An anytime branch and bound algorithm for agile earth observation satellite onboard scheduling

•We consider a bi-satellite cluster for targets recognition over sea.•We propose a mathematical model for the agile satellite scheduling problem.•We develop an anytime branch and bound (AB&B) algorithm for problem solution.•AB&B helps the cluster improve the efficiency of targets recognition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in space research Jg. 60; H. 9; S. 2077 - 2090
Hauptverfasser: Chu, Xiaogeng, Chen, Yuning, Tan, Yuejin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.11.2017
Schlagworte:
ISSN:0273-1177, 1879-1948
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •We consider a bi-satellite cluster for targets recognition over sea.•We propose a mathematical model for the agile satellite scheduling problem.•We develop an anytime branch and bound (AB&B) algorithm for problem solution.•AB&B helps the cluster improve the efficiency of targets recognition over sea. To fulfill the mission of targets recognition over sea, a bi-satellite cluster composed of an autonomous low resolution satellite (LRS) leading the formation for targets detection and a trailing agile high resolution satellite (HRS) for targets recognition is considered. This paper focuses on the development of a method that is able to generate a schedule plan onboard the HRS taking into account the information received from the LRS, which amounts to solving an agile earth observation satellite (AEOS) scheduling problem. The main contributions of this paper are two folds: a mathematical model for formulating the AEOS scheduling problem, and an anytime branch and bound algorithm for problem solution. Experimental results on a set of representative scenarios show that the proposed algorithm is effective which promotes significantly the bi-satellite cluster to improve the efficiency of targets recognition over sea as opposed to traditional methods where a large number of satellites are required to work coordinately. In particular, in a scenario over a 500km×2000km sea area involving 25 targets, the performance of the bi-satellite cluster amounts to the coordination of 30 high resolution satellites.
AbstractList •We consider a bi-satellite cluster for targets recognition over sea.•We propose a mathematical model for the agile satellite scheduling problem.•We develop an anytime branch and bound (AB&B) algorithm for problem solution.•AB&B helps the cluster improve the efficiency of targets recognition over sea. To fulfill the mission of targets recognition over sea, a bi-satellite cluster composed of an autonomous low resolution satellite (LRS) leading the formation for targets detection and a trailing agile high resolution satellite (HRS) for targets recognition is considered. This paper focuses on the development of a method that is able to generate a schedule plan onboard the HRS taking into account the information received from the LRS, which amounts to solving an agile earth observation satellite (AEOS) scheduling problem. The main contributions of this paper are two folds: a mathematical model for formulating the AEOS scheduling problem, and an anytime branch and bound algorithm for problem solution. Experimental results on a set of representative scenarios show that the proposed algorithm is effective which promotes significantly the bi-satellite cluster to improve the efficiency of targets recognition over sea as opposed to traditional methods where a large number of satellites are required to work coordinately. In particular, in a scenario over a 500km×2000km sea area involving 25 targets, the performance of the bi-satellite cluster amounts to the coordination of 30 high resolution satellites.
