An anytime branch and bound algorithm for agile earth observation satellite onboard scheduling
•We consider a bi-satellite cluster for targets recognition over sea.•We propose a mathematical model for the agile satellite scheduling problem.•We develop an anytime branch and bound (AB&B) algorithm for problem solution.•AB&B helps the cluster improve the efficiency of targets recognition...
Gespeichert in:
| Veröffentlicht in: | Advances in space research Jg. 60; H. 9; S. 2077 - 2090 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.11.2017
|
| Schlagworte: | |
| ISSN: | 0273-1177, 1879-1948 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •We consider a bi-satellite cluster for targets recognition over sea.•We propose a mathematical model for the agile satellite scheduling problem.•We develop an anytime branch and bound (AB&B) algorithm for problem solution.•AB&B helps the cluster improve the efficiency of targets recognition over sea.
To fulfill the mission of targets recognition over sea, a bi-satellite cluster composed of an autonomous low resolution satellite (LRS) leading the formation for targets detection and a trailing agile high resolution satellite (HRS) for targets recognition is considered. This paper focuses on the development of a method that is able to generate a schedule plan onboard the HRS taking into account the information received from the LRS, which amounts to solving an agile earth observation satellite (AEOS) scheduling problem. The main contributions of this paper are two folds: a mathematical model for formulating the AEOS scheduling problem, and an anytime branch and bound algorithm for problem solution. Experimental results on a set of representative scenarios show that the proposed algorithm is effective which promotes significantly the bi-satellite cluster to improve the efficiency of targets recognition over sea as opposed to traditional methods where a large number of satellites are required to work coordinately. In particular, in a scenario over a 500km×2000km sea area involving 25 targets, the performance of the bi-satellite cluster amounts to the coordination of 30 high resolution satellites. |
|---|---|
| AbstractList | •We consider a bi-satellite cluster for targets recognition over sea.•We propose a mathematical model for the agile satellite scheduling problem.•We develop an anytime branch and bound (AB&B) algorithm for problem solution.•AB&B helps the cluster improve the efficiency of targets recognition over sea.
To fulfill the mission of targets recognition over sea, a bi-satellite cluster composed of an autonomous low resolution satellite (LRS) leading the formation for targets detection and a trailing agile high resolution satellite (HRS) for targets recognition is considered. This paper focuses on the development of a method that is able to generate a schedule plan onboard the HRS taking into account the information received from the LRS, which amounts to solving an agile earth observation satellite (AEOS) scheduling problem. The main contributions of this paper are two folds: a mathematical model for formulating the AEOS scheduling problem, and an anytime branch and bound algorithm for problem solution. Experimental results on a set of representative scenarios show that the proposed algorithm is effective which promotes significantly the bi-satellite cluster to improve the efficiency of targets recognition over sea as opposed to traditional methods where a large number of satellites are required to work coordinately. In particular, in a scenario over a 500km×2000km sea area involving 25 targets, the performance of the bi-satellite cluster amounts to the coordination of 30 high resolution satellites. |
| Author | Chen, Yuning Chu, Xiaogeng Tan, Yuejin |
| Author_xml | – sequence: 1 givenname: Xiaogeng surname: Chu fullname: Chu, Xiaogeng – sequence: 2 givenname: Yuning surname: Chen fullname: Chen, Yuning email: cynnudt@hotmail.com – sequence: 3 givenname: Yuejin surname: Tan fullname: Tan, Yuejin |
| BookMark | eNp9kM9KAzEQh4NUsK0-gLe8wK6ZrLvJ4qkU_0HBi14N2WS2TdkmkqSFvr1b9eSh8GOGOXzDzDcjEx88EnILrAQGzd221CmWnIEo2RjeXJApSNEW0N7LCZkyLqoCQIgrMktpyxhwIdiUfC481f6Y3Q5pF7U3m3G0tAv7sephHaLLmx3tQ6R67QakqGPe0NAljAedXfA06YzD4DLS4Lugo6XJbNDuB-fX1-Sy10PCm78-Jx9Pj-_Ll2L19vy6XKwKw1uRi74WTaW16CSIzrRtCw1rW8EMqy0yJg1wW9WNtL00HZc9r1jdcZAcLGAjTDUn4neviSGliL0yLv-cl6N2gwKmTprUVo2a1EmTYmN4M5Lwj_yKbqfj8Szz8Mvg-NLBYVTJOPQGrYtosrLBnaG_AQdEg3o |
| CitedBy_id | crossref_primary_10_1016_j_asr_2020_06_008 crossref_primary_10_1109_TAES_2022_3146115 crossref_primary_10_1016_j_asr_2024_02_038 crossref_primary_10_1016_j_sysarc_2019_03_005 crossref_primary_10_1016_j_ejor_2022_02_040 crossref_primary_10_1080_01605682_2019_1609891 crossref_primary_10_1590_jatm_v17_1362 crossref_primary_10_1016_j_ins_2025_122140 crossref_primary_10_1109_TGRS_2024_3472749 crossref_primary_10_1109_TSMC_2022_3143158 crossref_primary_10_1007_s42524_023_0263_3 crossref_primary_10_1016_j_asr_2022_01_037 crossref_primary_10_1016_j_swevo_2023_101233 crossref_primary_10_1016_j_ejor_2025_05_020 crossref_primary_10_23919_JSEE_2024_000071 crossref_primary_10_1016_j_ast_2025_110864 crossref_primary_10_1007_s42405_022_00543_7 crossref_primary_10_1109_TAES_2022_3231239 crossref_primary_10_1016_j_swevo_2024_101792 crossref_primary_10_1016_j_asr_2018_10_002 crossref_primary_10_3390_aerospace11010083 crossref_primary_10_1016_j_asr_2024_11_023 crossref_primary_10_1016_j_asr_2018_10_007 crossref_primary_10_1007_s42405_022_00521_z crossref_primary_10_1016_j_cor_2018_06_020 crossref_primary_10_1109_ACCESS_2018_2877687 crossref_primary_10_1109_JSYST_2020_2997050 crossref_primary_10_1109_ACCESS_2020_2968051 crossref_primary_10_1016_j_asr_2020_09_002 crossref_primary_10_1016_j_asr_2022_06_064 crossref_primary_10_1016_j_eswa_2025_128350 crossref_primary_10_1109_JSYST_2019_2961236 crossref_primary_10_1080_17538947_2025_2458024 crossref_primary_10_3390_aerospace11080643 crossref_primary_10_1016_j_eswa_2025_126771 crossref_primary_10_1109_TAES_2021_3098101 crossref_primary_10_3390_sym16081039 crossref_primary_10_1016_j_asoc_2021_107607 crossref_primary_10_3390_aerospace11100793 crossref_primary_10_1016_j_asr_2024_02_013 crossref_primary_10_3390_electronics12193991 crossref_primary_10_1108_AEAT_12_2022_0336 crossref_primary_10_3390_aerospace11100792 crossref_primary_10_1016_j_swevo_2021_100841 crossref_primary_10_1016_j_swevo_2025_101857 crossref_primary_10_3390_aerospace9050235 crossref_primary_10_3390_sym16070813 crossref_primary_10_3390_rs15245639 crossref_primary_10_1016_j_cie_2021_107292 crossref_primary_10_3390_rs15225388 crossref_primary_10_1109_TGRS_2025_3554727 crossref_primary_10_1109_TAES_2024_3427090 crossref_primary_10_3390_rs16234436 crossref_primary_10_1016_j_actaastro_2020_11_016 crossref_primary_10_3390_en17020490 crossref_primary_10_1016_j_cie_2022_108823 crossref_primary_10_1016_j_eswa_2020_113593 crossref_primary_10_1016_j_eswa_2021_114784 crossref_primary_10_1109_TAES_2024_3379169 crossref_primary_10_1016_j_asr_2021_09_003 crossref_primary_10_1007_s40430_019_2121_0 crossref_primary_10_1155_2019_1371852 crossref_primary_10_1016_j_cja_2025_103567 crossref_primary_10_1016_j_ijleo_2018_04_012 crossref_primary_10_1109_TSMC_2020_3020732 |
| Cites_doi | 10.1016/j.actaastro.2017.04.034 10.1144/SP426.3 10.2514/6.2006-7384 10.2514/6.2014-1759 10.1016/S1270-9638(02)01173-2 10.1016/0004-3702(92)90020-X 10.1111/j.1467-8640.2010.00375.x |
| ContentType | Journal Article |
| Copyright | 2017 COSPAR |
| Copyright_xml | – notice: 2017 COSPAR |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asr.2017.07.026 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Astronomy & Astrophysics Physics |
| EISSN | 1879-1948 |
| EndPage | 2090 |
| ExternalDocumentID | 10_1016_j_asr_2017_07_026 S0273117717305367 |
| GroupedDBID | --K --M -~X .~1 0R~ 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNEU ABQEM ABQYD ABYKQ ACDAQ ACFVG ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IMUCA J1W KOM LY3 LZ4 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG ROL SDF SDG SEP SES SPC SPCBC SSE SSQ SSZ T5K ZMT ~02 ~G- 1B1 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HMA HME HVGLF HX~ HZ~ IHE R2- RPZ SEW SHN T9H UHS VH1 VOH WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c297t-f5763aa7b817bc9991609970c05de008c12d3568df8cb28f2305b21821d1e67c3 |
| ISICitedReferencesCount | 86 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000413378600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0273-1177 |
| IngestDate | Tue Nov 18 22:42:20 EST 2025 Sat Nov 29 07:16:55 EST 2025 Fri Feb 23 02:29:44 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Targets recognition over sea Anytime branch and bound algorithm Agile satellite onboard scheduling problem |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-f5763aa7b817bc9991609970c05de008c12d3568df8cb28f2305b21821d1e67c3 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asr_2017_07_026 crossref_primary_10_1016_j_asr_2017_07_026 elsevier_sciencedirect_doi_10_1016_j_asr_2017_07_026 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-11-01 2017-11-00 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Advances in space research |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Knight, Rabideau, Chien, Engelhardt, Sherwood (b0065) 2001; 16 Pralet, Verfaillie (b0100) 2012 LaVallee, D., Jacobsohn, J., Olsen, C., Reilly, J., 2006. Intelligent control for spacecraft autonomy-an industry survey. In: Space 2006, p. 7384. Pralet, C., Verfaillie, G., 2008. Decision upon observations and data downloads by an autonomous earth surveillance satellite. In: Proc. of the 9th International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS-08), p. 99. Zilberstein (b0135) 1996; 17 Lemaître, Verfaillie, Jouhaud, Lachiver, Bataille (b0075) 2002; 6 Hentenryck, Deville, Teng (b0060) 1992; 57 Tonetti, S., Cornara, S., Heritier, A., Pirondini, F., 2015. Fully automated mission planning and capacity analysis tool for the DEIMOS-2 agile satellite. In: Workshop on Simulation for European Space Programmes (SESP), vol. 24, p. 26. Lemaître, M., Verfaillie, G., 2007. Interaction between reactive and deliberative tasks for on-line decision-making. In: International Conference on Automated Planning and Scheduling, Providence, Rhode Island, USA. Rabideau, G., Knight, R., Chien, S., Fukunaga, A., Govindjee, A., 1999. Iterative repair planning for spacecraft operations using the ASPEN system. In: Artificial Intelligence, Robotics and Automation in Space, vol. 440, p. 99. Chien, S.A., Knight, R., Stechert, A., Sherwood, R., Rabideau, G., 2000. Using iterative repair to improve the responsiveness of planning and scheduling. In: AIPS, pp. 300–307. Gleyzes, Perret, Kubik (b0055) 2012; 39 Dantzig, Fulkerson, Johnson (b0030) 1954; 2 Beaumet, Verfaillie, Charmeau (b0010) 2011; 27 Fukunaga, A., Rabideau, G., Chien, S., Yan, D., 1997. ASPEN: a framework for automated planning and scheduling of spacecraft control and operations. In: Proc. International Symposium on AI, Robotics and Automation in Space. Tran, D., Chien, S., Rabideau, G., Cichy, B., 2004b. Flight Software Issues in Onboard Automated Planning: Lessons Learned on EO-1. Davies, Chien, Tran, Doubleday (b0035) 2016; 426 Liu, Chen, Xing, Sun (b0090) 2016; 22 Damiani, S., Verfaillie, G., Charmeau, M.C., 2004. An anytime planning approach for the management of an earth watching satellite. In: Proc. of the 4th International Workshop on Planning and Scheduling for Space (IWPSS-04), Darmstadt, Germany. Fabrizio Pirondini. UrtheCast Constellations: World’s first fully-integrated Optical and SAR constellations. In: Geospatial World Forum 2016, Rotterdam, The Netherlands, 25 May 2016. Lenzen, C., Woerle, M.T., Göttfert, T., Mrowka, F., Wickler, M., 2014. Onboard planning and scheduling autonomy within the scope of the FireBird mission. In: SpaceOps 2014 Conference, p. 1759. Sherwood, Chien, Tran, Cichy, Castano, Davies, Rabideau (b0115) 2005 . Reile, H., Lorenz, E., Terzibaschian, T., 2013. The FireBird Mission – A Scientific Mission for Earth Observation and Hot SpotDetection. Wissenschaft und Technik Verlag. Chien, Sherwood, Tran, Cichy, Rabideau, Castaño, D'Agostino (b0020) 2005 Denis, Claverie, Pasco, Darnis, de Maupeou, Lafaye, Morel (b0040) 2017 Tran, Chien, Sherwood, Castano, Cichy, Davies, Rabideau (b0125) 2004 Beaumet, G., Verfaillie, G., Charmeau, M.C., 2008. Autonomous planning for an agile earth-observing satellite. In: Proceedings of isairas, pp. 1–6. Chien (10.1016/j.asr.2017.07.026_b0020) 2005 Zilberstein (10.1016/j.asr.2017.07.026_b0135) 1996; 17 10.1016/j.asr.2017.07.026_b0005 10.1016/j.asr.2017.07.026_b0105 Denis (10.1016/j.asr.2017.07.026_b0040) 2017 10.1016/j.asr.2017.07.026_b0080 Tran (10.1016/j.asr.2017.07.026_b0125) 2004 Dantzig (10.1016/j.asr.2017.07.026_b0030) 1954; 2 10.1016/j.asr.2017.07.026_b0045 10.1016/j.asr.2017.07.026_b0025 10.1016/j.asr.2017.07.026_b0085 Lemaître (10.1016/j.asr.2017.07.026_b0075) 2002; 6 10.1016/j.asr.2017.07.026_b0120 10.1016/j.asr.2017.07.026_b0015 Sherwood (10.1016/j.asr.2017.07.026_b0115) 2005 Gleyzes (10.1016/j.asr.2017.07.026_b0055) 2012; 39 Hentenryck (10.1016/j.asr.2017.07.026_b0060) 1992; 57 10.1016/j.asr.2017.07.026_b0070 Pralet (10.1016/j.asr.2017.07.026_b0100) 2012 10.1016/j.asr.2017.07.026_b0050 10.1016/j.asr.2017.07.026_b0110 Liu (10.1016/j.asr.2017.07.026_b0090) 2016; 22 Knight (10.1016/j.asr.2017.07.026_b0065) 2001; 16 Davies (10.1016/j.asr.2017.07.026_b0035) 2016; 426 10.1016/j.asr.2017.07.026_b0095 Beaumet (10.1016/j.asr.2017.07.026_b0010) 2011; 27 10.1016/j.asr.2017.07.026_b0130 |
| References_xml | – reference: LaVallee, D., Jacobsohn, J., Olsen, C., Reilly, J., 2006. Intelligent control for spacecraft autonomy-an industry survey. In: Space 2006, p. 7384. < – volume: 57 start-page: 291 year: 1992 end-page: 321 ident: b0060 article-title: A generic arc-consistency algorithm and its specializations publication-title: Artif. Intell. – year: 2005 ident: b0115 article-title: Intelligent Systems in Space: the EO-1 Autonomous Sciencecraft, AIAA – volume: 16 start-page: 70 year: 2001 end-page: 75 ident: b0065 article-title: Casper: space exploration through continuous planning publication-title: IEEE Intell. Syst. – reference: Tonetti, S., Cornara, S., Heritier, A., Pirondini, F., 2015. Fully automated mission planning and capacity analysis tool for the DEIMOS-2 agile satellite. In: Workshop on Simulation for European Space Programmes (SESP), vol. 24, p. 26. < – reference: Pralet, C., Verfaillie, G., 2008. Decision upon observations and data downloads by an autonomous earth surveillance satellite. In: Proc. of the 9th International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS-08), p. 99. < – reference: Tran, D., Chien, S., Rabideau, G., Cichy, B., 2004b. Flight Software Issues in Onboard Automated Planning: Lessons Learned on EO-1. < – volume: 2 start-page: 393 year: 1954 end-page: 410 ident: b0030 article-title: Solution of a large-scale traveling-salesman problem publication-title: J. Oper. Res. Soc. Am. – volume: 6 start-page: 367 year: 2002 end-page: 381 ident: b0075 article-title: Selecting and scheduling observations of agile satellites publication-title: Aerosp. Sci. Technol. – volume: 27 start-page: 123 year: 2011 end-page: 139 ident: b0010 article-title: Feasibility of autonomous decision making on board an agile earth-observing satellite publication-title: Comput. Intell. – volume: 426 start-page: 137 year: 2016 end-page: 158 ident: b0035 article-title: The NASA Volcano Sensor Web, advanced autonomy and the remote sensing of volcanic eruptions: a review publication-title: Geol. Soc., London, Special Publ. – reference: Fabrizio Pirondini. UrtheCast Constellations: World’s first fully-integrated Optical and SAR constellations. In: Geospatial World Forum 2016, Rotterdam, The Netherlands, 25 May 2016. < – volume: 22 year: 2016 ident: b0090 article-title: Method of agile imaging satellites autonomous task planning publication-title: Comput. Integr. Manuf. Syst. – volume: 39 start-page: B1 year: 2012 ident: b0055 article-title: Pleiades system architecture and main performances publication-title: Int. Arch. Photogramm., Remote Sens. Spat. Inform. Sci. – reference: Lemaître, M., Verfaillie, G., 2007. Interaction between reactive and deliberative tasks for on-line decision-making. In: International Conference on Automated Planning and Scheduling, Providence, Rhode Island, USA. < – reference: Damiani, S., Verfaillie, G., Charmeau, M.C., 2004. An anytime planning approach for the management of an earth watching satellite. In: Proc. of the 4th International Workshop on Planning and Scheduling for Space (IWPSS-04), Darmstadt, Germany. < – reference: Fukunaga, A., Rabideau, G., Chien, S., Yan, D., 1997. ASPEN: a framework for automated planning and scheduling of spacecraft control and operations. In: Proc. International Symposium on AI, Robotics and Automation in Space. < – reference: >. – reference: Rabideau, G., Knight, R., Chien, S., Fukunaga, A., Govindjee, A., 1999. Iterative repair planning for spacecraft operations using the ASPEN system. In: Artificial Intelligence, Robotics and Automation in Space, vol. 440, p. 99. < – start-page: 608 year: 2012 end-page: 623 ident: b0100 article-title: Time-dependent simple temporal networks publication-title: Principles and Practice of Constraint Programming – start-page: 11 year: 2005 end-page: 18 ident: b0020 article-title: Lessons learned from autonomous sciencecraft experiment publication-title: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems – reference: Chien, S.A., Knight, R., Stechert, A., Sherwood, R., Rabideau, G., 2000. Using iterative repair to improve the responsiveness of planning and scheduling. In: AIPS, pp. 300–307. < – reference: Lenzen, C., Woerle, M.T., Göttfert, T., Mrowka, F., Wickler, M., 2014. Onboard planning and scheduling autonomy within the scope of the FireBird mission. In: SpaceOps 2014 Conference, p. 1759. < – start-page: 1216 year: 2004 end-page: 1217 ident: b0125 article-title: The autonomous sciencecraft experiment onboard the EO-1 spacecraft publication-title: Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems-Volume 3 – reference: Beaumet, G., Verfaillie, G., Charmeau, M.C., 2008. Autonomous planning for an agile earth-observing satellite. In: Proceedings of isairas, pp. 1–6. < – year: 2017 ident: b0040 article-title: Towards disruptions in Earth observation? New Earth Observation systems and markets evolution: possible scenarios and impacts publication-title: Acta Astronaut. – reference: Reile, H., Lorenz, E., Terzibaschian, T., 2013. The FireBird Mission – A Scientific Mission for Earth Observation and Hot SpotDetection. Wissenschaft und Technik Verlag. < – volume: 17 start-page: 73 year: 1996 ident: b0135 article-title: Using anytime algorithms in intelligent systems publication-title: AI Mag. – volume: 39 start-page: B1 year: 2012 ident: 10.1016/j.asr.2017.07.026_b0055 article-title: Pleiades system architecture and main performances publication-title: Int. Arch. Photogramm., Remote Sens. Spat. Inform. Sci. – year: 2017 ident: 10.1016/j.asr.2017.07.026_b0040 article-title: Towards disruptions in Earth observation? New Earth Observation systems and markets evolution: possible scenarios and impacts publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2017.04.034 – volume: 426 start-page: 137 issue: 1 year: 2016 ident: 10.1016/j.asr.2017.07.026_b0035 article-title: The NASA Volcano Sensor Web, advanced autonomy and the remote sensing of volcanic eruptions: a review publication-title: Geol. Soc., London, Special Publ. doi: 10.1144/SP426.3 – volume: 17 start-page: 73 issue: 3 year: 1996 ident: 10.1016/j.asr.2017.07.026_b0135 article-title: Using anytime algorithms in intelligent systems publication-title: AI Mag. – ident: 10.1016/j.asr.2017.07.026_b0070 doi: 10.2514/6.2006-7384 – ident: 10.1016/j.asr.2017.07.026_b0110 – ident: 10.1016/j.asr.2017.07.026_b0095 – volume: 2 start-page: 393 issue: 4 year: 1954 ident: 10.1016/j.asr.2017.07.026_b0030 article-title: Solution of a large-scale traveling-salesman problem publication-title: J. Oper. Res. Soc. Am. – ident: 10.1016/j.asr.2017.07.026_b0085 doi: 10.2514/6.2014-1759 – ident: 10.1016/j.asr.2017.07.026_b0045 – ident: 10.1016/j.asr.2017.07.026_b0005 – start-page: 11 year: 2005 ident: 10.1016/j.asr.2017.07.026_b0020 article-title: Lessons learned from autonomous sciencecraft experiment – ident: 10.1016/j.asr.2017.07.026_b0120 – volume: 6 start-page: 367 issue: 5 year: 2002 ident: 10.1016/j.asr.2017.07.026_b0075 article-title: Selecting and scheduling observations of agile satellites publication-title: Aerosp. Sci. Technol. doi: 10.1016/S1270-9638(02)01173-2 – ident: 10.1016/j.asr.2017.07.026_b0015 – ident: 10.1016/j.asr.2017.07.026_b0105 – start-page: 1216 year: 2004 ident: 10.1016/j.asr.2017.07.026_b0125 article-title: The autonomous sciencecraft experiment onboard the EO-1 spacecraft – volume: 57 start-page: 291 issue: 2–3 year: 1992 ident: 10.1016/j.asr.2017.07.026_b0060 article-title: A generic arc-consistency algorithm and its specializations publication-title: Artif. Intell. doi: 10.1016/0004-3702(92)90020-X – ident: 10.1016/j.asr.2017.07.026_b0025 – ident: 10.1016/j.asr.2017.07.026_b0050 – volume: 22 year: 2016 ident: 10.1016/j.asr.2017.07.026_b0090 article-title: Method of agile imaging satellites autonomous task planning publication-title: Comput. Integr. Manuf. Syst. – ident: 10.1016/j.asr.2017.07.026_b0080 – volume: 27 start-page: 123 issue: 1 year: 2011 ident: 10.1016/j.asr.2017.07.026_b0010 article-title: Feasibility of autonomous decision making on board an agile earth-observing satellite publication-title: Comput. Intell. doi: 10.1111/j.1467-8640.2010.00375.x – year: 2005 ident: 10.1016/j.asr.2017.07.026_b0115 – volume: 16 start-page: 70 issue: 5 year: 2001 ident: 10.1016/j.asr.2017.07.026_b0065 article-title: Casper: space exploration through continuous planning publication-title: IEEE Intell. Syst. – ident: 10.1016/j.asr.2017.07.026_b0130 – start-page: 608 year: 2012 ident: 10.1016/j.asr.2017.07.026_b0100 article-title: Time-dependent simple temporal networks |
| SSID | ssj0012770 |
| Score | 2.5101864 |
| Snippet | •We consider a bi-satellite cluster for targets recognition over sea.•We propose a mathematical model for the agile satellite scheduling problem.•We develop an... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 2077 |
| SubjectTerms | Agile satellite onboard scheduling problem Anytime branch and bound algorithm Targets recognition over sea |
| Title | An anytime branch and bound algorithm for agile earth observation satellite onboard scheduling |
| URI | https://dx.doi.org/10.1016/j.asr.2017.07.026 |
| Volume | 60 |
| WOSCitedRecordID | wos000413378600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1948 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012770 issn: 0273-1177 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKBhI8ICigjS_5AfFAFJQ4Tpw8RmgIEJr2UKTyQmQ7TteqS6Ymm7r_nvNH0mhsiD0gVVFyStKk9-v57nz-HULvKg7xVhBRP4lo5lNKlS9gYPcrmqUR5ZQIaSjzv7Pj43Q-z04mk22_FuZyzeo63W6z8_-qapCBsvXS2Tuoe7gpCGAflA5bUDts_0nxuS4vvtI94z2hu2bYpWtCt0_y-HrRbJbd6ZktnlyASfDg_btTrxFDetZruaHp1AUEtWh0ngFCYBiS1v0w17PW2voBU1ELhknqDiyj5JjtNaV1OF_yBp53sRNbY_fzol7upDPuhGrl6MBdNgJGuHDIRlijBe6QryeCxxbWdgxwSMrG5jJwJyp3aFuH_mHWbYZh9ZG3msI1ZIZvldxAoX1taBsKDvtatlUBtyj0LYoAPiS5h_YJizOwh_v516P5t2EGijBm83PuffoZcVMbeO05bvZpRn7K7Al67AIMnFtgPEUTVU_RQd7qKY_m7Aq_x2bfZrTaKXo0YqScogcnVv4M_cpr7HCELY7gsMQGR3jAEQYcYYMjbHCERzjCA46wwxHe4eg5-vH5aPbpi--acfiSZKzzKwhMI86ZSEMmpAkr9KLrQAZxqcCRlCEpozhJyyqVgqQVhLax0O0BwjJUCZPRC7RXN7U6QDiiFStFUDGl_WHDEcnjkCmSJYKGnB6ioP85C-mY6nXDlHVxqxoP0YfhknNL0_K3k2mvo8L5mdZ_LABvt1_28i7f8Qo93P09XqO9bnOh3qD78rJbtpu3Dmy_AZk_nkk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+anytime+branch+and+bound+algorithm+for+agile+earth+observation+satellite+onboard+scheduling&rft.jtitle=Advances+in+space+research&rft.au=Chu%2C+Xiaogeng&rft.au=Chen%2C+Yuning&rft.au=Tan%2C+Yuejin&rft.date=2017-11-01&rft.issn=0273-1177&rft.volume=60&rft.issue=9&rft.spage=2077&rft.epage=2090&rft_id=info:doi/10.1016%2Fj.asr.2017.07.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asr_2017_07_026 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1177&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1177&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1177&client=summon |