Kaigui, Simulated Annealing Algorithm, (1999). Gao, Fu, Pun, Zhang, Kwong (b0135) 2022; 52 Liang, Li, Shi (b0165) 2003; 30 N. H. Awad1, M. Z. Ali2, P. N. Suganthan1, J. J. Liang3 and B. Y. Qu3.Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization . http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017. D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report - TR06, Technical Report, Erciyes University, (2005). Chopra, Mohsin Ansari (b0105) 2022; 198 Volgenant (b0225) 1996; 50 El-Quliti, Ragab, Abdelaal, Mohamed, Mashat, Noaman, Altalhi (b0055) 2015; 2015 Dhiman, Kumar (b0095) 2019; 165 Hichem, Elkamel, Rafik, Mesaaoud, Ouahiba (b0110) 2022; 34 Ewees, Abd Elaziz, Al-Qaness, Khalil, Kim (b0145) 2020; 8 Zhang, Jia, Xu, Hu (b0140) 2017; 33 Kiran, Hakli, Gunduz, Uguz (b0125) 2015; 300 Mirjalili, Mirjalili, Lewis (b0090) 2014; 69 J.J.C. Holland, A. Intelligence, Adaptation in natural and artificial systems : an introductory analysis with application to biology, (1975). J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN'95 - International Conference on Neural Networks, 1995, pp. 1942-1948 vol.1944. Xue, Shen (b0100) 2020; 8 Agrawal, Abutarboush, Ganesh, Mohamed (b0040) 2021; 9 Duan, Xiang, Chen (b0220) 2016; 25 Zhang, Wang, Kang, Cheng (b0200) 2018; 46 Mohamed, Hadi, Mohamed (b0020) 2020; 11 Xiong, Li, Mohamed, Yuan, Zhang (b0065) 2021; 7 Zang, Chai (b0170) 2016; 65 Hua, Zhou, Pun, Chen (b0155) 2015; 297 Yu, Liu, Qian, Li, Huang, Shi, Cai, Wu, Du, Wan (b0185) 2020; 2020 Sheskin (b0230) 2011 Panagant, Bureerat (b0130) 2018; 50 Rahimi, Gandomi (b0005) 2021; 28 L.J. Fogel, A.J. Owens, M.J.J.W.-I.P. Walsh, Artificial Intelligence through Simulated Evolution. Sheng, Chen, Zhang (b0210) 2018; 46 Bao (10.1016/j.ins.2023.119340_b0180) 2021; 105 10.1016/j.ins.2023.119340_b0025 Memon (10.1016/j.ins.2023.119340_b0115) 2022; 69 Karaboga (10.1016/j.ins.2023.119340_b0190) 2014; 23 Guo (10.1016/j.ins.2023.119340_b0215) 2020; 8 Xiong (10.1016/j.ins.2023.119340_b0065) 2021; 7 Mohamed (10.1016/j.ins.2023.119340_b0045) 2021; 9 Liang (10.1016/j.ins.2023.119340_b0165) 2003; 30 10.1016/j.ins.2023.119340_b0080 Kiran (10.1016/j.ins.2023.119340_b0125) 2015; 300 Sheng (10.1016/j.ins.2023.119340_b0210) 2018; 46 Duan (10.1016/j.ins.2023.119340_b0220) 2016; 25 Gao (10.1016/j.ins.2023.119340_b0135) 2022; 52 Zou (10.1016/j.ins.2023.119340_b0175) 2021; 21 10.1016/j.ins.2023.119340_b0085 Derrac (10.1016/j.ins.2023.119340_b0205) 2011; 1 Mohamed (10.1016/j.ins.2023.119340_b0020) 2020; 11 ElQuliti (10.1016/j.ins.2023.119340_b0060) 2016; 13 El-Quliti (10.1016/j.ins.2023.119340_b0055) 2015; 2015 Xue (10.1016/j.ins.2023.119340_b0100) 2020; 8 Cao (10.1016/j.ins.2023.119340_b0160) 2011; 60 Zhang (10.1016/j.ins.2023.119340_b0200) 2018; 46 Volgenant (10.1016/j.ins.2023.119340_b0225) 1996; 50 Agrawal (10.1016/j.ins.2023.119340_b0040) 2021; 9 Gao (10.1016/j.ins.2023.119340_b0120) 2013; 43 10.1016/j.ins.2023.119340_b0035 Tang (10.1016/j.ins.2023.119340_b0070) 2021; 8 Fu (10.1016/j.ins.2023.119340_b0150) 2022; 37 Zang (10.1016/j.ins.2023.119340_b0170) 2016; 65 Panagant (10.1016/j.ins.2023.119340_b0130) 2018; 50 Sheskin (10.1016/j.ins.2023.119340_b0230) 2011 10.1016/j.ins.2023.119340_b0050 10.1016/j.ins.2023.119340_b0030 10.1016/j.ins.2023.119340_b0195 Dhiman (10.1016/j.ins.2023.119340_b0095) 2019; 165 Chopra (10.1016/j.ins.2023.119340_b0105) 2022; 198 10.1016/j.ins.2023.119340_b0075 Zhang (10.1016/j.ins.2023.119340_b0140) 2017; 33 Ewees (10.1016/j.ins.2023.119340_b0145) 2020; 8 Yu (10.1016/j.ins.2023.119340_b0185) 2020; 2020 Hichem (10.1016/j.ins.2023.119340_b0110) 2022; 34 Rahimi (10.1016/j.ins.2023.119340_b0005) 2021; 28 Halim (10.1016/j.ins.2023.119340_b0010) 2021; 54 Dokeroglu (10.1016/j.ins.2023.119340_b0015) 2019; 137 Mirjalili (10.1016/j.ins.2023.119340_b0090) 2014; 69 Hua (10.1016/j.ins.2023.119340_b0155) 2015; 297 |
| References_xml | – volume: 9 start-page: 65934 year: 2021 end-page: 65946 ident: b0045 article-title: Gaining-Sharing knowledge based algorithm with adaptive parameters for engineering optimization publication-title: IEEE Access – volume: 7 start-page: 3286 year: 2021 end-page: 3301 ident: b0065 article-title: A new method for parameter extraction of solar photovoltaic models using gaining–sharing knowledge based algorithm publication-title: Energy Rep. – volume: 23 start-page: 227 year: 2014 end-page: 238 ident: b0190 article-title: A quick artificial bee colony (qABC) algorithm and its performance on optimization problems publication-title: Appl. Soft Comput. – volume: 33 start-page: 8 year: 2017 end-page: 12 ident: b0140 article-title: Application of improved artificial bee colony algorithm in path optimization publication-title: J. Natl. Sci. Harbin Normal Univers. – volume: 25 start-page: 141 year: 2016 end-page: 146 ident: b0220 article-title: A discrete artificial bee colony algorithm for traveling salesman problem, operations research and management publication-title: Science – reference: W. Yan, X.J.J.o.M.T.C. Kaigui, Simulated Annealing Algorithm, (1999). – year: 2011 ident: b0230 article-title: Handbook of parametric and nonparametric statistical procedures – volume: 50 start-page: 1645 year: 2018 end-page: 1661 ident: b0130 article-title: Truss topology, shape and sizing optimization by fully stressed design based on hybrid grey wolf optimization and adaptive differential evolution publication-title: Eng. Optimiz. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b0205 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evolution. Comput. – volume: 60 year: 2011 ident: b0160 article-title: Image scrambling based on Logistic uniform distribution publication-title: Acta Phys. Sin. – reference: M. Dorigo, G.D. Caro, Ant colony optimization: a new meta-heuristic, in: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 1999, pp. 1470-1477 Vol. 1472. – volume: 30 start-page: 289 year: 2003 end-page: 292 ident: b0165 article-title: A compact closed form of standard normal distribution publication-title: J Xidian Univer. – reference: D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report - TR06, Technical Report, Erciyes University, (2005). – reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN'95 - International Conference on Neural Networks, 1995, pp. 1942-1948 vol.1944. – reference: J.J.C. Holland, A. Intelligence, Adaptation in natural and artificial systems : an introductory analysis with application to biology, (1975). – volume: 8 start-page: 199081 year: 2020 end-page: 199096 ident: b0215 article-title: MEATSP: A membrane evolutionary algorithm for solving TSP publication-title: IEEE Access – volume: 28 start-page: 1667 year: 2021 end-page: 1688 ident: b0005 article-title: A Comprehensive review and analysis of operating room and surgery scheduling publication-title: Arch. Comput. Meth. Eng. – volume: 165 start-page: 169 year: 2019 end-page: 196 ident: b0095 article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems publication-title: Knowl.-Based Syst. – volume: 34 start-page: 316 year: 2022 end-page: 328 ident: b0110 article-title: A new binary grasshopper optimization algorithm for feature selection problem publication-title: J. King Saud Univ.-Comput. Inf. Sci. – volume: 65 year: 2016 ident: b0170 article-title: Homogenization and entropy analysis of a quadratic polynomial chaotic system publication-title: Acta Phys. Sin. – reference: N. H. Awad1, M. Z. Ali2, P. N. Suganthan1, J. J. Liang3 and B. Y. Qu3.Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization . http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017. – reference: Mohamed, A.W., Hadi, A.A., Mohamed, A.K., Awad, N.H.: Evaluating the performance of adaptive gaining sharing knowledge based algorithm on CEC 2020 benchmark problems, 2020 IEEE Congress on Evolutionary Computation, (2020) 1-8. – volume: 43 start-page: 1011 year: 2013 end-page: 1024 ident: b0120 article-title: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning publication-title: IEEE T. Cybern. – volume: 137 year: 2019 ident: b0015 article-title: A survey on new generation metaheuristic algorithms publication-title: Comput. Ind. Eng. – volume: 8 start-page: 26304 year: 2020 end-page: 26315 ident: b0145 article-title: Improved artificial bee colony using sine-cosine algorithm for multi-level thresholding image segmentation publication-title: IEEE Access – volume: 50 year: 1996 ident: b0225 article-title: The travelling salesman, computational solutions for TSP applications publication-title: Optima – volume: 54 year: 2021 ident: b0010 article-title: Performance assessment of the metaheuristic optimization algorithms publication-title: Exhaust. Rev. – volume: 2015 start-page: 1 year: 2015 end-page: 13 ident: b0055 article-title: A nonlinear goal programming model for university admission capacity planning with modified differential evolution algorithm publication-title: Math. Probl. Eng. – volume: 9 start-page: 26766 year: 2021 end-page: 26791 ident: b0040 article-title: Metaheuristic algorithms on feature selection: a survey of one decade of research (2009-2019) publication-title: IEEE Access – volume: 13 start-page: 7909 year: 2016 end-page: 7921 ident: b0060 article-title: A large-scale nonlinear mixed-binary goal programming model to assess candidate locations for solar energy stations: an improved real-binary differential evolution algorithm with a case study publication-title: J. Comput. Theor. Nanosci. – volume: 8 start-page: 22 year: 2020 end-page: 34 ident: b0100 article-title: A novel swarm intelligence optimization approach: sparrow search algorithm publication-title: Syst. Sci. Control Eng. – volume: 105 start-page: 1911 year: 2021 end-page: 1935 ident: b0180 article-title: The N-level (N >= 4) logistic cascade homogenized mapping for image encryption publication-title: Nonlinear Dyn. – volume: 21 start-page: 12175 year: 2021 end-page: 12184 ident: b0175 article-title: Image encryption algorithm based on improved one-dimensional logical sinusoidal chaotic mapping system publication-title: Sci. Technol. Eng. – volume: 2020 year: 2020 ident: b0185 article-title: Chaos-Based Application of a Novel Multistable 5D Memristive Hyperchaotic System with Coexisting Multiple Attractors publication-title: Complexity – volume: 8 start-page: 1627 year: 2021 end-page: 1643 ident: b0070 article-title: A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends publication-title: IEEE/CAA J. Autom. Sin. – volume: 69 start-page: 1477 year: 2022 end-page: 1487 ident: b0115 article-title: Asynchronous particle swarm optimization-genetic algorithm (APSO-GA) based selective harmonic elimination in a cascaded H-Bridge multilevel inverter publication-title: IEEE Trans. Ind. Electron. – reference: L.J. Fogel, A.J. Owens, M.J.J.W.-I.P. Walsh, Artificial Intelligence through Simulated Evolution. – volume: 52 start-page: 4400 year: 2022 end-page: 4414 ident: b0135 article-title: An efficient artificial bee colony algorithm with an improved linkage identification method publication-title: IEEE T. Cybern. – volume: 300 start-page: 140 year: 2015 end-page: 157 ident: b0125 article-title: Artificial bee colony algorithm with variable search strategy for continuous optimization publication-title: Inf. Sci. – volume: 37 start-page: 87 year: 2022 end-page: 96 ident: b0150 article-title: Improved sparrow search algorithm with multi-strategy integration and its application publication-title: Control Decision – volume: 46 start-page: 23 year: 2018 end-page: 29 ident: b0210 article-title: Research on maximum power point tracking strategy based on differential evolution artificial bee colony algorithm of photovoltaic system publication-title: Power Syst. Protect. Control – volume: 11 start-page: 1501 year: 2020 end-page: 1529 ident: b0020 article-title: Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm publication-title: Int. J. Mach. Learn. Cybern. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b0090 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – volume: 198 year: 2022 ident: b0105 article-title: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications publication-title: Expert Syst. Appl. – volume: 297 start-page: 80 year: 2015 end-page: 94 ident: b0155 article-title: 2D Sine Logistic modulation map for image encryption publication-title: Inf. Sci. – volume: 46 start-page: 2430 year: 2018 end-page: 2442 ident: b0200 article-title: Hybrid grey wolf optimizer with artificial bee colony and its application to clustering optimization publication-title: Acta Electron. Sin. – volume: 105 start-page: 1911 year: 2021 ident: 10.1016/j.ins.2023.119340_b0180 article-title: The N-level (N >= 4) logistic cascade homogenized mapping for image encryption publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06688-6 – ident: 10.1016/j.ins.2023.119340_b0025 – volume: 60 year: 2011 ident: 10.1016/j.ins.2023.119340_b0160 article-title: Image scrambling based on Logistic uniform distribution publication-title: Acta Phys. Sin. – volume: 300 start-page: 140 year: 2015 ident: 10.1016/j.ins.2023.119340_b0125 article-title: Artificial bee colony algorithm with variable search strategy for continuous optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.12.043 – volume: 65 year: 2016 ident: 10.1016/j.ins.2023.119340_b0170 article-title: Homogenization and entropy analysis of a quadratic polynomial chaotic system publication-title: Acta Phys. Sin. – volume: 52 start-page: 4400 issue: 6 year: 2022 ident: 10.1016/j.ins.2023.119340_b0135 article-title: An efficient artificial bee colony algorithm with an improved linkage identification method publication-title: IEEE T. Cybern. doi: 10.1109/TCYB.2020.3026716 – volume: 50 year: 1996 ident: 10.1016/j.ins.2023.119340_b0225 article-title: The travelling salesman, computational solutions for TSP applications publication-title: Optima – volume: 54 year: 2021 ident: 10.1016/j.ins.2023.119340_b0010 article-title: Performance assessment of the metaheuristic optimization algorithms publication-title: Exhaust. Rev. – volume: 46 start-page: 23 year: 2018 ident: 10.1016/j.ins.2023.119340_b0210 article-title: Research on maximum power point tracking strategy based on differential evolution artificial bee colony algorithm of photovoltaic system publication-title: Power Syst. Protect. Control – ident: 10.1016/j.ins.2023.119340_b0080 doi: 10.1109/ICNN.1995.488968 – volume: 46 start-page: 2430 year: 2018 ident: 10.1016/j.ins.2023.119340_b0200 article-title: Hybrid grey wolf optimizer with artificial bee colony and its application to clustering optimization publication-title: Acta Electron. Sin. – volume: 198 year: 2022 ident: 10.1016/j.ins.2023.119340_b0105 article-title: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116924 – ident: 10.1016/j.ins.2023.119340_b0035 – ident: 10.1016/j.ins.2023.119340_b0195 – year: 2011 ident: 10.1016/j.ins.2023.119340_b0230 – volume: 8 start-page: 1627 issue: 10 year: 2021 ident: 10.1016/j.ins.2023.119340_b0070 article-title: A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2021.1004129 – volume: 30 start-page: 289 year: 2003 ident: 10.1016/j.ins.2023.119340_b0165 article-title: A compact closed form of standard normal distribution publication-title: J Xidian Univer. – ident: 10.1016/j.ins.2023.119340_b0050 doi: 10.1109/CEC48606.2020.9185901 – volume: 23 start-page: 227 year: 2014 ident: 10.1016/j.ins.2023.119340_b0190 article-title: A quick artificial bee colony (qABC) algorithm and its performance on optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.06.035 – volume: 37 start-page: 87 year: 2022 ident: 10.1016/j.ins.2023.119340_b0150 article-title: Improved sparrow search algorithm with multi-strategy integration and its application publication-title: Control Decision – volume: 21 start-page: 12175 year: 2021 ident: 10.1016/j.ins.2023.119340_b0175 article-title: Image encryption algorithm based on improved one-dimensional logical sinusoidal chaotic mapping system publication-title: Sci. Technol. Eng. – volume: 9 start-page: 65934 year: 2021 ident: 10.1016/j.ins.2023.119340_b0045 article-title: Gaining-Sharing knowledge based algorithm with adaptive parameters for engineering optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3076091 – volume: 165 start-page: 169 year: 2019 ident: 10.1016/j.ins.2023.119340_b0095 article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.11.024 – volume: 7 start-page: 3286 year: 2021 ident: 10.1016/j.ins.2023.119340_b0065 article-title: A new method for parameter extraction of solar photovoltaic models using gaining–sharing knowledge based algorithm publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.05.030 – volume: 50 start-page: 1645 issue: 10 year: 2018 ident: 10.1016/j.ins.2023.119340_b0130 article-title: Truss topology, shape and sizing optimization by fully stressed design based on hybrid grey wolf optimization and adaptive differential evolution publication-title: Eng. Optimiz. doi: 10.1080/0305215X.2017.1417400 – volume: 43 start-page: 1011 year: 2013 ident: 10.1016/j.ins.2023.119340_b0120 article-title: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning publication-title: IEEE T. Cybern. doi: 10.1109/TSMCB.2012.2222373 – ident: 10.1016/j.ins.2023.119340_b0030 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.ins.2023.119340_b0205 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evolution. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 28 start-page: 1667 year: 2021 ident: 10.1016/j.ins.2023.119340_b0005 article-title: A Comprehensive review and analysis of operating room and surgery scheduling publication-title: Arch. Comput. Meth. Eng. doi: 10.1007/s11831-020-09432-2 – volume: 2020 year: 2020 ident: 10.1016/j.ins.2023.119340_b0185 article-title: Chaos-Based Application of a Novel Multistable 5D Memristive Hyperchaotic System with Coexisting Multiple Attractors publication-title: Complexity – ident: 10.1016/j.ins.2023.119340_b0075 doi: 10.1109/CEC.1999.782657 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.ins.2023.119340_b0090 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 34 start-page: 316 year: 2022 ident: 10.1016/j.ins.2023.119340_b0110 article-title: A new binary grasshopper optimization algorithm for feature selection problem publication-title: J. King Saud Univ.-Comput. Inf. Sci. – volume: 25 start-page: 141 year: 2016 ident: 10.1016/j.ins.2023.119340_b0220 article-title: A discrete artificial bee colony algorithm for traveling salesman problem, operations research and management publication-title: Science – volume: 9 start-page: 26766 year: 2021 ident: 10.1016/j.ins.2023.119340_b0040 article-title: Metaheuristic algorithms on feature selection: a survey of one decade of research (2009-2019) publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3056407 – ident: 10.1016/j.ins.2023.119340_b0085 – volume: 137 year: 2019 ident: 10.1016/j.ins.2023.119340_b0015 article-title: A survey on new generation metaheuristic algorithms publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2019.106040 – volume: 13 start-page: 7909 issue: 11 year: 2016 ident: 10.1016/j.ins.2023.119340_b0060 article-title: A large-scale nonlinear mixed-binary goal programming model to assess candidate locations for solar energy stations: an improved real-binary differential evolution algorithm with a case study publication-title: J. Comput. Theor. Nanosci. doi: 10.1166/jctn.2016.5791 – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.ins.2023.119340_b0055 article-title: A nonlinear goal programming model for university admission capacity planning with modified differential evolution algorithm publication-title: Math. Probl. Eng. doi: 10.1155/2015/892937 – volume: 69 start-page: 1477 year: 2022 ident: 10.1016/j.ins.2023.119340_b0115 article-title: Asynchronous particle swarm optimization-genetic algorithm (APSO-GA) based selective harmonic elimination in a cascaded H-Bridge multilevel inverter publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3060645 – volume: 8 start-page: 26304 year: 2020 ident: 10.1016/j.ins.2023.119340_b0145 article-title: Improved artificial bee colony using sine-cosine algorithm for multi-level thresholding image segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2971249 – volume: 8 start-page: 199081 year: 2020 ident: 10.1016/j.ins.2023.119340_b0215 article-title: MEATSP: A membrane evolutionary algorithm for solving TSP publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3035058 – volume: 33 start-page: 8 year: 2017 ident: 10.1016/j.ins.2023.119340_b0140 article-title: Application of improved artificial bee colony algorithm in path optimization publication-title: J. Natl. Sci. Harbin Normal Univers. – volume: 8 start-page: 22 year: 2020 ident: 10.1016/j.ins.2023.119340_b0100 article-title: A novel swarm intelligence optimization approach: sparrow search algorithm publication-title: Syst. Sci. Control Eng. doi: 10.1080/21642583.2019.1708830 – volume: 11 start-page: 1501 year: 2020 ident: 10.1016/j.ins.2023.119340_b0020 article-title: Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-019-01053-x – volume: 297 start-page: 80 year: 2015 ident: 10.1016/j.ins.2023.119340_b0155 article-title: 2D Sine Logistic modulation map for image encryption publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.11.018 |
| SSID | ssj0004766 |
| Score | 2.4592652 |
| Snippet | The distribution characteristic of populations is one of the main characteristics of population. The pattern of distribution characteristics determines the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 119340 |
| SubjectTerms | CEC2017 Chaotic mapping Population distribution characteristics Swarm intelligence optimization algorithm TSP |
| Title | Analysis of the influence of population distribution characteristics on swarm intelligence optimization algorithms |
| URI | https://dx.doi.org/10.1016/j.ins.2023.119340 |
| Volume | 645 |
| WOSCitedRecordID | wos001029283100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004766 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFLZKxwEOCAZoA4Z8QByYglrHiZ3jQEMDoYnDQL1FdmyXVG0ytd1W7vxwnmM7yQpD7MAlip6Slyjvy_Oz_d73EHqljWZjodJIjHQCE5S0iLKCmojHko5kAUFv0zPy22d2esonk-zLYPAz1MJczllV8c0mO_-vpgYZGNuWzt7C3K1SEMA5GB2OYHY4_pPh-zQjNqosQxuSJrm57ddlt2bable2_vcabzOIVldiuWjoJFrKzhr8y8IXbh6K-bReluvvnu58FlLi23LIQz-6rjrouFzuaropW0y-E7VbG_hR-0HUhtW-08oJyK502a1u1xcu6q-mC6_Cr1iQLvetqyAAAXH0vMELpzTp-dExxJWOxuk3F-9WG2YwL7Fs6yR-2117nU57a5hrkw9DXtssBxW5VZE7FXfQDmFJxodo5-jj8eRTV1_L3J53eO-wO97kCW69x5_jm17McvYQPfCTDXzkQPIIDXS1i-73KCh30YEvXMGvcc902Lv8x2gZ4IRrgwFOuIWTFXRwwn044S04YRA1cMJ9OOE-nHAHpyfo64fjs_cnke_TERUkY-vIJEqNYqW5GCeKwhARZ9ykIlVUMaISqWNFmGaxdQrSyAKCTJkqoSmRMTGcx0_RsKorvYdwIWBEEYabRBrKqJSpycTYUG4oUapQ-2gUvm5eeBJ720tlnt9o1X30pr3l3DG4_O1iGkyW-5_EhZY5wO_m257d5hnP0b3ur3iBhuvlhT5Ad4vLdblavvTY-wU4f678 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+influence+of+population+distribution+characteristics+on+swarm+intelligence+optimization+algorithms&rft.jtitle=Information+sciences&rft.au=Hu%2C+Rongxin&rft.au=Bao%2C+Liyong&rft.au=Ding%2C+Hongwei&rft.au=Zhou%2C+Dongmin&rft.date=2023-10-01&rft.issn=0020-0255&rft.volume=645&rft.spage=119340&rft_id=info:doi/10.1016%2Fj.ins.2023.119340&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2023_119340 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |