Monitoring of machining process anomalies in diamond turning of Ti6Al4V alloy using transfer learning-based algorithms

•Challenges associated with the in-process monitoring diamond turning are discussed.•If process drifts are not detected timely can cause an impact on substrate and tool.•Time frequency-based spectrogram analysis is carried out to detect the anomalies.•Use of transfer learning to overcome challenges...

Full description

Saved in:
Bibliographic Details
Published in:Computers & industrial engineering Vol. 182; p. 109359
Main Authors: Manjunath, K, Tewary, Suman, Khatri, Neha, Cheng, Kai
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.08.2023
Subjects:
ISSN:0360-8352, 1879-0550
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Challenges associated with the in-process monitoring diamond turning are discussed.•If process drifts are not detected timely can cause an impact on substrate and tool.•Time frequency-based spectrogram analysis is carried out to detect the anomalies.•Use of transfer learning to overcome challenges in data generation is emphasized.•TL techniques for anomaly identification was carried achieved 90% accuracy. In-process monitoring of anomalies in Ultra Precision Machining (UPM) can improve and ensure product quality and lower manufacturing costs, which is essentially important for industrial-scale ultraprecision manufacturing. UPM is found to be extremely sensitive towards minute instabilities; if such nascent anomalies are not detected can cause irrecoverable defects. However, the classification of the diamond-turning process through conventional monitoring techniques is challenging. This study explores the use of spectrogram-based deep learning to enable real-time, intelligent process monitoring in UPM. The vibrational signals obtained from machining are transformed into log-spectrogram images. These images obtained during machining allow the rendering of more accurate and richer features of signals, as most of the time domain signal obtained in UPM is susceptible to noise and exhibits several non-linearities. The current approach also uses Transfer Learning (TL) to address the feature selection problem. TL is adopted by using the deep learning (DL) models, which have already been developed for classifying different Images. DL pre-trained networks, including VGG19, ResNet50 and Densenet201, are studied for classifying the anomalies. These TL models are applied to the spectrogram images for the classification of normal and abnormal machining in UPM. Among the TL models, the VGG19 model yields the highest classification accuracy at 90%, which demonstrates the potential feasibility of the TL for monitoring process anomalies in UPM.
AbstractList •Challenges associated with the in-process monitoring diamond turning are discussed.•If process drifts are not detected timely can cause an impact on substrate and tool.•Time frequency-based spectrogram analysis is carried out to detect the anomalies.•Use of transfer learning to overcome challenges in data generation is emphasized.•TL techniques for anomaly identification was carried achieved 90% accuracy. In-process monitoring of anomalies in Ultra Precision Machining (UPM) can improve and ensure product quality and lower manufacturing costs, which is essentially important for industrial-scale ultraprecision manufacturing. UPM is found to be extremely sensitive towards minute instabilities; if such nascent anomalies are not detected can cause irrecoverable defects. However, the classification of the diamond-turning process through conventional monitoring techniques is challenging. This study explores the use of spectrogram-based deep learning to enable real-time, intelligent process monitoring in UPM. The vibrational signals obtained from machining are transformed into log-spectrogram images. These images obtained during machining allow the rendering of more accurate and richer features of signals, as most of the time domain signal obtained in UPM is susceptible to noise and exhibits several non-linearities. The current approach also uses Transfer Learning (TL) to address the feature selection problem. TL is adopted by using the deep learning (DL) models, which have already been developed for classifying different Images. DL pre-trained networks, including VGG19, ResNet50 and Densenet201, are studied for classifying the anomalies. These TL models are applied to the spectrogram images for the classification of normal and abnormal machining in UPM. Among the TL models, the VGG19 model yields the highest classification accuracy at 90%, which demonstrates the potential feasibility of the TL for monitoring process anomalies in UPM.
ArticleNumber 109359
Author Khatri, Neha
Manjunath, K
Tewary, Suman
Cheng, Kai
Author_xml – sequence: 1
  givenname: K
  surname: Manjunath
  fullname: Manjunath, K
  email: manjunathk@csio.res.in
  organization: CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
– sequence: 2
  givenname: Suman
  surname: Tewary
  fullname: Tewary, Suman
  organization: Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
– sequence: 3
  givenname: Neha
  surname: Khatri
  fullname: Khatri, Neha
  email: nehakhatri@csio.res.in
  organization: CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
– sequence: 4
  givenname: Kai
  surname: Cheng
  fullname: Cheng, Kai
  organization: College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge UB8 3PH, UK
BookMark eNp9kMtqAjEUhkOxULV9gO7yAmNPkslc6EqkN7B0Y7sdMrloZCaRZBR8-8bqqgtXh__wf-fyT9DIeacReiQwI0CKp-1MWj2jQFnSNeP1DRqTqqwz4BxGaAysgKxinN6hSYxbAMh5Tcbo8OmdHXywbo29wb2QG-tOYhe81DFi4XwvOqsjtg4rK3rvFB72wV2IlS3mXf6DRdf5I97HU3sIwkWjA-60-DNmrYhaJc86bRo2fbxHt0Z0UT9c6hR9v76sFu_Z8uvtYzFfZpLW5ZAZBm2eU6raQlDGqzYveZsXwKRujSlUValSyZbTsq5UndO2ksBNpSkDqA0lbIrK81wZfIxBm0baQQzWu3Sj7RoCzSm-Zpv6ujnF15zjSyT5R-6C7UU4XmWez4xOLx2sDk1MFie1skHLoVHeXqF_AeRcjBY
CitedBy_id crossref_primary_10_1007_s11431_023_2615_4
crossref_primary_10_1016_j_compind_2025_104262
crossref_primary_10_1177_09544054231196920
crossref_primary_10_1177_09544054231202889
crossref_primary_10_1007_s12008_025_02387_3
crossref_primary_10_1007_s00170_024_13867_3
crossref_primary_10_1016_j_precisioneng_2024_02_010
Cites_doi 10.1016/j.promfg.2020.02.050
10.1007/s40684-022-00449-5
10.1016/j.jmapro.2022.05.037
10.1109/ACCESS.2021.3061530
10.1016/j.measurement.2021.110332
10.1109/TSP.2020.3014423
10.1016/j.cie.2021.107250
10.1016/j.promfg.2015.09.044
10.1016/j.jmapro.2022.12.055
10.1109/TIE.2018.2856193
10.1016/j.jmapro.2021.04.059
10.1016/j.jmapro.2021.12.022
10.1177/0954405414554020
10.1016/j.cma.2022.114570
10.1007/s42835-021-00704-w
10.1016/j.eswa.2021.116158
10.3390/jmmp6010018
10.1016/j.mfglet.2020.08.004
10.1016/j.jmapro.2020.01.044
10.1145/3065386
10.1109/TIM.2022.3162283
10.1038/s41598-022-13237-7
10.1007/s00521-021-05716-1
10.3390/machines9120369
10.37819/nanofab.008.293
10.1016/j.knosys.2022.109537
10.1016/j.jmapro.2017.11.022
10.1109/ACCESS.2022.3187043
10.1016/j.jocs.2018.05.005
10.3390/s21134394
10.1016/j.jmsy.2022.09.001
10.1109/JSEN.2021.3114266
10.1016/j.jmsy.2018.12.005
10.1115/1.4034667
10.1088/2631-7990/ab1ff1
10.1007/s10033-017-0183-4
10.1016/j.cie.2022.108273
10.1016/j.eswa.2021.114598
10.1016/j.compind.2021.103399
10.1145/3341095
10.1016/j.cirp.2014.03.123
10.1016/j.jmsy.2016.08.007
10.1016/j.promfg.2020.05.142
10.1088/1361-6501/ac3945
10.1109/ACCESS.2020.3036769
10.1016/j.cie.2020.107015
10.1109/TASLP.2021.3110146
10.1109/TASE.2015.2447454
10.1007/s00170-018-1599-4
10.1115/1.4026210
10.1016/j.cie.2022.108521
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2023.109359
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
ExternalDocumentID 10_1016_j_cie_2023_109359
S0360835223003832
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-f30b4422db6a2358b475b4603cebff6d88d7dcb52798d942b8c05f8e23009f213
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001022527200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-8352
IngestDate Sat Nov 29 07:21:08 EST 2025
Tue Nov 18 21:06:24 EST 2025
Fri Feb 23 02:36:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords In-process monitoring
Transfer learning-based algorithms
Vibrational Signal
Ultra-precision machining
Spectrogram
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-f30b4422db6a2358b475b4603cebff6d88d7dcb52798d942b8c05f8e23009f213
ParticipantIDs crossref_citationtrail_10_1016_j_cie_2023_109359
crossref_primary_10_1016_j_cie_2023_109359
elsevier_sciencedirect_doi_10_1016_j_cie_2023_109359
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Kristoffersen, Li (b0160) 2022; 172
Ayvaz, Alpay (b0030) 2021; 173
Manjunath, Tewary, Khatri, Cheng (b0185) 2022
Sawangsri, Cheng (b0205) 2016; 230
Wang, Cheng, Rakowski, Soulard (b0260) 2018; 31
Beyca, Rao, Kong, Bukkapatnam, Komanduri (b0040) 2015; 13
Adeniji, Oligee, Schoop (b0020) 2022; 6
Yesilli, Khasawneh, Mann (b0285) 2022; 80
Deng, Du, Wang, Shao, Huang (b0060) 2023; 72
Siahpour, Li, Lee (b0225) 2022; 71
Abualigah, Diabat, Sumari, Gandomi (b0010) 2021; 21
Hung, Lee, Kuo, Zeng (b0090) 2022; 10
Wang, Zhang (b0265) 2020; 16
Khatri, Berwal, Manjunath, Singh (b0125) 2023; 8
Wang, Bukkapatnam, Kumara, Kong, Katz (b0275) 2014; 63
Zhang, Yan, Kuriyagawa (b0300) 2019; 1
Cheng, Niu, Wang, Rakowski, Bateman (b0055) 2017; 30
Simonyan, K., & Zisserman, A. (2014). “Very deep convolutional networks for large-scale image recognition”.
Jiao, Wang, Cheng, Zhang (b0115) 2021; 63
Li, Chen, Lin, Li, Jia, Li (b0150) 2022; 254
Sizemore, Nogueira, Greis, Davies (b0240) 2022; 65
Xu, Wang, Zhang, Li (b0280) 2021; 152
Agushaka, Ezugwu, Abualigah (b0025) 2022; 391
Deng, Huang, Du, Li, Zhao, Lv (b0065) 2021; 127
Rao, Bukkapatnam, Beyca, Kong, Komanduri (b0195) 2014; 136
Jiang, Chang, Liu (b0110) 2021; 16
Azizur Rahman, Rahman, Senthil Kumar (b0035) 2018; 96
Cheng, Wang, Hung, Bukkapatnam, Komanduri (b0050) 2015; 1
Liu, Xu (b0170) 2017; 139
Wang, Zhao, Pan, Guo (b0270) 2021; 67
Huang, Liu, Van Der Maaten, Weinberger (b0085) 2017
.
Li, Liu, Li (b0145) 2022; 33
Imoto, Nakai, Ike, Haruki, Sato (b0095) 2018
Kan, Cheng, Yang (b0120) 2016; 41
T. Kourkounakis A. Hajavi A. Etemad FluentNet: End-to-end detection of speech disfluency with deep learning 2020 arXiv preprint arXiv:2009.11394.
Abualigah, Yousri, Abd Elaziz, Ewees, Al-Qaness, Gandomi (b0015) 2021; 157
Li, Tang, Wang, Zhang (b0165) 2022; 74
Mykoniatis (b0190) 2020; 42
Abualigah, Abd Elaziz, Sumari, Geem, Gandomi (b0005) 2022; 191
Botcha, Iquebal, Bukkapatnam (b0045) 2020; 25
Krizhevsky, Sutskever, Hinton (b0140) 2017; 60
Manjunath, Tewary, Khatri, Cheng (b0180) 2022
Selvaraj, Xu, Min (b0210) 2023; 10
Tan, Zhao, Lin, Jin, Guo, Chen, Sun (b0245) 2023
Tran, Lundgren (b0250) 2020; 8
He, Zhang, Ren, Sun (b0080) 2016
Rao (b0200) 2013
Zhang, Zhou (b0290) 2021; 9
Zhang, Pan, Chen, Wang (b0295) 2018; 27
Li, Qiu, Lin, Chen, Jia, Li (b0155) 2022; 169
Sizemore, Nogueira, Greis, Davies (b0235) 2020; 48
Gim, Yang, Turng (b0075) 2023; 87
Manjunath, Tewary, Khatri, Cheng (b0175) 2021; 9
Khatri, Berwal, Manjunath, Singh, Mishra, Goel (b0130) 2023
Iquebal, Bukkapatnam, Srinivasa (b0100) 2020; 68
Shamsan, Cheng (b0215) 2019; 50
Jia, Deng, Lv, Du, Xie (b0105) 2022; 187
Tran, Pham, Lundgren (b0255) 2022; 12
Zhu, Wang, Peng, Li (b0305) 2021; 21
Gao, Hu, Xu (b0070) 2022; 34
Shi, Panoutsos, Luo, Liu, Li, Lin (b0220) 2018; 66
Botcha (10.1016/j.cie.2023.109359_b0045) 2020; 25
Sizemore (10.1016/j.cie.2023.109359_b0235) 2020; 48
Ayvaz (10.1016/j.cie.2023.109359_b0030) 2021; 173
Zhu (10.1016/j.cie.2023.109359_b0305) 2021; 21
Manjunath (10.1016/j.cie.2023.109359_b0180) 2022
Rao (10.1016/j.cie.2023.109359_b0195) 2014; 136
Li (10.1016/j.cie.2023.109359_b0150) 2022; 254
Beyca (10.1016/j.cie.2023.109359_b0040) 2015; 13
Shi (10.1016/j.cie.2023.109359_b0220) 2018; 66
Abualigah (10.1016/j.cie.2023.109359_b0015) 2021; 157
He (10.1016/j.cie.2023.109359_b0080) 2016
Imoto (10.1016/j.cie.2023.109359_b0095) 2018
Tran (10.1016/j.cie.2023.109359_b0255) 2022; 12
Rao (10.1016/j.cie.2023.109359_b0200) 2013
Kan (10.1016/j.cie.2023.109359_b0120) 2016; 41
Deng (10.1016/j.cie.2023.109359_b0065) 2021; 127
Wang (10.1016/j.cie.2023.109359_b0275) 2014; 63
Jiang (10.1016/j.cie.2023.109359_b0110) 2021; 16
Liu (10.1016/j.cie.2023.109359_b0170) 2017; 139
Li (10.1016/j.cie.2023.109359_b0145) 2022; 33
Wang (10.1016/j.cie.2023.109359_b0270) 2021; 67
Tran (10.1016/j.cie.2023.109359_b0250) 2020; 8
Wang (10.1016/j.cie.2023.109359_b0260) 2018; 31
Xu (10.1016/j.cie.2023.109359_b0280) 2021; 152
10.1016/j.cie.2023.109359_b0135
Manjunath (10.1016/j.cie.2023.109359_b0175) 2021; 9
Siahpour (10.1016/j.cie.2023.109359_b0225) 2022; 71
Tan (10.1016/j.cie.2023.109359_b0245) 2023
Li (10.1016/j.cie.2023.109359_b0155) 2022; 169
Cheng (10.1016/j.cie.2023.109359_b0050) 2015; 1
Zhang (10.1016/j.cie.2023.109359_b0295) 2018; 27
Sawangsri (10.1016/j.cie.2023.109359_b0205) 2016; 230
Khatri (10.1016/j.cie.2023.109359_b0130) 2023
Sizemore (10.1016/j.cie.2023.109359_b0240) 2022; 65
Deng (10.1016/j.cie.2023.109359_b0060) 2023; 72
Selvaraj (10.1016/j.cie.2023.109359_b0210) 2023; 10
Zhang (10.1016/j.cie.2023.109359_b0300) 2019; 1
Khatri (10.1016/j.cie.2023.109359_b0125) 2023; 8
Azizur Rahman (10.1016/j.cie.2023.109359_b0035) 2018; 96
Jiao (10.1016/j.cie.2023.109359_b0115) 2021; 63
Abualigah (10.1016/j.cie.2023.109359_b0010) 2021; 21
Wang (10.1016/j.cie.2023.109359_b0265) 2020; 16
Agushaka (10.1016/j.cie.2023.109359_b0025) 2022; 391
Krizhevsky (10.1016/j.cie.2023.109359_b0140) 2017; 60
Shamsan (10.1016/j.cie.2023.109359_b0215) 2019; 50
Yesilli (10.1016/j.cie.2023.109359_b0285) 2022; 80
10.1016/j.cie.2023.109359_b0230
Iquebal (10.1016/j.cie.2023.109359_b0100) 2020; 68
Manjunath (10.1016/j.cie.2023.109359_b0185) 2022
Abualigah (10.1016/j.cie.2023.109359_b0005) 2022; 191
Zhang (10.1016/j.cie.2023.109359_b0290) 2021; 9
Li (10.1016/j.cie.2023.109359_b0160) 2022; 172
Gim (10.1016/j.cie.2023.109359_b0075) 2023; 87
Jia (10.1016/j.cie.2023.109359_b0105) 2022; 187
Cheng (10.1016/j.cie.2023.109359_b0055) 2017; 30
Gao (10.1016/j.cie.2023.109359_b0070) 2022; 34
Li (10.1016/j.cie.2023.109359_b0165) 2022; 74
Huang (10.1016/j.cie.2023.109359_b0085) 2017
Hung (10.1016/j.cie.2023.109359_b0090) 2022; 10
Adeniji (10.1016/j.cie.2023.109359_b0020) 2022; 6
Mykoniatis (10.1016/j.cie.2023.109359_b0190) 2020; 42
References_xml – year: 2013
  ident: b0200
  article-title: Sensor-based monitoring and inspection of surface morphology in ultraprecision manufacturing processes
– volume: 157
  year: 2021
  ident: b0015
  article-title: Aquila optimizer: a novel meta-heuristic optimization algorithm
  publication-title: Computers & Industrial Engineering
– volume: 42
  start-page: 450
  year: 2020
  end-page: 456
  ident: b0190
  article-title: A real-time condition monitoring and maintenance management system for low voltage industrial motors using internet-of-things
  publication-title: Procedia Manufacturing
– volume: 16
  start-page: 1
  year: 2020
  end-page: 19
  ident: b0265
  article-title: DenseNet-201-based deep neural network with composite learning factor and precomputation for multiple sclerosis classification
  publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM)
– volume: 21
  start-page: 4394
  year: 2021
  ident: b0305
  article-title: WDA: an improved Wasserstein distance-based transfer learning fault diagnosis method
  publication-title: Sensors
– year: 2018
  ident: b0095
  article-title: A CNN-based transfer learning method for defect classification in semiconductor manufacturing