Author Chen, Yuning
Chu, Xiaogeng
Tan, Yuejin
Author_xml – sequence: 1
  givenname: Xiaogeng
  surname: Chu
  fullname: Chu, Xiaogeng
– sequence: 2
  givenname: Yuning
  surname: Chen
  fullname: Chen, Yuning
  email: cynnudt@hotmail.com
– sequence: 3
  givenname: Yuejin
  surname: Tan
  fullname: Tan, Yuejin
BookMark eNp9kM9KAzEQh4NUsK0-gLe8wK6ZrLvJ4qkU_0HBi14N2WS2TdkmkqSFvr1b9eSh8GOGOXzDzDcjEx88EnILrAQGzd221CmWnIEo2RjeXJApSNEW0N7LCZkyLqoCQIgrMktpyxhwIdiUfC481f6Y3Q5pF7U3m3G0tAv7sephHaLLmx3tQ6R67QakqGPe0NAljAedXfA06YzD4DLS4Lugo6XJbNDuB-fX1-Sy10PCm78-Jx9Pj-_Ll2L19vy6XKwKw1uRi74WTaW16CSIzrRtCw1rW8EMqy0yJg1wW9WNtL00HZc9r1jdcZAcLGAjTDUn4neviSGliL0yLv-cl6N2gwKmTprUVo2a1EmTYmN4M5Lwj_yKbqfj8Szz8Mvg-NLBYVTJOPQGrYtosrLBnaG_AQdEg3o
CitedBy_id crossref_primary_10_1016_j_asr_2020_06_008
crossref_primary_10_1109_TAES_2022_3146115
crossref_primary_10_1016_j_asr_2024_02_038
crossref_primary_10_1016_j_sysarc_2019_03_005
crossref_primary_10_1016_j_ejor_2022_02_040
crossref_primary_10_1080_01605682_2019_1609891
crossref_primary_10_1590_jatm_v17_1362
crossref_primary_10_1016_j_ins_2025_122140
crossref_primary_10_1109_TGRS_2024_3472749
crossref_primary_10_1109_TSMC_2022_3143158
crossref_primary_10_1007_s42524_023_0263_3
crossref_primary_10_1016_j_asr_2022_01_037
crossref_primary_10_1016_j_swevo_2023_101233
crossref_primary_10_1016_j_ejor_2025_05_020
crossref_primary_10_23919_JSEE_2024_000071
crossref_primary_10_1016_j_ast_2025_110864
crossref_primary_10_1007_s42405_022_00543_7
crossref_primary_10_1109_TAES_2022_3231239
crossref_primary_10_1016_j_swevo_2024_101792
crossref_primary_10_1016_j_asr_2018_10_002
crossref_primary_10_3390_aerospace11010083
crossref_primary_10_1016_j_asr_2024_11_023
crossref_primary_10_1016_j_asr_2018_10_007
crossref_primary_10_1007_s42405_022_00521_z
crossref_primary_10_1016_j_cor_2018_06_020
crossref_primary_10_1109_ACCESS_2018_2877687
crossref_primary_10_1109_JSYST_2020_2997050
crossref_primary_10_1109_ACCESS_2020_2968051
crossref_primary_10_1016_j_asr_2020_09_002
crossref_primary_10_1016_j_asr_2022_06_064
crossref_primary_10_1016_j_eswa_2025_128350
crossref_primary_10_1109_JSYST_2019_2961236
crossref_primary_10_1080_17538947_2025_2458024
crossref_primary_10_3390_aerospace11080643
crossref_primary_10_1016_j_eswa_2025_126771
crossref_primary_10_1109_TAES_2021_3098101
crossref_primary_10_3390_sym16081039
crossref_primary_10_1016_j_asoc_2021_107607
crossref_primary_10_3390_aerospace11100793
crossref_primary_10_1016_j_asr_2024_02_013
crossref_primary_10_3390_electronics12193991
crossref_primary_10_1108_AEAT_12_2022_0336
crossref_primary_10_3390_aerospace11100792
crossref_primary_10_1016_j_swevo_2021_100841
crossref_primary_10_1016_j_swevo_2025_101857
crossref_primary_10_3390_aerospace9050235
crossref_primary_10_3390_sym16070813
crossref_primary_10_3390_rs15245639
crossref_primary_10_1016_j_cie_2021_107292
crossref_primary_10_3390_rs15225388
crossref_primary_10_1109_TGRS_2025_3554727
crossref_primary_10_1109_TAES_2024_3427090
crossref_primary_10_3390_rs16234436
crossref_primary_10_1016_j_actaastro_2020_11_016
crossref_primary_10_3390_en17020490
crossref_primary_10_1016_j_cie_2022_108823
crossref_primary_10_1016_j_eswa_2020_113593
crossref_primary_10_1016_j_eswa_2021_114784
crossref_primary_10_1109_TAES_2024_3379169
crossref_primary_10_1016_j_asr_2021_09_003
crossref_primary_10_1007_s40430_019_2121_0
crossref_primary_10_1155_2019_1371852
crossref_primary_10_1016_j_cja_2025_103567
crossref_primary_10_1016_j_ijleo_2018_04_012
crossref_primary_10_1109_TSMC_2020_3020732
Cites_doi 10.1016/j.actaastro.2017.04.034
10.1144/SP426.3
10.2514/6.2006-7384
10.2514/6.2014-1759
10.1016/S1270-9638(02)01173-2
10.1016/0004-3702(92)90020-X
10.1111/j.1467-8640.2010.00375.x
ContentType Journal Article
Copyright 2017 COSPAR
Copyright_xml – notice: 2017 COSPAR
DBID AAYXX
CITATION
DOI 10.1016/j.asr.2017.07.026
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Astronomy & Astrophysics
Physics
EISSN 1879-1948
EndPage 2090
ExternalDocumentID 10_1016_j_asr_2017_07_026
S0273117717305367
GroupedDBID --K
--M
-~X
.~1
0R~
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNEU
ABQEM
ABQYD
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IMUCA
J1W
KOM
LY3
LZ4
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
SDF
SDG
SEP
SES
SPC
SPCBC
SSE
SSQ
SSZ
T5K
ZMT
~02
~G-
1B1
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMA
HME
HVGLF
HX~
HZ~
IHE
R2-
RPZ
SEW
SHN
T9H
UHS
VH1
VOH
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c297t-f5763aa7b817bc9991609970c05de008c12d3568df8cb28f2305b21821d1e67c3
ISICitedReferencesCount 86
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000413378600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0273-1177
IngestDate Tue Nov 18 22:42:20 EST 2025
Sat Nov 29 07:16:55 EST 2025
Fri Feb 23 02:29:44 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Targets recognition over sea
Anytime branch and bound algorithm
Agile satellite onboard scheduling problem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-f5763aa7b817bc9991609970c05de008c12d3568df8cb28f2305b21821d1e67c3
PageCount 14
ParticipantIDs crossref_citationtrail_10_1016_j_asr_2017_07_026
crossref_primary_10_1016_j_asr_2017_07_026
elsevier_sciencedirect_doi_10_1016_j_asr_2017_07_026
PublicationCentury 2000
PublicationDate 2017-11-01
2017-11-00
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Advances in space research
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Knight, Rabideau, Chien, Engelhardt, Sherwood (b0065) 2001; 16
Pralet, Verfaillie (b0100) 2012
LaVallee, D., Jacobsohn, J., Olsen, C., Reilly, J., 2006. Intelligent control for spacecraft autonomy-an industry survey. In: Space 2006, p. 7384.
Pralet, C., Verfaillie, G., 2008. Decision upon observations and data downloads by an autonomous earth surveillance satellite. In: Proc. of the 9th International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS-08), p. 99.
Zilberstein (b0135) 1996; 17
Lemaître, Verfaillie, Jouhaud, Lachiver, Bataille (b0075) 2002; 6
Hentenryck, Deville, Teng (b0060) 1992; 57
Tonetti, S., Cornara, S., Heritier, A., Pirondini, F., 2015. Fully automated mission planning and capacity analysis tool for the DEIMOS-2 agile satellite. In: Workshop on Simulation for European Space Programmes (SESP), vol. 24, p. 26.
Lemaître, M., Verfaillie, G., 2007. Interaction between reactive and deliberative tasks for on-line decision-making. In: International Conference on Automated Planning and Scheduling, Providence, Rhode Island, USA.
Rabideau, G., Knight, R., Chien, S., Fukunaga, A., Govindjee, A., 1999. Iterative repair planning for spacecraft operations using the ASPEN system. In: Artificial Intelligence, Robotics and Automation in Space, vol. 440, p. 99.
Chien, S.A., Knight, R., Stechert, A., Sherwood, R., Rabideau, G., 2000. Using iterative repair to improve the responsiveness of planning and scheduling. In: AIPS, pp. 300–307.
Gleyzes, Perret, Kubik (b0055) 2012; 39
Dantzig, Fulkerson, Johnson (b0030) 1954; 2
Beaumet, Verfaillie, Charmeau (b0010) 2011; 27
Fukunaga, A., Rabideau, G., Chien, S., Yan, D., 1997. ASPEN: a framework for automated planning and scheduling of spacecraft control and operations. In: Proc. International Symposium on AI, Robotics and Automation in Space.
Tran, D., Chien, S., Rabideau, G., Cichy, B., 2004b. Flight Software Issues in Onboard Automated Planning: Lessons Learned on EO-1.
Davies, Chien, Tran, Doubleday (b0035) 2016; 426
Liu, Chen, Xing, Sun (b0090) 2016; 22
Damiani, S., Verfaillie, G., Charmeau, M.C., 2004. An anytime planning approach for the management of an earth watching satellite. In: Proc. of the 4th International Workshop on Planning and Scheduling for Space (IWPSS-04), Darmstadt, Germany.
Fabrizio Pirondini. UrtheCast Constellations: World’s first fully-integrated Optical and SAR constellations. In: Geospatial World Forum 2016, Rotterdam, The Netherlands, 25 May 2016.
Lenzen, C., Woerle, M.T., Göttfert, T., Mrowka, F., Wickler, M., 2014. Onboard planning and scheduling autonomy within the scope of the FireBird mission. In: SpaceOps 2014 Conference, p. 1759.
Sherwood, Chien, Tran, Cichy, Castano, Davies, Rabideau (b0115) 2005
.
Reile, H., Lorenz, E., Terzibaschian, T., 2013. The FireBird Mission – A Scientific Mission for Earth Observation and Hot SpotDetection. Wissenschaft und Technik Verlag.
Chien, Sherwood, Tran, Cichy, Rabideau, Castaño, D'Agostino (b0020) 2005
Denis, Claverie, Pasco, Darnis, de Maupeou, Lafaye, Morel (b0040) 2017
Tran, Chien, Sherwood, Castano, Cichy, Davies, Rabideau (b0125) 2004
Beaumet, G., Verfaillie, G., Charmeau, M.C., 2008. Autonomous planning for an agile earth-observing satellite. In: Proceedings of isairas, pp. 1–6.
Chien (10.1016/j.asr.2017.07.026_b0020) 2005
Zilberstein (10.1016/j.asr.2017.07.026_b0135) 1996; 17
10.1016/j.asr.2017.07.026_b0005
10.1016/j.asr.2017.07.026_b0105
Denis (10.1016/j.asr.2017.07.026_b0040) 2017
10.1016/j.asr.2017.07.026_b0080
Tran (10.1016/j.asr.2017.07.026_b0125) 2004
Dantzig (10.1016/j.asr.2017.07.026_b0030) 1954; 2
10.1016/j.asr.2017.07.026_b0045
10.1016/j.asr.2017.07.026_b0025
10.1016/j.asr.2017.07.026_b0085
Lemaître (10.1016/j.asr.2017.07.026_b0075) 2002; 6
10.1016/j.asr.2017.07.026_b0120
10.1016/j.asr.2017.07.026_b0015
Sherwood (10.1016/j.asr.2017.07.026_b0115) 2005
Gleyzes (10.1016/j.asr.2017.07.026_b0055) 2012; 39
Hentenryck (10.1016/j.asr.2017.07.026_b0060) 1992; 57
10.1016/j.asr.2017.07.026_b0070
Pralet (10.1016/j.asr.2017.07.026_b0100) 2012
10.1016/j.asr.2017.07.026_b0050
10.1016/j.asr.2017.07.026_b0110
Liu (10.1016/j.asr.2017.07.026_b0090) 2016; 22
Knight (10.1016/j.asr.2017.07.026_b0065) 2001; 16
Davies (10.1016/j.asr.2017.07.026_b0035) 2016; 426
10.1016/j.asr.2017.07.026_b0095
Beaumet (10.1016/j.asr.2017.07.026_b0010) 2011; 27
10.1016/j.asr.2017.07.026_b0130
References_xml – reference: LaVallee, D., Jacobsohn, J., Olsen, C., Reilly, J., 2006. Intelligent control for spacecraft autonomy-an industry survey. In: Space 2006, p. 7384. <
– volume: 57
  start-page: 291
  year: 1992
  end-page: 321
  ident: b0060
  article-title: A generic arc-consistency algorithm and its specializations
  publication-title: Artif. Intell.
– year: 2005
  ident: b0115
  article-title: Intelligent Systems in Space: the EO-1 Autonomous Sciencecraft, AIAA
– volume: 16
  start-page: 70
  year: 2001
  end-page: 75
  ident: b0065
  article-title: Casper: space exploration through continuous planning
  publication-title: IEEE Intell. Syst.
– reference: Tonetti, S., Cornara, S., Heritier, A., Pirondini, F., 2015. Fully automated mission planning and capacity analysis tool for the DEIMOS-2 agile satellite. In: Workshop on Simulation for European Space Programmes (SESP), vol. 24, p. 26. <
– reference: Pralet, C., Verfaillie, G., 2008. Decision upon observations and data downloads by an autonomous earth surveillance satellite. In: Proc. of the 9th International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS-08), p. 99. <
– reference: Tran, D., Chien, S., Rabideau, G., Cichy, B., 2004b. Flight Software Issues in Onboard Automated Planning: Lessons Learned on EO-1. <
– volume: 2
  start-page: 393
  year: 1954
  end-page: 410
  ident: b0030
  article-title: Solution of a large-scale traveling-salesman problem
  publication-title: J. Oper. Res. Soc. Am.
– volume: 6
  start-page: 367
  year: 2002
  end-page: 381
  ident: b0075
  article-title: Selecting and scheduling observations of agile satellites
  publication-title: Aerosp. Sci. Technol.
– volume: 27
  start-page: 123
  year: 2011
  end-page: 139
  ident: b0010
  article-title: Feasibility of autonomous decision making on board an agile earth-observing satellite
  publication-title: Comput. Intell.
– volume: 426
  start-page: 137
  year: 2016
  end-page: 158
  ident: b0035
  article-title: The NASA Volcano Sensor Web, advanced autonomy and the remote sensing of volcanic eruptions: a review
  publication-title: Geol. Soc., London, Special Publ.
– reference: Fabrizio Pirondini. UrtheCast Constellations: World’s first fully-integrated Optical and SAR constellations. In: Geospatial World Forum 2016, Rotterdam, The Netherlands, 25 May 2016. <
– volume: 22
  year: 2016
  ident: b0090
  article-title: Method of agile imaging satellites autonomous task planning
  publication-title: Comput. Integr. Manuf. Syst.
– volume: 39
  start-page: B1
  year: 2012
  ident: b0055
  article-title: Pleiades system architecture and main performances
  publication-title: Int. Arch. Photogramm., Remote Sens. Spat. Inform. Sci.
– reference: Lemaître, M., Verfaillie, G., 2007. Interaction between reactive and deliberative tasks for on-line decision-making. In: International Conference on Automated Planning and Scheduling, Providence, Rhode Island, USA. <
– reference: Damiani, S., Verfaillie, G., Charmeau, M.C., 2004. An anytime planning approach for the management of an earth watching satellite. In: Proc. of the 4th International Workshop on Planning and Scheduling for Space (IWPSS-04), Darmstadt, Germany. <
– reference: Fukunaga, A., Rabideau, G., Chien, S., Yan, D., 1997. ASPEN: a framework for automated planning and scheduling of spacecraft control and operations. In: Proc. International Symposium on AI, Robotics and Automation in Space. <
– reference: >.
– reference: Rabideau, G., Knight, R., Chien, S., Fukunaga, A., Govindjee, A., 1999. Iterative repair planning for spacecraft operations using the ASPEN system. In: Artificial Intelligence, Robotics and Automation in Space, vol. 440, p. 99. <
– start-page: 608
  year: 2012
  end-page: 623
  ident: b0100
  article-title: Time-dependent simple temporal networks
  publication-title: Principles and Practice of Constraint Programming
– start-page: 11
  year: 2005
  end-page: 18
  ident: b0020
  article-title: Lessons learned from autonomous sciencecraft experiment
  publication-title: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems
– reference: Chien, S.A., Knight, R., Stechert, A., Sherwood, R., Rabideau, G., 2000. Using iterative repair to improve the responsiveness of planning and scheduling. In: AIPS, pp. 300–307. <
– reference: Lenzen, C., Woerle, M.T., Göttfert, T., Mrowka, F., Wickler, M., 2014. Onboard planning and scheduling autonomy within the scope of the FireBird mission. In: SpaceOps 2014 Conference, p. 1759. <
– start-page: 1216
  year: 2004
  end-page: 1217
  ident: b0125
  article-title: The autonomous sciencecraft experiment onboard the EO-1 spacecraft
  publication-title: Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems-Volume 3
– reference: Beaumet, G., Verfaillie, G., Charmeau, M.C., 2008. Autonomous planning for an agile earth-observing satellite. In: Proceedings of isairas, pp. 1–6. <
– year: 2017
  ident: b0040
  article-title: Towards disruptions in Earth observation? New Earth Observation systems and markets evolution: possible scenarios and impacts
  publication-title: Acta Astronaut.
– reference: Reile, H., Lorenz, E., Terzibaschian, T., 2013. The FireBird Mission – A Scientific Mission for Earth Observation and Hot SpotDetection. Wissenschaft und Technik Verlag. <
– volume: 17
  start-page: 73
  year: 1996
  ident: b0135
  article-title: Using anytime algorithms in intelligent systems
  publication-title: AI Mag.
– volume: 39
  start-page: B1
  year: 2012
  ident: 10.1016/j.asr.2017.07.026_b0055
  article-title: Pleiades system architecture and main performances
  publication-title: Int. Arch. Photogramm., Remote Sens. Spat. Inform. Sci.
– year: 2017
  ident: 10.1016/j.asr.2017.07.026_b0040
  article-title: Towards disruptions in Earth observation? New Earth Observation systems and markets evolution: possible scenarios and impacts
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2017.04.034
– volume: 426
  start-page: 137
  issue: 1
  year: 2016
  ident: 10.1016/j.asr.2017.07.026_b0035
  article-title: The NASA Volcano Sensor Web, advanced autonomy and the remote sensing of volcanic eruptions: a review
  publication-title: Geol. Soc., London, Special Publ.
  doi: 10.1144/SP426.3
– volume: 17
  start-page: 73
  issue: 3
  year: 1996
  ident: 10.1016/j.asr.2017.07.026_b0135
  article-title: Using anytime algorithms in intelligent systems
  publication-title: AI Mag.
– ident: 10.1016/j.asr.2017.07.026_b0070
  doi: 10.2514/6.2006-7384
– ident: 10.1016/j.asr.2017.07.026_b0110
– ident: 10.1016/j.asr.2017.07.026_b0095
– volume: 2
  start-page: 393
  issue: 4
  year: 1954
  ident: 10.1016/j.asr.2017.07.026_b0030
  article-title: Solution of a large-scale traveling-salesman problem
  publication-title: J. Oper. Res. Soc. Am.
– ident: 10.1016/j.asr.2017.07.026_b0085
  doi: 10.2514/6.2014-1759
– ident: 10.1016/j.asr.2017.07.026_b0045
– ident: 10.1016/j.asr.2017.07.026_b0005
– start-page: 11
  year: 2005
  ident: 10.1016/j.asr.2017.07.026_b0020
  article-title: Lessons learned from autonomous sciencecraft experiment
– ident: 10.1016/j.asr.2017.07.026_b0120
– volume: 6
  start-page: 367
  issue: 5
  year: 2002
  ident: 10.1016/j.asr.2017.07.026_b0075
  article-title: Selecting and scheduling observations of agile satellites
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/S1270-9638(02)01173-2
– ident: 10.1016/j.asr.2017.07.026_b0015
– ident: 10.1016/j.asr.2017.07.026_b0105
– start-page: 1216
  year: 2004
  ident: 10.1016/j.asr.2017.07.026_b0125
  article-title: The autonomous sciencecraft experiment onboard the EO-1 spacecraft
– volume: 57
  start-page: 291
  issue: 2–3
  year: 1992
  ident: 10.1016/j.asr.2017.07.026_b0060
  article-title: A generic arc-consistency algorithm and its specializations
  publication-title: Artif. Intell.
  doi: 10.1016/0004-3702(92)90020-X
– ident: 10.1016/j.asr.2017.07.026_b0025
– ident: 10.1016/j.asr.2017.07.026_b0050
– volume: 22
  year: 2016
  ident: 10.1016/j.asr.2017.07.026_b0090
  article-title: Method of agile imaging satellites autonomous task planning
  publication-title: Comput. Integr. Manuf. Syst.
– ident: 10.1016/j.asr.2017.07.026_b0080
– volume: 27
  start-page: 123
  issue: 1
  year: 2011
  ident: 10.1016/j.asr.2017.07.026_b0010
  article-title: Feasibility of autonomous decision making on board an agile earth-observing satellite
  publication-title: Comput. Intell.
  doi: 10.1111/j.1467-8640.2010.00375.x
– year: 2005
  ident: 10.1016/j.asr.2017.07.026_b0115
– volume: 16
  start-page: 70
  issue: 5
  year: 2001
  ident: 10.1016/j.asr.2017.07.026_b0065
  article-title: Casper: space exploration through continuous planning
  publication-title: IEEE Intell. Syst.
– ident: 10.1016/j.asr.2017.07.026_b0130
– start-page: 608
  year: 2012
  ident: 10.1016/j.asr.2017.07.026_b0100
  article-title: Time-dependent simple temporal networks
SSID ssj0012770
Score 2.5101864
Snippet •We consider a bi-satellite cluster for targets recognition over sea.•We propose a mathematical model for the agile satellite scheduling problem.•We develop an...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 2077
SubjectTerms Agile satellite onboard scheduling problem
Anytime branch and bound algorithm
Targets recognition over sea
Title An anytime branch and bound algorithm for agile earth observation satellite onboard scheduling
URI https://dx.doi.org/10.1016/j.asr.2017.07.026
Volume 60
WOSCitedRecordID wos000413378600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1948
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012770
  issn: 0273-1177
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKBhI8ICigjS_5AfFAFJQ4Tpw8RmgIEJr2UKTyQmQ7TteqS6Ymm7r_nvNH0mhsiD0gVVFyStKk9-v57nz-HULvKg7xVhBRP4lo5lNKlS9gYPcrmqUR5ZQIaSjzv7Pj43Q-z04mk22_FuZyzeo63W6z8_-qapCBsvXS2Tuoe7gpCGAflA5bUDts_0nxuS4vvtI94z2hu2bYpWtCt0_y-HrRbJbd6ZktnlyASfDg_btTrxFDetZruaHp1AUEtWh0ngFCYBiS1v0w17PW2voBU1ELhknqDiyj5JjtNaV1OF_yBp53sRNbY_fzol7upDPuhGrl6MBdNgJGuHDIRlijBe6QryeCxxbWdgxwSMrG5jJwJyp3aFuH_mHWbYZh9ZG3msI1ZIZvldxAoX1taBsKDvtatlUBtyj0LYoAPiS5h_YJizOwh_v516P5t2EGijBm83PuffoZcVMbeO05bvZpRn7K7Al67AIMnFtgPEUTVU_RQd7qKY_m7Aq_x2bfZrTaKXo0YqScogcnVv4M_cpr7HCELY7gsMQGR3jAEQYcYYMjbHCERzjCA46wwxHe4eg5-vH5aPbpi--acfiSZKzzKwhMI86ZSEMmpAkr9KLrQAZxqcCRlCEpozhJyyqVgqQVhLax0O0BwjJUCZPRC7RXN7U6QDiiFStFUDGl_WHDEcnjkCmSJYKGnB6ioP85C-mY6nXDlHVxqxoP0YfhknNL0_K3k2mvo8L5mdZ_LABvt1_28i7f8Qo93P09XqO9bnOh3qD78rJbtpu3Dmy_AZk_nkk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+anytime+branch+and+bound+algorithm+for+agile+earth+observation+satellite+onboard+scheduling&rft.jtitle=Advances+in+space+research&rft.au=Chu%2C+Xiaogeng&rft.au=Chen%2C+Yuning&rft.au=Tan%2C+Yuejin&rft.date=2017-11-01&rft.issn=0273-1177&rft.volume=60&rft.issue=9&rft.spage=2077&rft.epage=2090&rft_id=info:doi/10.1016%2Fj.asr.2017.07.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asr_2017_07_026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1177&client=summon