  publication-title: Paper presented at the 2018 international symposium on semiconductor manufacturing (ISSM)
– volume: 48
  start-page: 1029
  year: 2020
  end-page: 1040
  ident: b0235
  article-title: Application of machine learning to the prediction of surface roughness in diamond machining
  publication-title: Procedia Manufacturing
– volume: 6
  start-page: 18
  year: 2022
  ident: b0020
  article-title: A novel approach for real-time quality monitoring in machining of aerospace alloy through acoustic emission signal transformation for DNN
  publication-title: Journal of Manufacturing and Materials Processing
– volume: 80
  start-page: 1
  year: 2022
  end-page: 27
  ident: b0285
  article-title: Transfer learning for autonomous chatter detection in machining
  publication-title: Journal of Manufacturing Processes
– volume: 87
  start-page: 11
  year: 2023
  end-page: 24
  ident: b0075
  article-title: Transfer learning of machine learning models for multi-objective process optimization of a transferred mold to ensure efficient and robust injection molding of high surface quality parts
  publication-title: Journal of Manufacturing Processes
– volume: 9
  start-page: 369
  year: 2021
  ident: b0175
  article-title: Monitoring and predicting the surface generation and surface roughness in ultraprecision machining: a critical review
  publication-title: Machines
– reference: T. Kourkounakis A. Hajavi A. Etemad FluentNet: End-to-end detection of speech disfluency with deep learning 2020 arXiv preprint arXiv:2009.11394.
– volume: 25
  start-page: 102
  year: 2020
  end-page: 106
  ident: b0045
  article-title: Smart manufacturing multiplex
  publication-title: Manufacturing Letters
– start-page: 1
  year: 2022
  end-page: 9
  ident: b0180
  article-title: Precipitation effect on surface roughness at Ti-6Al-4 V ELI alloy during ultra-precision machining
  publication-title: International Journal on Interactive Design and Manufacturing (IJIDeM)
– volume: 74
  start-page: 374
  year: 2022
  end-page: 382
  ident: b0165
  article-title: A deep transfer learning method for monitoring the wear of abrasive belts with a small sample dataset
  publication-title: Journal of Manufacturing Processes
– volume: 1
  start-page: 607
  year: 2015
  end-page: 618
  ident: b0050
  article-title: Ultra-precision machining process dynamics and surface quality monitoring
  publication-title: Procedia Manufacturing
– volume: 169
  year: 2022
  ident: b0155
  article-title: A weighted adaptive transfer learning for tool tip dynamics prediction of different machine tools
  publication-title: Computers & Industrial Engineering
– volume: 9
  start-page: 43889
  year: 2021
  end-page: 43897
  ident: b0290
  article-title: Deep convolutional neural network using transfer learning for fault diagnosis
  publication-title: IEEE Access
– volume: 13
  start-page: 1033
  year: 2015
  end-page: 1044
  ident: b0040
  article-title: Heterogeneous sensor data fusion approach for real-time monitoring in ultraprecision machining (UPM) process using non-parametric Bayesian clustering and evidence theory
  publication-title: IEEE Transactions on Automation Science and Engineering
– volume: 391
  year: 2022
  ident: b0025
  article-title: Dwarf mongoose optimization algorithm
  publication-title: Computer methods in applied mechanics and engineering
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: b0140
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Communications of the ACM
– volume: 63
  start-page: 191
  year: 2021
  end-page: 197
  ident: b0115
  article-title: End-to-end prediction of weld penetration: a deep learning and transfer learning based method
  publication-title: Journal of Manufacturing Processes
– volume: 8
  year: 2023
  ident: b0125
  article-title: Optical design and fabrication of zinc selenide microlens array with extended depth of focus for biomedical imaging
  publication-title: Nanofabrication
– year: 2017
  ident: b0085
  article-title: Densely connected convolutional networks
  publication-title: Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 187
  year: 2022
  ident: b0105
  article-title: Joint distribution adaptation with diverse feature aggregation: a new transfer learning framework for bearing diagnosis across different machines
  publication-title: Measurement
– volume: 31
  start-page: 324
  year: 2018
  end-page: 335
  ident: b0260
  article-title: An experimental investigation on ultra-precision instrumented smart aerostatic bearing spindle applied to high speed micro-drilling
  publication-title: Journal of Manufacturing Processes
– volume: 63
  start-page: 449
  year: 2014
  end-page: 452
  ident: b0275
  article-title: Change detection in precision manufacturing processes under transient conditions
  publication-title: CIRP Annals
– volume: 67
  start-page: 128
  year: 2021
  end-page: 140
  ident: b0270
  article-title: Ultra-precision raster grinding biconical optics with a novel profile error compensation technique based on on-machine measurement and wavelet decomposition
  publication-title: Journal of Manufacturing Processes
– reference: Simonyan, K., & Zisserman, A. (2014). “Very deep convolutional networks for large-scale image recognition”.
– volume: 21
  start-page: 25532
  year: 2021
  end-page: 25546
  ident: b0010
  article-title: Applications, deployments, and integration of internet of drones (iod): a review
  publication-title: IEEE Sensors Journal
– volume: 16
  start-page: 2167
  year: 2021
  end-page: 2181
  ident: b0110
  article-title: A spectrogram based local fluctuation feature for fault diagnosis with application to rotating machines
  publication-title: Journal of Electrical Engineering & Technology
– volume: 139
  year: 2017
  ident: b0170
  article-title: Industry 4.0 and cloud manufacturing: a comparative analysis
  publication-title: Journal of Manufacturing Science and Engineering
– volume: 254
  year: 2022
  ident: b0150
  article-title: A novel adversarial domain adaptation transfer learning method for tool wear state prediction
  publication-title: Knowledge-Based Systems
– volume: 10
  start-page: 70491
  year: 2022
  end-page: 70501
  ident: b0090
  article-title: SoC-based early failure detection system using deep learning for tool wear
  publication-title: IEEE Access
– start-page: 1
  year: 2023
  end-page: 13
  ident: b0245
  article-title: Analytical modelling and experimental study of surface roughness in ultrasonic elliptical vibration assisted ultra-precision cutting of Ti-6Al-4 V alloy
  publication-title: The International Journal of Advanced Manufacturing Technology
– volume: 34
  start-page: 3399
  year: 2022
  end-page: 3410
  ident: b0070
  article-title: Condition monitoring and life prediction of the turning tool based on extreme learning machine and transfer learning
  publication-title: Neural Computing and Applications
– year: 2016
  ident: b0080
  article-title: Deep residual learning for image recognition
  publication-title: Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 10
  start-page: 59
  year: 2023
  end-page: 69
  ident: b0210
  article-title: Intelligent operation monitoring of an ultra-precision cnc machine tool using energy data
  publication-title: International Journal of Precision Engineering and Manufacturing-Green Technology
– volume: 230
  start-page: 405
  year: 2016
  end-page: 415
  ident: b0205
  article-title: An innovative approach to cutting force modelling in diamond turning and its correlation analysis with tool wear
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
– volume: 72
  start-page: 1
  year: 2023
  end-page: 15
  ident: b0060
  article-title: A calibration-based hybrid transfer learning framework for RUL prediction of rolling bearing across different machines
  publication-title: IEEE Transactions on Instrumentation and Measurement
– year: 2022
  ident: b0185
  article-title: Time-frequency analysis of vibration signals for monitoring the process status in Ultra-Precision machining of complex components
  publication-title: EUSPEN: Special Interest Group Meeting : Structured & Freeform Surfaces
– volume: 66
  start-page: 3794
  year: 2018
  end-page: 3803
  ident: b0220
  article-title: Using multiple-feature-spaces-based deep learning for tool condition monitoring in ultraprecision manufacturing
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 96
  start-page: 3545
  year: 2018
  end-page: 3563
  ident: b0035
  article-title: Influence of relative tool sharpness (RTS) on different ultra-precision machining regimes of Mg alloy
  publication-title: The International Journal of Advanced Manufacturing Technology
– volume: 173
  year: 2021
  ident: b0030
  article-title: Predictive maintenance system for production lines in manufacturing: a machine learning approach using IoT data in real-time
  publication-title: Expert Systems with Applications
– volume: 68
  start-page: 4743
  year: 2020
  end-page: 4756
  ident: b0100
  article-title: Change detection in complex dynamical systems using intrinsic phase and amplitude synchronization
  publication-title: IEEE Transactions on Signal Processing
– volume: 12
  start-page: 1
  year: 2022
  end-page: 13
  ident: b0255
  article-title: A deep learning approach for detecting drill bit failures from a small sound dataset
  publication-title: Scientific Reports
– volume: 41
  start-page: 178
  year: 2016
  end-page: 187
  ident: b0120
  article-title: Heterogeneous recurrence monitoring of dynamic transients in ultraprecision machining processes
  publication-title: Journal of Manufacturing Systems
– volume: 71
  start-page: 1
  year: 2022
  end-page: 11
  ident: b0225
  article-title: A novel transfer learning approach in remaining useful life prediction for incomplete dataset
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 152
  year: 2021
  ident: b0280
  article-title: Anomaly detection of power consumption in yarn spinning using transfer learning
  publication-title: Computers & Industrial Engineering
– volume: 127
  year: 2021
  ident: b0065
  article-title: A double-layer attention based adversarial network for partial transfer learning in machinery fault diagnosis
  publication-title: Computers in Industry
– start-page: 104582
  year: 2023
  ident: b0130
  article-title: Research on development of aspheric diffractive optical element for mid-infrared imaging
– reference: .
– volume: 8
  start-page: 203655
  year: 2020
  end-page: 203666
  ident: b0250
  article-title: Drill fault diagnosis based on the scalogram and mel spectrogram of sound signals using artificial intelligence
  publication-title: IEEE Access
– volume: 50
  start-page: 81
  year: 2019
  end-page: 86
  ident: b0215
  article-title: Intrinsic multiplex graph model detects incipient process drift in ultraprecision manufacturing
  publication-title: Journal of Manufacturing Systems
– volume: 27
  start-page: 57
  year: 2018
  end-page: 68
  ident: b0295
  article-title: Abnormal breast identification by nine-layer convolutional neural network with parametric rectified linear unit and rank-based stochastic pooling
  publication-title: Journal of computational science
– volume: 30
  start-page: 1162
  year: 2017
  end-page: 1176
  ident: b0055
  article-title: Smart cutting tools and smart machining: development approaches, and their implementation and application perspectives
  publication-title: Chinese Journal of Mechanical Engineering
– volume: 65
  start-page: 296
  year: 2022
  end-page: 316
  ident: b0240
  article-title: Application of machine learning for improved surface quality classification in ultra-precision machining of germanium
  publication-title: Journal of Manufacturing Systems
– volume: 191
  year: 2022
  ident: b0005
  article-title: Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer
  publication-title: Expert Systems with Applications
– volume: 172
  year: 2022
  ident: b0160
  article-title: Deep transfer learning for failure prediction across failure types
  publication-title: Computers & Industrial Engineering
– volume: 136
  year: 2014
  ident: b0195
  article-title: Real-time identification of incipient surface morphology variations in ultraprecision machining process
  publication-title: Journal of Manufacturing Science and Engineering
– volume: 1
  year: 2019
  ident: b0300
  article-title: Manufacturing technologies toward extreme precision
  publication-title: International Journal of Extreme Manufacturing
– volume: 33
  year: 2022
  ident: b0145
  article-title: Generative adversarial network and transfer-learning-based fault detection for rotating machinery with imbalanced data condition
  publication-title: Measurement Science and Technology
– volume: 42
  start-page: 450
  year: 2020
  ident: 10.1016/j.cie.2023.109359_b0190
  article-title: A real-time condition monitoring and maintenance management system for low voltage industrial motors using internet-of-things
  publication-title: Procedia Manufacturing
  doi: 10.1016/j.promfg.2020.02.050
– volume: 10
  start-page: 59
  issue: 1
  year: 2023
  ident: 10.1016/j.cie.2023.109359_b0210
  article-title: Intelligent operation monitoring of an ultra-precision cnc machine tool using energy data
  publication-title: International Journal of Precision Engineering and Manufacturing-Green Technology
  doi: 10.1007/s40684-022-00449-5
– volume: 80
  start-page: 1
  year: 2022
  ident: 10.1016/j.cie.2023.109359_b0285
  article-title: Transfer learning for autonomous chatter detection in machining
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/j.jmapro.2022.05.037
– volume: 9
  start-page: 43889
  year: 2021
  ident: 10.1016/j.cie.2023.109359_b0290
  article-title: Deep convolutional neural network using transfer learning for fault diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3061530
– volume: 187
  year: 2022
  ident: 10.1016/j.cie.2023.109359_b0105
  article-title: Joint distribution adaptation with diverse feature aggregation: a new transfer learning framework for bearing diagnosis across different machines
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110332
– volume: 68
  start-page: 4743
  year: 2020
  ident: 10.1016/j.cie.2023.109359_b0100
  article-title: Change detection in complex dynamical systems using intrinsic phase and amplitude synchronization
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2020.3014423
– volume: 157
  year: 2021
  ident: 10.1016/j.cie.2023.109359_b0015
  article-title: Aquila optimizer: a novel meta-heuristic optimization algorithm
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107250
– volume: 1
  start-page: 607
  year: 2015
  ident: 10.1016/j.cie.2023.109359_b0050
  article-title: Ultra-precision machining process dynamics and surface quality monitoring
  publication-title: Procedia Manufacturing
  doi: 10.1016/j.promfg.2015.09.044
– volume: 87
  start-page: 11
  year: 2023
  ident: 10.1016/j.cie.2023.109359_b0075
  article-title: Transfer learning of machine learning models for multi-objective process optimization of a transferred mold to ensure efficient and robust injection molding of high surface quality parts
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/j.jmapro.2022.12.055
– volume: 66
  start-page: 3794
  issue: 5
  year: 2018
  ident: 10.1016/j.cie.2023.109359_b0220
  article-title: Using multiple-feature-spaces-based deep learning for tool condition monitoring in ultraprecision manufacturing
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2018.2856193
– volume: 67
  start-page: 128
  year: 2021
  ident: 10.1016/j.cie.2023.109359_b0270
  article-title: Ultra-precision raster grinding biconical optics with a novel profile error compensation technique based on on-machine measurement and wavelet decomposition
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/j.jmapro.2021.04.059
– volume: 74
  start-page: 374
  year: 2022
  ident: 10.1016/j.cie.2023.109359_b0165
  article-title: A deep transfer learning method for monitoring the wear of abrasive belts with a small sample dataset
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/j.jmapro.2021.12.022
– volume: 230
  start-page: 405
  issue: 3
  year: 2016
  ident: 10.1016/j.cie.2023.109359_b0205
  article-title: An innovative approach to cutting force modelling in diamond turning and its correlation analysis with tool wear
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
  doi: 10.1177/0954405414554020
– volume: 391
  year: 2022
  ident: 10.1016/j.cie.2023.109359_b0025
  article-title: Dwarf mongoose optimization algorithm
  publication-title: Computer methods in applied mechanics and engineering
  doi: 10.1016/j.cma.2022.114570
– volume: 16
  start-page: 2167
  issue: 4
  year: 2021
  ident: 10.1016/j.cie.2023.109359_b0110
  article-title: A spectrogram based local fluctuation feature for fault diagnosis with application to rotating machines
  publication-title: Journal of Electrical Engineering & Technology
  doi: 10.1007/s42835-021-00704-w
– volume: 191
  year: 2022
  ident: 10.1016/j.cie.2023.109359_b0005
  article-title: Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.116158
– volume: 6
  start-page: 18
  issue: 1
  year: 2022
  ident: 10.1016/j.cie.2023.109359_b0020
  article-title: A novel approach for real-time quality monitoring in machining of aerospace alloy through acoustic emission signal transformation for DNN
  publication-title: Journal of Manufacturing and Materials Processing
  doi: 10.3390/jmmp6010018
– volume: 25
  start-page: 102
  year: 2020
  ident: 10.1016/j.cie.2023.109359_b0045
  article-title: Smart manufacturing multiplex
  publication-title: Manufacturing Letters
  doi: 10.1016/j.mfglet.2020.08.004
– volume: 63
  start-page: 191
  year: 2021
  ident: 10.1016/j.cie.2023.109359_b0115
  article-title: End-to-end prediction of weld penetration: a deep learning and transfer learning based method
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/j.jmapro.2020.01.044
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10.1016/j.cie.2023.109359_b0140
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Communications of the ACM
  doi: 10.1145/3065386
– year: 2018
  ident: 10.1016/j.cie.2023.109359_b0095
  article-title: A CNN-based transfer learning method for defect classification in semiconductor manufacturing
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.cie.2023.109359_b0225
  article-title: A novel transfer learning approach in remaining useful life prediction for incomplete dataset
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2022.3162283
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.cie.2023.109359_b0255
  article-title: A deep learning approach for detecting drill bit failures from a small sound dataset
  publication-title: Scientific Reports
  doi: 10.1038/s41598-022-13237-7
– volume: 34
  start-page: 3399
  issue: 5
  year: 2022
  ident: 10.1016/j.cie.2023.109359_b0070
  article-title: Condition monitoring and life prediction of the turning tool based on extreme learning machine and transfer learning
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-021-05716-1
– volume: 9
  start-page: 369
  issue: 12
  year: 2021
  ident: 10.1016/j.cie.2023.109359_b0175
  article-title: Monitoring and predicting the surface generation and surface roughness in ultraprecision machining: a critical review
  publication-title: Machines
  doi: 10.3390/machines9120369
– volume: 8
  year: 2023
  ident: 10.1016/j.cie.2023.109359_b0125
  article-title: Optical design and fabrication of zinc selenide microlens array with extended depth of focus for biomedical imaging
  publication-title: Nanofabrication
  doi: 10.37819/nanofab.008.293
– volume: 254
  year: 2022
  ident: 10.1016/j.cie.2023.109359_b0150
  article-title: A novel adversarial domain adaptation transfer learning method for tool wear state prediction
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.109537
– volume: 31
  start-page: 324
  year: 2018
  ident: 10.1016/j.cie.2023.109359_b0260
  article-title: An experimental investigation on ultra-precision instrumented smart aerostatic bearing spindle applied to high speed micro-drilling
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/j.jmapro.2017.11.022
– volume: 10
  start-page: 70491
  year: 2022
  ident: 10.1016/j.cie.2023.109359_b0090
  article-title: SoC-based early failure detection system using deep learning for tool wear
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3187043
– volume: 27
  start-page: 57
  year: 2018
  ident: 10.1016/j.cie.2023.109359_b0295
  article-title: Abnormal breast identification by nine-layer convolutional neural network with parametric rectified linear unit and rank-based stochastic pooling
  publication-title: Journal of computational science
  doi: 10.1016/j.jocs.2018.05.005
– volume: 21
  start-page: 4394
  issue: 13
  year: 2021
  ident: 10.1016/j.cie.2023.109359_b0305
  article-title: WDA: an improved Wasserstein distance-based transfer learning fault diagnosis method
  publication-title: Sensors
  doi: 10.3390/s21134394
– volume: 65
  start-page: 296
  year: 2022
  ident: 10.1016/j.cie.2023.109359_b0240
  article-title: Application of machine learning for improved surface quality classification in ultra-precision machining of germanium
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2022.09.001
– volume: 21
  start-page: 25532
  issue: 22
  year: 2021
  ident: 10.1016/j.cie.2023.109359_b0010
  article-title: Applications, deployments, and integration of internet of drones (iod): a review
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2021.3114266
– volume: 50
  start-page: 81
  year: 2019
  ident: 10.1016/j.cie.2023.109359_b0215
  article-title: Intrinsic multiplex graph model detects incipient process drift in ultraprecision manufacturing
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2018.12.005
– year: 2017
  ident: 10.1016/j.cie.2023.109359_b0085
  article-title: Densely connected convolutional networks
– start-page: 1
  year: 2023
  ident: 10.1016/j.cie.2023.109359_b0245
  article-title: Analytical modelling and experimental study of surface roughness in ultrasonic elliptical vibration assisted ultra-precision cutting of Ti-6Al-4 V alloy
  publication-title: The International Journal of Advanced Manufacturing Technology
– start-page: 104582
  year: 2023
  ident: 10.1016/j.cie.2023.109359_b0130
– volume: 139
  issue: 3
  year: 2017
  ident: 10.1016/j.cie.2023.109359_b0170
  article-title: Industry 4.0 and cloud manufacturing: a comparative analysis
  publication-title: Journal of Manufacturing Science and Engineering
  doi: 10.1115/1.4034667
– volume: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.cie.2023.109359_b0300
  article-title: Manufacturing technologies toward extreme precision
  publication-title: International Journal of Extreme Manufacturing
  doi: 10.1088/2631-7990/ab1ff1
– volume: 30
  start-page: 1162
  issue: 5
  year: 2017
  ident: 10.1016/j.cie.2023.109359_b0055
  article-title: Smart cutting tools and smart machining: development approaches, and their implementation and application perspectives
  publication-title: Chinese Journal of Mechanical Engineering
  doi: 10.1007/s10033-017-0183-4
– year: 2016
  ident: 10.1016/j.cie.2023.109359_b0080
  article-title: Deep residual learning for image recognition
– volume: 169
  year: 2022
  ident: 10.1016/j.cie.2023.109359_b0155
  article-title: A weighted adaptive transfer learning for tool tip dynamics prediction of different machine tools
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2022.108273
– volume: 173
  year: 2021
  ident: 10.1016/j.cie.2023.109359_b0030
  article-title: Predictive maintenance system for production lines in manufacturing: a machine learning approach using IoT data in real-time
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.114598
– volume: 72
  start-page: 1
  year: 2023
  ident: 10.1016/j.cie.2023.109359_b0060
  article-title: A calibration-based hybrid transfer learning framework for RUL prediction of rolling bearing across different machines
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 127
  year: 2021
  ident: 10.1016/j.cie.2023.109359_b0065
  article-title: A double-layer attention based adversarial network for partial transfer learning in machinery fault diagnosis
  publication-title: Computers in Industry
  doi: 10.1016/j.compind.2021.103399
– volume: 16
  start-page: 1
  issue: 2s
  year: 2020
  ident: 10.1016/j.cie.2023.109359_b0265
  article-title: DenseNet-201-based deep neural network with composite learning factor and precomputation for multiple sclerosis classification
  publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM)
  doi: 10.1145/3341095
– volume: 63
  start-page: 449
  issue: 1
  year: 2014
  ident: 10.1016/j.cie.2023.109359_b0275
  article-title: Change detection in precision manufacturing processes under transient conditions
  publication-title: CIRP Annals
  doi: 10.1016/j.cirp.2014.03.123
– volume: 41
  start-page: 178
  year: 2016
  ident: 10.1016/j.cie.2023.109359_b0120
  article-title: Heterogeneous recurrence monitoring of dynamic transients in ultraprecision machining processes
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2016.08.007
– year: 2013
  ident: 10.1016/j.cie.2023.109359_b0200
– volume: 48
  start-page: 1029
  year: 2020
  ident: 10.1016/j.cie.2023.109359_b0235
  article-title: Application of machine learning to the prediction of surface roughness in diamond machining
  publication-title: Procedia Manufacturing
  doi: 10.1016/j.promfg.2020.05.142
– volume: 33
  issue: 4
  year: 2022
  ident: 10.1016/j.cie.2023.109359_b0145
  article-title: Generative adversarial network and transfer-learning-based fault detection for rotating machinery with imbalanced data condition
  publication-title: Measurement Science and Technology
  doi: 10.1088/1361-6501/ac3945
– volume: 8
  start-page: 203655
  year: 2020
  ident: 10.1016/j.cie.2023.109359_b0250
  article-title: Drill fault diagnosis based on the scalogram and mel spectrogram of sound signals using artificial intelligence
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3036769
– volume: 152
  year: 2021
  ident: 10.1016/j.cie.2023.109359_b0280
  article-title: Anomaly detection of power consumption in yarn spinning using transfer learning
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.107015
– ident: 10.1016/j.cie.2023.109359_b0135
  doi: 10.1109/TASLP.2021.3110146
– volume: 13
  start-page: 1033
  issue: 2
  year: 2015
  ident: 10.1016/j.cie.2023.109359_b0040
  article-title: Heterogeneous sensor data fusion approach for real-time monitoring in ultraprecision machining (UPM) process using non-parametric Bayesian clustering and evidence theory
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2015.2447454
– volume: 96
  start-page: 3545
  issue: 9
  year: 2018
  ident: 10.1016/j.cie.2023.109359_b0035
  article-title: Influence of relative tool sharpness (RTS) on different ultra-precision machining regimes of Mg alloy
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-018-1599-4
– volume: 136
  issue: 2
  year: 2014
  ident: 10.1016/j.cie.2023.109359_b0195
  article-title: Real-time identification of incipient surface morphology variations in ultraprecision machining process
  publication-title: Journal of Manufacturing Science and Engineering
  doi: 10.1115/1.4026210
– year: 2022
  ident: 10.1016/j.cie.2023.109359_b0185
  article-title: Time-frequency analysis of vibration signals for monitoring the process status in Ultra-Precision machining of complex components
– volume: 172
  year: 2022
  ident: 10.1016/j.cie.2023.109359_b0160
  article-title: Deep transfer learning for failure prediction across failure types
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2022.108521
– start-page: 1
  year: 2022
  ident: 10.1016/j.cie.2023.109359_b0180
  article-title: Precipitation effect on surface roughness at Ti-6Al-4 V ELI alloy during ultra-precision machining
  publication-title: International Journal on Interactive Design and Manufacturing (IJIDeM)
– ident: 10.1016/j.cie.2023.109359_b0230
SSID ssj0004591
Score 2.4463668
Snippet •Challenges associated with the in-process monitoring diamond turning are discussed.•If process drifts are not detected timely can cause an impact on substrate...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109359
SubjectTerms In-process monitoring
Spectrogram
Transfer learning-based algorithms
Ultra-precision machining
Vibrational Signal
Title Monitoring of machining process anomalies in diamond turning of Ti6Al4V alloy using transfer learning-based algorithms
URI https://dx.doi.org/10.1016/j.cie.2023.109359
Volume 182
WOSCitedRecordID wos001022527200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwM8DBggNj7kB56oUrmOkziPFRraEJqQKKhvUR07a6ounfrF9pfs3-Uc23E6GGIPvERVZF-i3i_n8_nudwi9H1ARwmZHBjKRJGA8zQMxUFGQJpEMFZeS5DVl_pfk7IyPx-nXTufG1cJs50lV8aur9PK_qhrugbJ16ew91N0IhRvwG5QOV1A7XP9J8eYrXdps5os6WdKUnNclAb1JtbgA51uZRNhSdxuSPVh4KjtjVMbDOfvR0yfy173NyjaSAPdWLV2TifNAr34SxpzDk9ZTS3nuGA9sp4hVjavSNwdRnvzQR8Kr2UYH8HdCriP1c2LO97_pQ4ZmVZjqhgI1gNXUpxhNlTVYk7IdxKBhk0Lni7dIoJ3BXcNMW6ZV814Z8vDfrL4JQMz6YA37Wnrfj91l2L618jX5iC7VbZaBiEyLyIyIB2iPJlHKu2hveHo8_twiojfNGN17uwPzOnXw1nv82eVpuTGjp2jf7j_w0ODmGeqo6gA9sXsRbC396gA9bhFVPkdbDyq8KHADKmxBhRtQ4bLCFlTYgkrPsKDCNahwDSrsQIV3QYU9qF6g75-ORx9PAtuxI8hpmqyDIiSCMUqliCe6BluwJBIsJmGuRFHEknMwCbmIaJJymTIqeE6igivYB5O0oIPwJepWi0q9QpiDbxrziHJCFSMF-NEDzgSsGEXOVS7ZISLuTwWlmbQV3VVlnt2pzEP0oZlyabhc_jaYOU1l1hk1TmYGqLt72tF9nvEaPfIfwxvUXS836i16mG_X5Wr5zkLuFzkBrC0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+of+machining+process+anomalies+in+diamond+turning+of+Ti6Al4V+alloy+using+transfer+learning-based+algorithms&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Manjunath%2C+K&rft.au=Tewary%2C+Suman&rft.au=Khatri%2C+Neha&rft.au=Cheng%2C+Kai&rft.date=2023-08-01&rft.issn=0360-8352&rft.volume=182&rft.spage=109359&rft_id=info:doi/10.1016%2Fj.cie.2023.109359&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2023_109359
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon