Monitoring of machining process anomalies in diamond turning of Ti6Al4V alloy using transfer learning-based algorithms
•Challenges associated with the in-process monitoring diamond turning are discussed.•If process drifts are not detected timely can cause an impact on substrate and tool.•Time frequency-based spectrogram analysis is carried out to detect the anomalies.•Use of transfer learning to overcome challenges...
Uloženo v:
| Vydáno v: | Computers & industrial engineering Ročník 182; s. 109359 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.08.2023
|
| Témata: | |
| ISSN: | 0360-8352, 1879-0550 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Challenges associated with the in-process monitoring diamond turning are discussed.•If process drifts are not detected timely can cause an impact on substrate and tool.•Time frequency-based spectrogram analysis is carried out to detect the anomalies.•Use of transfer learning to overcome challenges in data generation is emphasized.•TL techniques for anomaly identification was carried achieved 90% accuracy.
In-process monitoring of anomalies in Ultra Precision Machining (UPM) can improve and ensure product quality and lower manufacturing costs, which is essentially important for industrial-scale ultraprecision manufacturing. UPM is found to be extremely sensitive towards minute instabilities; if such nascent anomalies are not detected can cause irrecoverable defects. However, the classification of the diamond-turning process through conventional monitoring techniques is challenging. This study explores the use of spectrogram-based deep learning to enable real-time, intelligent process monitoring in UPM. The vibrational signals obtained from machining are transformed into log-spectrogram images. These images obtained during machining allow the rendering of more accurate and richer features of signals, as most of the time domain signal obtained in UPM is susceptible to noise and exhibits several non-linearities. The current approach also uses Transfer Learning (TL) to address the feature selection problem. TL is adopted by using the deep learning (DL) models, which have already been developed for classifying different Images. DL pre-trained networks, including VGG19, ResNet50 and Densenet201, are studied for classifying the anomalies. These TL models are applied to the spectrogram images for the classification of normal and abnormal machining in UPM. Among the TL models, the VGG19 model yields the highest classification accuracy at 90%, which demonstrates the potential feasibility of the TL for monitoring process anomalies in UPM. |
|---|---|
| AbstractList | •Challenges associated with the in-process monitoring diamond turning are discussed.•If process drifts are not detected timely can cause an impact on substrate and tool.•Time frequency-based spectrogram analysis is carried out to detect the anomalies.•Use of transfer learning to overcome challenges in data generation is emphasized.•TL techniques for anomaly identification was carried achieved 90% accuracy.
In-process monitoring of anomalies in Ultra Precision Machining (UPM) can improve and ensure product quality and lower manufacturing costs, which is essentially important for industrial-scale ultraprecision manufacturing. UPM is found to be extremely sensitive towards minute instabilities; if such nascent anomalies are not detected can cause irrecoverable defects. However, the classification of the diamond-turning process through conventional monitoring techniques is challenging. This study explores the use of spectrogram-based deep learning to enable real-time, intelligent process monitoring in UPM. The vibrational signals obtained from machining are transformed into log-spectrogram images. These images obtained during machining allow the rendering of more accurate and richer features of signals, as most of the time domain signal obtained in UPM is susceptible to noise and exhibits several non-linearities. The current approach also uses Transfer Learning (TL) to address the feature selection problem. TL is adopted by using the deep learning (DL) models, which have already been developed for classifying different Images. DL pre-trained networks, including VGG19, ResNet50 and Densenet201, are studied for classifying the anomalies. These TL models are applied to the spectrogram images for the classification of normal and abnormal machining in UPM. Among the TL models, the VGG19 model yields the highest classification accuracy at 90%, which demonstrates the potential feasibility of the TL for monitoring process anomalies in UPM. |
| ArticleNumber | 109359 |
| Author | Khatri, Neha Manjunath, K Tewary, Suman Cheng, Kai |
| Author_xml | – sequence: 1 givenname: K surname: Manjunath fullname: Manjunath, K email: manjunathk@csio.res.in organization: CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India – sequence: 2 givenname: Suman surname: Tewary fullname: Tewary, Suman organization: Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India – sequence: 3 givenname: Neha surname: Khatri fullname: Khatri, Neha email: nehakhatri@csio.res.in organization: CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India – sequence: 4 givenname: Kai surname: Cheng fullname: Cheng, Kai organization: College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge UB8 3PH, UK |
| BookMark | eNp9kMtqAjEUhkOxULV9gO7yAmNPkslc6EqkN7B0Y7sdMrloZCaRZBR8-8bqqgtXh__wf-fyT9DIeacReiQwI0CKp-1MWj2jQFnSNeP1DRqTqqwz4BxGaAysgKxinN6hSYxbAMh5Tcbo8OmdHXywbo29wb2QG-tOYhe81DFi4XwvOqsjtg4rK3rvFB72wV2IlS3mXf6DRdf5I97HU3sIwkWjA-60-DNmrYhaJc86bRo2fbxHt0Z0UT9c6hR9v76sFu_Z8uvtYzFfZpLW5ZAZBm2eU6raQlDGqzYveZsXwKRujSlUValSyZbTsq5UndO2ksBNpSkDqA0lbIrK81wZfIxBm0baQQzWu3Sj7RoCzSm-Zpv6ujnF15zjSyT5R-6C7UU4XmWez4xOLx2sDk1MFie1skHLoVHeXqF_AeRcjBY |
| CitedBy_id | crossref_primary_10_1007_s11431_023_2615_4 crossref_primary_10_1016_j_compind_2025_104262 crossref_primary_10_1177_09544054231196920 crossref_primary_10_1177_09544054231202889 crossref_primary_10_1007_s12008_025_02387_3 crossref_primary_10_1007_s00170_024_13867_3 crossref_primary_10_1016_j_precisioneng_2024_02_010 |
| Cites_doi | 10.1016/j.promfg.2020.02.050 10.1007/s40684-022-00449-5 10.1016/j.jmapro.2022.05.037 10.1109/ACCESS.2021.3061530 10.1016/j.measurement.2021.110332 10.1109/TSP.2020.3014423 10.1016/j.cie.2021.107250 10.1016/j.promfg.2015.09.044 10.1016/j.jmapro.2022.12.055 10.1109/TIE.2018.2856193 10.1016/j.jmapro.2021.04.059 10.1016/j.jmapro.2021.12.022 10.1177/0954405414554020 10.1016/j.cma.2022.114570 10.1007/s42835-021-00704-w 10.1016/j.eswa.2021.116158 10.3390/jmmp6010018 10.1016/j.mfglet.2020.08.004 10.1016/j.jmapro.2020.01.044 10.1145/3065386 10.1109/TIM.2022.3162283 10.1038/s41598-022-13237-7 10.1007/s00521-021-05716-1 10.3390/machines9120369 10.37819/nanofab.008.293 10.1016/j.knosys.2022.109537 10.1016/j.jmapro.2017.11.022 10.1109/ACCESS.2022.3187043 10.1016/j.jocs.2018.05.005 10.3390/s21134394 10.1016/j.jmsy.2022.09.001 10.1109/JSEN.2021.3114266 10.1016/j.jmsy.2018.12.005 10.1115/1.4034667 10.1088/2631-7990/ab1ff1 10.1007/s10033-017-0183-4 10.1016/j.cie.2022.108273 10.1016/j.eswa.2021.114598 10.1016/j.compind.2021.103399 10.1145/3341095 10.1016/j.cirp.2014.03.123 10.1016/j.jmsy.2016.08.007 10.1016/j.promfg.2020.05.142 10.1088/1361-6501/ac3945 10.1109/ACCESS.2020.3036769 10.1016/j.cie.2020.107015 10.1109/TASLP.2021.3110146 10.1109/TASE.2015.2447454 10.1007/s00170-018-1599-4 10.1115/1.4026210 10.1016/j.cie.2022.108521 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cie.2023.109359 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-0550 |
| ExternalDocumentID | 10_1016_j_cie_2023_109359 S0360835223003832 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFWJ AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADRHT ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-f30b4422db6a2358b475b4603cebff6d88d7dcb52798d942b8c05f8e23009f213 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001022527200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-8352 |
| IngestDate | Sat Nov 29 07:21:08 EST 2025 Tue Nov 18 21:06:24 EST 2025 Fri Feb 23 02:36:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | In-process monitoring Transfer learning-based algorithms Vibrational Signal Ultra-precision machining Spectrogram |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-f30b4422db6a2358b475b4603cebff6d88d7dcb52798d942b8c05f8e23009f213 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cie_2023_109359 crossref_primary_10_1016_j_cie_2023_109359 elsevier_sciencedirect_doi_10_1016_j_cie_2023_109359 |
| PublicationCentury | 2000 |
| PublicationDate | August 2023 2023-08-00 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & industrial engineering |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Li, Kristoffersen, Li (b0160) 2022; 172 Ayvaz, Alpay (b0030) 2021; 173 Manjunath, Tewary, Khatri, Cheng (b0185) 2022 Sawangsri, Cheng (b0205) 2016; 230 Wang, Cheng, Rakowski, Soulard (b0260) 2018; 31 Beyca, Rao, Kong, Bukkapatnam, Komanduri (b0040) 2015; 13 Adeniji, Oligee, Schoop (b0020) 2022; 6 Yesilli, Khasawneh, Mann (b0285) 2022; 80 Deng, Du, Wang, Shao, Huang (b0060) 2023; 72 Siahpour, Li, Lee (b0225) 2022; 71 Abualigah, Diabat, Sumari, Gandomi (b0010) 2021; 21 Hung, Lee, Kuo, Zeng (b0090) 2022; 10 Wang, Zhang (b0265) 2020; 16 Khatri, Berwal, Manjunath, Singh (b0125) 2023; 8 Wang, Bukkapatnam, Kumara, Kong, Katz (b0275) 2014; 63 Zhang, Yan, Kuriyagawa (b0300) 2019; 1 Cheng, Niu, Wang, Rakowski, Bateman (b0055) 2017; 30 Simonyan, K., & Zisserman, A. (2014). “Very deep convolutional networks for large-scale image recognition”. Jiao, Wang, Cheng, Zhang (b0115) 2021; 63 Li, Chen, Lin, Li, Jia, Li (b0150) 2022; 254 Sizemore, Nogueira, Greis, Davies (b0240) 2022; 65 Xu, Wang, Zhang, Li (b0280) 2021; 152 Agushaka, Ezugwu, Abualigah (b0025) 2022; 391 Deng, Huang, Du, Li, Zhao, Lv (b0065) 2021; 127 Rao, Bukkapatnam, Beyca, Kong, Komanduri (b0195) 2014; 136 Jiang, Chang, Liu (b0110) 2021; 16 Azizur Rahman, Rahman, Senthil Kumar (b0035) 2018; 96 Cheng, Wang, Hung, Bukkapatnam, Komanduri (b0050) 2015; 1 Liu, Xu (b0170) 2017; 139 Wang, Zhao, Pan, Guo (b0270) 2021; 67 Huang, Liu, Van Der Maaten, Weinberger (b0085) 2017 . Li, Liu, Li (b0145) 2022; 33 Imoto, Nakai, Ike, Haruki, Sato (b0095) 2018 Kan, Cheng, Yang (b0120) 2016; 41 T. Kourkounakis A. Hajavi A. Etemad FluentNet: End-to-end detection of speech disfluency with deep learning 2020 arXiv preprint arXiv:2009.11394. Abualigah, Yousri, Abd Elaziz, Ewees, Al-Qaness, Gandomi (b0015) 2021; 157 Li, Tang, Wang, Zhang (b0165) 2022; 74 Mykoniatis (b0190) 2020; 42 Abualigah, Abd Elaziz, Sumari, Geem, Gandomi (b0005) 2022; 191 Botcha, Iquebal, Bukkapatnam (b0045) 2020; 25 Krizhevsky, Sutskever, Hinton (b0140) 2017; 60 Manjunath, Tewary, Khatri, Cheng (b0180) 2022 Selvaraj, Xu, Min (b0210) 2023; 10 Tan, Zhao, Lin, Jin, Guo, Chen, Sun (b0245) 2023 Tran, Lundgren (b0250) 2020; 8 He, Zhang, Ren, Sun (b0080) 2016 Rao (b0200) 2013 Zhang, Zhou (b0290) 2021; 9 Zhang, Pan, Chen, Wang (b0295) 2018; 27 Li, Qiu, Lin, Chen, Jia, Li (b0155) 2022; 169 Sizemore, Nogueira, Greis, Davies (b0235) 2020; 48 Gim, Yang, Turng (b0075) 2023; 87 Manjunath, Tewary, Khatri, Cheng (b0175) 2021; 9 Khatri, Berwal, Manjunath, Singh, Mishra, Goel (b0130) 2023 Iquebal, Bukkapatnam, Srinivasa (b0100) 2020; 68 Shamsan, Cheng (b0215) 2019; 50 Jia, Deng, Lv, Du, Xie (b0105) 2022; 187 Tran, Pham, Lundgren (b0255) 2022; 12 Zhu, Wang, Peng, Li (b0305) 2021; 21 Gao, Hu, Xu (b0070) 2022; 34 Shi, Panoutsos, Luo, Liu, Li, Lin (b0220) 2018; 66 Botcha (10.1016/j.cie.2023.109359_b0045) 2020; 25 Sizemore (10.1016/j.cie.2023.109359_b0235) 2020; 48 Ayvaz (10.1016/j.cie.2023.109359_b0030) 2021; 173 Zhu (10.1016/j.cie.2023.109359_b0305) 2021; 21 Manjunath (10.1016/j.cie.2023.109359_b0180) 2022 Rao (10.1016/j.cie.2023.109359_b0195) 2014; 136 Li (10.1016/j.cie.2023.109359_b0150) 2022; 254 Beyca (10.1016/j.cie.2023.109359_b0040) 2015; 13 Shi (10.1016/j.cie.2023.109359_b0220) 2018; 66 Abualigah (10.1016/j.cie.2023.109359_b0015) 2021; 157 He (10.1016/j.cie.2023.109359_b0080) 2016 Imoto (10.1016/j.cie.2023.109359_b0095) 2018 Tran (10.1016/j.cie.2023.109359_b0255) 2022; 12 Rao (10.1016/j.cie.2023.109359_b0200) 2013 Kan (10.1016/j.cie.2023.109359_b0120) 2016; 41 Deng (10.1016/j.cie.2023.109359_b0065) 2021; 127 Wang (10.1016/j.cie.2023.109359_b0275) 2014; 63 Jiang (10.1016/j.cie.2023.109359_b0110) 2021; 16 Liu (10.1016/j.cie.2023.109359_b0170) 2017; 139 Li (10.1016/j.cie.2023.109359_b0145) 2022; 33 Wang (10.1016/j.cie.2023.109359_b0270) 2021; 67 Tran (10.1016/j.cie.2023.109359_b0250) 2020; 8 Wang (10.1016/j.cie.2023.109359_b0260) 2018; 31 Xu (10.1016/j.cie.2023.109359_b0280) 2021; 152 10.1016/j.cie.2023.109359_b0135 Manjunath (10.1016/j.cie.2023.109359_b0175) 2021; 9 Siahpour (10.1016/j.cie.2023.109359_b0225) 2022; 71 Tan (10.1016/j.cie.2023.109359_b0245) 2023 Li (10.1016/j.cie.2023.109359_b0155) 2022; 169 Cheng (10.1016/j.cie.2023.109359_b0050) 2015; 1 Zhang (10.1016/j.cie.2023.109359_b0295) 2018; 27 Sawangsri (10.1016/j.cie.2023.109359_b0205) 2016; 230 Khatri (10.1016/j.cie.2023.109359_b0130) 2023 Sizemore (10.1016/j.cie.2023.109359_b0240) 2022; 65 Deng (10.1016/j.cie.2023.109359_b0060) 2023; 72 Selvaraj (10.1016/j.cie.2023.109359_b0210) 2023; 10 Zhang (10.1016/j.cie.2023.109359_b0300) 2019; 1 Khatri (10.1016/j.cie.2023.109359_b0125) 2023; 8 Azizur Rahman (10.1016/j.cie.2023.109359_b0035) 2018; 96 Jiao (10.1016/j.cie.2023.109359_b0115) 2021; 63 Abualigah (10.1016/j.cie.2023.109359_b0010) 2021; 21 Wang (10.1016/j.cie.2023.109359_b0265) 2020; 16 Agushaka (10.1016/j.cie.2023.109359_b0025) 2022; 391 Krizhevsky (10.1016/j.cie.2023.109359_b0140) 2017; 60 Shamsan (10.1016/j.cie.2023.109359_b0215) 2019; 50 Yesilli (10.1016/j.cie.2023.109359_b0285) 2022; 80 10.1016/j.cie.2023.109359_b0230 Iquebal (10.1016/j.cie.2023.109359_b0100) 2020; 68 Manjunath (10.1016/j.cie.2023.109359_b0185) 2022 Abualigah (10.1016/j.cie.2023.109359_b0005) 2022; 191 Zhang (10.1016/j.cie.2023.109359_b0290) 2021; 9 Li (10.1016/j.cie.2023.109359_b0160) 2022; 172 Gim (10.1016/j.cie.2023.109359_b0075) 2023; 87 Jia (10.1016/j.cie.2023.109359_b0105) 2022; 187 Cheng (10.1016/j.cie.2023.109359_b0055) 2017; 30 Gao (10.1016/j.cie.2023.109359_b0070) 2022; 34 Li (10.1016/j.cie.2023.109359_b0165) 2022; 74 Huang (10.1016/j.cie.2023.109359_b0085) 2017 Hung (10.1016/j.cie.2023.109359_b0090) 2022; 10 Adeniji (10.1016/j.cie.2023.109359_b0020) 2022; 6 Mykoniatis (10.1016/j.cie.2023.109359_b0190) 2020; 42 |
| References_xml | – year: 2013 ident: b0200 article-title: Sensor-based monitoring and inspection of surface morphology in ultraprecision manufacturing processes – volume: 157 year: 2021 ident: b0015 article-title: Aquila optimizer: a novel meta-heuristic optimization algorithm publication-title: Computers & Industrial Engineering – volume: 42 start-page: 450 year: 2020 end-page: 456 ident: b0190 article-title: A real-time condition monitoring and maintenance management system for low voltage industrial motors using internet-of-things publication-title: Procedia Manufacturing – volume: 16 start-page: 1 year: 2020 end-page: 19 ident: b0265 article-title: DenseNet-201-based deep neural network with composite learning factor and precomputation for multiple sclerosis classification publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM) – volume: 21 start-page: 4394 year: 2021 ident: b0305 article-title: WDA: an improved Wasserstein distance-based transfer learning fault diagnosis method publication-title: Sensors – year: 2018 ident: b0095 article-title: A CNN-based transfer learning method for defect classification in semiconductor manufacturing publication-title: Paper presented at the 2018 international symposium on semiconductor manufacturing (ISSM) – volume: 48 start-page: 1029 year: 2020 end-page: 1040 ident: b0235 article-title: Application of machine learning to the prediction of surface roughness in diamond machining publication-title: Procedia Manufacturing – volume: 6 start-page: 18 year: 2022 ident: b0020 article-title: A novel approach for real-time quality monitoring in machining of aerospace alloy through acoustic emission signal transformation for DNN publication-title: Journal of Manufacturing and Materials Processing – volume: 80 start-page: 1 year: 2022 end-page: 27 ident: b0285 article-title: Transfer learning for autonomous chatter detection in machining publication-title: Journal of Manufacturing Processes – volume: 87 start-page: 11 year: 2023 end-page: 24 ident: b0075 article-title: Transfer learning of machine learning models for multi-objective process optimization of a transferred mold to ensure efficient and robust injection molding of high surface quality parts publication-title: Journal of Manufacturing Processes – volume: 9 start-page: 369 year: 2021 ident: b0175 article-title: Monitoring and predicting the surface generation and surface roughness in ultraprecision machining: a critical review publication-title: Machines – reference: T. Kourkounakis A. Hajavi A. Etemad FluentNet: End-to-end detection of speech disfluency with deep learning 2020 arXiv preprint arXiv:2009.11394. – volume: 25 start-page: 102 year: 2020 end-page: 106 ident: b0045 article-title: Smart manufacturing multiplex publication-title: Manufacturing Letters – start-page: 1 year: 2022 end-page: 9 ident: b0180 article-title: Precipitation effect on surface roughness at Ti-6Al-4 V ELI alloy during ultra-precision machining publication-title: International Journal on Interactive Design and Manufacturing (IJIDeM) – volume: 74 start-page: 374 year: 2022 end-page: 382 ident: b0165 article-title: A deep transfer learning method for monitoring the wear of abrasive belts with a small sample dataset publication-title: Journal of Manufacturing Processes – volume: 1 start-page: 607 year: 2015 end-page: 618 ident: b0050 article-title: Ultra-precision machining process dynamics and surface quality monitoring publication-title: Procedia Manufacturing – volume: 169 year: 2022 ident: b0155 article-title: A weighted adaptive transfer learning for tool tip dynamics prediction of different machine tools publication-title: Computers & Industrial Engineering – volume: 9 start-page: 43889 year: 2021 end-page: 43897 ident: b0290 article-title: Deep convolutional neural network using transfer learning for fault diagnosis publication-title: IEEE Access – volume: 13 start-page: 1033 year: 2015 end-page: 1044 ident: b0040 article-title: Heterogeneous sensor data fusion approach for real-time monitoring in ultraprecision machining (UPM) process using non-parametric Bayesian clustering and evidence theory publication-title: IEEE Transactions on Automation Science and Engineering – volume: 391 year: 2022 ident: b0025 article-title: Dwarf mongoose optimization algorithm publication-title: Computer methods in applied mechanics and engineering – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: b0140 article-title: Imagenet classification with deep convolutional neural networks publication-title: Communications of the ACM – volume: 63 start-page: 191 year: 2021 end-page: 197 ident: b0115 article-title: End-to-end prediction of weld penetration: a deep learning and transfer learning based method publication-title: Journal of Manufacturing Processes – volume: 8 year: 2023 ident: b0125 article-title: Optical design and fabrication of zinc selenide microlens array with extended depth of focus for biomedical imaging publication-title: Nanofabrication – year: 2017 ident: b0085 article-title: Densely connected convolutional networks publication-title: Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 187 year: 2022 ident: b0105 article-title: Joint distribution adaptation with diverse feature aggregation: a new transfer learning framework for bearing diagnosis across different machines publication-title: Measurement – volume: 31 start-page: 324 year: 2018 end-page: 335 ident: b0260 article-title: An experimental investigation on ultra-precision instrumented smart aerostatic bearing spindle applied to high speed micro-drilling publication-title: Journal of Manufacturing Processes – volume: 63 start-page: 449 year: 2014 end-page: 452 ident: b0275 article-title: Change detection in precision manufacturing processes under transient conditions publication-title: CIRP Annals – volume: 67 start-page: 128 year: 2021 end-page: 140 ident: b0270 article-title: Ultra-precision raster grinding biconical optics with a novel profile error compensation technique based on on-machine measurement and wavelet decomposition publication-title: Journal of Manufacturing Processes – reference: Simonyan, K., & Zisserman, A. (2014). “Very deep convolutional networks for large-scale image recognition”. – volume: 21 start-page: 25532 year: 2021 end-page: 25546 ident: b0010 article-title: Applications, deployments, and integration of internet of drones (iod): a review publication-title: IEEE Sensors Journal – volume: 16 start-page: 2167 year: 2021 end-page: 2181 ident: b0110 article-title: A spectrogram based local fluctuation feature for fault diagnosis with application to rotating machines publication-title: Journal of Electrical Engineering & Technology – volume: 139 year: 2017 ident: b0170 article-title: Industry 4.0 and cloud manufacturing: a comparative analysis publication-title: Journal of Manufacturing Science and Engineering – volume: 254 year: 2022 ident: b0150 article-title: A novel adversarial domain adaptation transfer learning method for tool wear state prediction publication-title: Knowledge-Based Systems – volume: 10 start-page: 70491 year: 2022 end-page: 70501 ident: b0090 article-title: SoC-based early failure detection system using deep learning for tool wear publication-title: IEEE Access – start-page: 1 year: 2023 end-page: 13 ident: b0245 article-title: Analytical modelling and experimental study of surface roughness in ultrasonic elliptical vibration assisted ultra-precision cutting of Ti-6Al-4 V alloy publication-title: The International Journal of Advanced Manufacturing Technology – volume: 34 start-page: 3399 year: 2022 end-page: 3410 ident: b0070 article-title: Condition monitoring and life prediction of the turning tool based on extreme learning machine and transfer learning publication-title: Neural Computing and Applications – year: 2016 ident: b0080 article-title: Deep residual learning for image recognition publication-title: Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 10 start-page: 59 year: 2023 end-page: 69 ident: b0210 article-title: Intelligent operation monitoring of an ultra-precision cnc machine tool using energy data publication-title: International Journal of Precision Engineering and Manufacturing-Green Technology – volume: 230 start-page: 405 year: 2016 end-page: 415 ident: b0205 article-title: An innovative approach to cutting force modelling in diamond turning and its correlation analysis with tool wear publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture – volume: 72 start-page: 1 year: 2023 end-page: 15 ident: b0060 article-title: A calibration-based hybrid transfer learning framework for RUL prediction of rolling bearing across different machines publication-title: IEEE Transactions on Instrumentation and Measurement – year: 2022 ident: b0185 article-title: Time-frequency analysis of vibration signals for monitoring the process status in Ultra-Precision machining of complex components publication-title: EUSPEN: Special Interest Group Meeting : Structured & Freeform Surfaces – volume: 66 start-page: 3794 year: 2018 end-page: 3803 ident: b0220 article-title: Using multiple-feature-spaces-based deep learning for tool condition monitoring in ultraprecision manufacturing publication-title: IEEE Transactions on Industrial Electronics – volume: 96 start-page: 3545 year: 2018 end-page: 3563 ident: b0035 article-title: Influence of relative tool sharpness (RTS) on different ultra-precision machining regimes of Mg alloy publication-title: The International Journal of Advanced Manufacturing Technology – volume: 173 year: 2021 ident: b0030 article-title: Predictive maintenance system for production lines in manufacturing: a machine learning approach using IoT data in real-time publication-title: Expert Systems with Applications – volume: 68 start-page: 4743 year: 2020 end-page: 4756 ident: b0100 article-title: Change detection in complex dynamical systems using intrinsic phase and amplitude synchronization publication-title: IEEE Transactions on Signal Processing – volume: 12 start-page: 1 year: 2022 end-page: 13 ident: b0255 article-title: A deep learning approach for detecting drill bit failures from a small sound dataset publication-title: Scientific Reports – volume: 41 start-page: 178 year: 2016 end-page: 187 ident: b0120 article-title: Heterogeneous recurrence monitoring of dynamic transients in ultraprecision machining processes publication-title: Journal of Manufacturing Systems – volume: 71 start-page: 1 year: 2022 end-page: 11 ident: b0225 article-title: A novel transfer learning approach in remaining useful life prediction for incomplete dataset publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 152 year: 2021 ident: b0280 article-title: Anomaly detection of power consumption in yarn spinning using transfer learning publication-title: Computers & Industrial Engineering – volume: 127 year: 2021 ident: b0065 article-title: A double-layer attention based adversarial network for partial transfer learning in machinery fault diagnosis publication-title: Computers in Industry – start-page: 104582 year: 2023 ident: b0130 article-title: Research on development of aspheric diffractive optical element for mid-infrared imaging – reference: . – volume: 8 start-page: 203655 year: 2020 end-page: 203666 ident: b0250 article-title: Drill fault diagnosis based on the scalogram and mel spectrogram of sound signals using artificial intelligence publication-title: IEEE Access – volume: 50 start-page: 81 year: 2019 end-page: 86 ident: b0215 article-title: Intrinsic multiplex graph model detects incipient process drift in ultraprecision manufacturing publication-title: Journal of Manufacturing Systems – volume: 27 start-page: 57 year: 2018 end-page: 68 ident: b0295 article-title: Abnormal breast identification by nine-layer convolutional neural network with parametric rectified linear unit and rank-based stochastic pooling publication-title: Journal of computational science – volume: 30 start-page: 1162 year: 2017 end-page: 1176 ident: b0055 article-title: Smart cutting tools and smart machining: development approaches, and their implementation and application perspectives publication-title: Chinese Journal of Mechanical Engineering – volume: 65 start-page: 296 year: 2022 end-page: 316 ident: b0240 article-title: Application of machine learning for improved surface quality classification in ultra-precision machining of germanium publication-title: Journal of Manufacturing Systems – volume: 191 year: 2022 ident: b0005 article-title: Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer publication-title: Expert Systems with Applications – volume: 172 year: 2022 ident: b0160 article-title: Deep transfer learning for failure prediction across failure types publication-title: Computers & Industrial Engineering – volume: 136 year: 2014 ident: b0195 article-title: Real-time identification of incipient surface morphology variations in ultraprecision machining process publication-title: Journal of Manufacturing Science and Engineering – volume: 1 year: 2019 ident: b0300 article-title: Manufacturing technologies toward extreme precision publication-title: International Journal of Extreme Manufacturing – volume: 33 year: 2022 ident: b0145 article-title: Generative adversarial network and transfer-learning-based fault detection for rotating machinery with imbalanced data condition publication-title: Measurement Science and Technology – volume: 42 start-page: 450 year: 2020 ident: 10.1016/j.cie.2023.109359_b0190 article-title: A real-time condition monitoring and maintenance management system for low voltage industrial motors using internet-of-things publication-title: Procedia Manufacturing doi: 10.1016/j.promfg.2020.02.050 – volume: 10 start-page: 59 issue: 1 year: 2023 ident: 10.1016/j.cie.2023.109359_b0210 article-title: Intelligent operation monitoring of an ultra-precision cnc machine tool using energy data publication-title: International Journal of Precision Engineering and Manufacturing-Green Technology doi: 10.1007/s40684-022-00449-5 – volume: 80 start-page: 1 year: 2022 ident: 10.1016/j.cie.2023.109359_b0285 article-title: Transfer learning for autonomous chatter detection in machining publication-title: Journal of Manufacturing Processes doi: 10.1016/j.jmapro.2022.05.037 – volume: 9 start-page: 43889 year: 2021 ident: 10.1016/j.cie.2023.109359_b0290 article-title: Deep convolutional neural network using transfer learning for fault diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3061530 – volume: 187 year: 2022 ident: 10.1016/j.cie.2023.109359_b0105 article-title: Joint distribution adaptation with diverse feature aggregation: a new transfer learning framework for bearing diagnosis across different machines publication-title: Measurement doi: 10.1016/j.measurement.2021.110332 – volume: 68 start-page: 4743 year: 2020 ident: 10.1016/j.cie.2023.109359_b0100 article-title: Change detection in complex dynamical systems using intrinsic phase and amplitude synchronization publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2020.3014423 – volume: 157 year: 2021 ident: 10.1016/j.cie.2023.109359_b0015 article-title: Aquila optimizer: a novel meta-heuristic optimization algorithm publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2021.107250 – volume: 1 start-page: 607 year: 2015 ident: 10.1016/j.cie.2023.109359_b0050 article-title: Ultra-precision machining process dynamics and surface quality monitoring publication-title: Procedia Manufacturing doi: 10.1016/j.promfg.2015.09.044 – volume: 87 start-page: 11 year: 2023 ident: 10.1016/j.cie.2023.109359_b0075 article-title: Transfer learning of machine learning models for multi-objective process optimization of a transferred mold to ensure efficient and robust injection molding of high surface quality parts publication-title: Journal of Manufacturing Processes doi: 10.1016/j.jmapro.2022.12.055 – volume: 66 start-page: 3794 issue: 5 year: 2018 ident: 10.1016/j.cie.2023.109359_b0220 article-title: Using multiple-feature-spaces-based deep learning for tool condition monitoring in ultraprecision manufacturing publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2018.2856193 – volume: 67 start-page: 128 year: 2021 ident: 10.1016/j.cie.2023.109359_b0270 article-title: Ultra-precision raster grinding biconical optics with a novel profile error compensation technique based on on-machine measurement and wavelet decomposition publication-title: Journal of Manufacturing Processes doi: 10.1016/j.jmapro.2021.04.059 – volume: 74 start-page: 374 year: 2022 ident: 10.1016/j.cie.2023.109359_b0165 article-title: A deep transfer learning method for monitoring the wear of abrasive belts with a small sample dataset publication-title: Journal of Manufacturing Processes doi: 10.1016/j.jmapro.2021.12.022 – volume: 230 start-page: 405 issue: 3 year: 2016 ident: 10.1016/j.cie.2023.109359_b0205 article-title: An innovative approach to cutting force modelling in diamond turning and its correlation analysis with tool wear publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture doi: 10.1177/0954405414554020 – volume: 391 year: 2022 ident: 10.1016/j.cie.2023.109359_b0025 article-title: Dwarf mongoose optimization algorithm publication-title: Computer methods in applied mechanics and engineering doi: 10.1016/j.cma.2022.114570 – volume: 16 start-page: 2167 issue: 4 year: 2021 ident: 10.1016/j.cie.2023.109359_b0110 article-title: A spectrogram based local fluctuation feature for fault diagnosis with application to rotating machines publication-title: Journal of Electrical Engineering & Technology doi: 10.1007/s42835-021-00704-w – volume: 191 year: 2022 ident: 10.1016/j.cie.2023.109359_b0005 article-title: Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.116158 – volume: 6 start-page: 18 issue: 1 year: 2022 ident: 10.1016/j.cie.2023.109359_b0020 article-title: A novel approach for real-time quality monitoring in machining of aerospace alloy through acoustic emission signal transformation for DNN publication-title: Journal of Manufacturing and Materials Processing doi: 10.3390/jmmp6010018 – volume: 25 start-page: 102 year: 2020 ident: 10.1016/j.cie.2023.109359_b0045 article-title: Smart manufacturing multiplex publication-title: Manufacturing Letters doi: 10.1016/j.mfglet.2020.08.004 – volume: 63 start-page: 191 year: 2021 ident: 10.1016/j.cie.2023.109359_b0115 article-title: End-to-end prediction of weld penetration: a deep learning and transfer learning based method publication-title: Journal of Manufacturing Processes doi: 10.1016/j.jmapro.2020.01.044 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 10.1016/j.cie.2023.109359_b0140 article-title: Imagenet classification with deep convolutional neural networks publication-title: Communications of the ACM doi: 10.1145/3065386 – year: 2018 ident: 10.1016/j.cie.2023.109359_b0095 article-title: A CNN-based transfer learning method for defect classification in semiconductor manufacturing – volume: 71 start-page: 1 year: 2022 ident: 10.1016/j.cie.2023.109359_b0225 article-title: A novel transfer learning approach in remaining useful life prediction for incomplete dataset publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2022.3162283 – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.cie.2023.109359_b0255 article-title: A deep learning approach for detecting drill bit failures from a small sound dataset publication-title: Scientific Reports doi: 10.1038/s41598-022-13237-7 – volume: 34 start-page: 3399 issue: 5 year: 2022 ident: 10.1016/j.cie.2023.109359_b0070 article-title: Condition monitoring and life prediction of the turning tool based on extreme learning machine and transfer learning publication-title: Neural Computing and Applications doi: 10.1007/s00521-021-05716-1 – volume: 9 start-page: 369 issue: 12 year: 2021 ident: 10.1016/j.cie.2023.109359_b0175 article-title: Monitoring and predicting the surface generation and surface roughness in ultraprecision machining: a critical review publication-title: Machines doi: 10.3390/machines9120369 – volume: 8 year: 2023 ident: 10.1016/j.cie.2023.109359_b0125 article-title: Optical design and fabrication of zinc selenide microlens array with extended depth of focus for biomedical imaging publication-title: Nanofabrication doi: 10.37819/nanofab.008.293 – volume: 254 year: 2022 ident: 10.1016/j.cie.2023.109359_b0150 article-title: A novel adversarial domain adaptation transfer learning method for tool wear state prediction publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2022.109537 – volume: 31 start-page: 324 year: 2018 ident: 10.1016/j.cie.2023.109359_b0260 article-title: An experimental investigation on ultra-precision instrumented smart aerostatic bearing spindle applied to high speed micro-drilling publication-title: Journal of Manufacturing Processes doi: 10.1016/j.jmapro.2017.11.022 – volume: 10 start-page: 70491 year: 2022 ident: 10.1016/j.cie.2023.109359_b0090 article-title: SoC-based early failure detection system using deep learning for tool wear publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3187043 – volume: 27 start-page: 57 year: 2018 ident: 10.1016/j.cie.2023.109359_b0295 article-title: Abnormal breast identification by nine-layer convolutional neural network with parametric rectified linear unit and rank-based stochastic pooling publication-title: Journal of computational science doi: 10.1016/j.jocs.2018.05.005 – volume: 21 start-page: 4394 issue: 13 year: 2021 ident: 10.1016/j.cie.2023.109359_b0305 article-title: WDA: an improved Wasserstein distance-based transfer learning fault diagnosis method publication-title: Sensors doi: 10.3390/s21134394 – volume: 65 start-page: 296 year: 2022 ident: 10.1016/j.cie.2023.109359_b0240 article-title: Application of machine learning for improved surface quality classification in ultra-precision machining of germanium publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2022.09.001 – volume: 21 start-page: 25532 issue: 22 year: 2021 ident: 10.1016/j.cie.2023.109359_b0010 article-title: Applications, deployments, and integration of internet of drones (iod): a review publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2021.3114266 – volume: 50 start-page: 81 year: 2019 ident: 10.1016/j.cie.2023.109359_b0215 article-title: Intrinsic multiplex graph model detects incipient process drift in ultraprecision manufacturing publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2018.12.005 – year: 2017 ident: 10.1016/j.cie.2023.109359_b0085 article-title: Densely connected convolutional networks – start-page: 1 year: 2023 ident: 10.1016/j.cie.2023.109359_b0245 article-title: Analytical modelling and experimental study of surface roughness in ultrasonic elliptical vibration assisted ultra-precision cutting of Ti-6Al-4 V alloy publication-title: The International Journal of Advanced Manufacturing Technology – start-page: 104582 year: 2023 ident: 10.1016/j.cie.2023.109359_b0130 – volume: 139 issue: 3 year: 2017 ident: 10.1016/j.cie.2023.109359_b0170 article-title: Industry 4.0 and cloud manufacturing: a comparative analysis publication-title: Journal of Manufacturing Science and Engineering doi: 10.1115/1.4034667 – volume: 1 issue: 2 year: 2019 ident: 10.1016/j.cie.2023.109359_b0300 article-title: Manufacturing technologies toward extreme precision publication-title: International Journal of Extreme Manufacturing doi: 10.1088/2631-7990/ab1ff1 – volume: 30 start-page: 1162 issue: 5 year: 2017 ident: 10.1016/j.cie.2023.109359_b0055 article-title: Smart cutting tools and smart machining: development approaches, and their implementation and application perspectives publication-title: Chinese Journal of Mechanical Engineering doi: 10.1007/s10033-017-0183-4 – year: 2016 ident: 10.1016/j.cie.2023.109359_b0080 article-title: Deep residual learning for image recognition – volume: 169 year: 2022 ident: 10.1016/j.cie.2023.109359_b0155 article-title: A weighted adaptive transfer learning for tool tip dynamics prediction of different machine tools publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2022.108273 – volume: 173 year: 2021 ident: 10.1016/j.cie.2023.109359_b0030 article-title: Predictive maintenance system for production lines in manufacturing: a machine learning approach using IoT data in real-time publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.114598 – volume: 72 start-page: 1 year: 2023 ident: 10.1016/j.cie.2023.109359_b0060 article-title: A calibration-based hybrid transfer learning framework for RUL prediction of rolling bearing across different machines publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 127 year: 2021 ident: 10.1016/j.cie.2023.109359_b0065 article-title: A double-layer attention based adversarial network for partial transfer learning in machinery fault diagnosis publication-title: Computers in Industry doi: 10.1016/j.compind.2021.103399 – volume: 16 start-page: 1 issue: 2s year: 2020 ident: 10.1016/j.cie.2023.109359_b0265 article-title: DenseNet-201-based deep neural network with composite learning factor and precomputation for multiple sclerosis classification publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM) doi: 10.1145/3341095 – volume: 63 start-page: 449 issue: 1 year: 2014 ident: 10.1016/j.cie.2023.109359_b0275 article-title: Change detection in precision manufacturing processes under transient conditions publication-title: CIRP Annals doi: 10.1016/j.cirp.2014.03.123 – volume: 41 start-page: 178 year: 2016 ident: 10.1016/j.cie.2023.109359_b0120 article-title: Heterogeneous recurrence monitoring of dynamic transients in ultraprecision machining processes publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2016.08.007 – year: 2013 ident: 10.1016/j.cie.2023.109359_b0200 – volume: 48 start-page: 1029 year: 2020 ident: 10.1016/j.cie.2023.109359_b0235 article-title: Application of machine learning to the prediction of surface roughness in diamond machining publication-title: Procedia Manufacturing doi: 10.1016/j.promfg.2020.05.142 – volume: 33 issue: 4 year: 2022 ident: 10.1016/j.cie.2023.109359_b0145 article-title: Generative adversarial network and transfer-learning-based fault detection for rotating machinery with imbalanced data condition publication-title: Measurement Science and Technology doi: 10.1088/1361-6501/ac3945 – volume: 8 start-page: 203655 year: 2020 ident: 10.1016/j.cie.2023.109359_b0250 article-title: Drill fault diagnosis based on the scalogram and mel spectrogram of sound signals using artificial intelligence publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3036769 – volume: 152 year: 2021 ident: 10.1016/j.cie.2023.109359_b0280 article-title: Anomaly detection of power consumption in yarn spinning using transfer learning publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2020.107015 – ident: 10.1016/j.cie.2023.109359_b0135 doi: 10.1109/TASLP.2021.3110146 – volume: 13 start-page: 1033 issue: 2 year: 2015 ident: 10.1016/j.cie.2023.109359_b0040 article-title: Heterogeneous sensor data fusion approach for real-time monitoring in ultraprecision machining (UPM) process using non-parametric Bayesian clustering and evidence theory publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2015.2447454 – volume: 96 start-page: 3545 issue: 9 year: 2018 ident: 10.1016/j.cie.2023.109359_b0035 article-title: Influence of relative tool sharpness (RTS) on different ultra-precision machining regimes of Mg alloy publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-018-1599-4 – volume: 136 issue: 2 year: 2014 ident: 10.1016/j.cie.2023.109359_b0195 article-title: Real-time identification of incipient surface morphology variations in ultraprecision machining process publication-title: Journal of Manufacturing Science and Engineering doi: 10.1115/1.4026210 – year: 2022 ident: 10.1016/j.cie.2023.109359_b0185 article-title: Time-frequency analysis of vibration signals for monitoring the process status in Ultra-Precision machining of complex components – volume: 172 year: 2022 ident: 10.1016/j.cie.2023.109359_b0160 article-title: Deep transfer learning for failure prediction across failure types publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2022.108521 – start-page: 1 year: 2022 ident: 10.1016/j.cie.2023.109359_b0180 article-title: Precipitation effect on surface roughness at Ti-6Al-4 V ELI alloy during ultra-precision machining publication-title: International Journal on Interactive Design and Manufacturing (IJIDeM) – ident: 10.1016/j.cie.2023.109359_b0230 |
| SSID | ssj0004591 |
| Score | 2.446447 |
| Snippet | •Challenges associated with the in-process monitoring diamond turning are discussed.•If process drifts are not detected timely can cause an impact on substrate... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109359 |
| SubjectTerms | In-process monitoring Spectrogram Transfer learning-based algorithms Ultra-precision machining Vibrational Signal |
| Title | Monitoring of machining process anomalies in diamond turning of Ti6Al4V alloy using transfer learning-based algorithms |
| URI | https://dx.doi.org/10.1016/j.cie.2023.109359 |
| Volume | 182 |
| WOSCitedRecordID | wos001022527200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc48ChUlJd84MQqq6zjxM5xhYqAQ4XEgvYWOY7TzWrrrfZF-SX9ux3HdpItFNEDlySK7EmU-TIzHs8DoXcRkzIRIglMLaWAFjIOhAjDIOekZETGMipE3WyCnZ7y6TT92utd-VyY3YJpzS8v04v_ymq4B8w2qbN3YHdDFG7ANTAdjsB2OP4T4-1funLRzOd1sKRNOa9TAgZCL8_B-FY2ELYy3YaKASge7WZMqmS8oD8GZkf-12C7do0kwLxVK99k4iww2q-AMWfwpM3MlTz3FQ9cp4h1jauqbQ6i2uKHrSdcz7fGgb_ncp2on8Lu738zmwyNVpiZhgI1gNWsDTGaKSewRNV1YpCoCaFrk7fCwBiD-4KZdESrqXtli4f_JvWtA2I-BGk4NNSH7dj9Cts3NF8Tj-hD3eYZkMgMicySuIcOCItT3kcH488n0y-dQvS2GaN_b79hXocO3niPP5s8HTNm8gQ9cusPPLa4eYp6Sh-ix24tgp2kXx-ih51Clc_QrgUVXpa4ARV2oMINqHClsQMVdqAyMxyocA0qXIMKe1DhfVDhFlTP0fePJ5MPnwLXsSOQJGWboIzCnFJCijwRJgc7pyzOaRJGUuVlmRScF6yQeUxYyouUkpzLMC65gnVwmJZkFB2hvl5q9QJhqQhPpORCSFAyeWzObCToiKokEpQeo9B_VGCaDVsxXVUW2a3MPEbvmykXtpbL3wZTz6nMGaPWyMwAdbdPe3mXZ7xCD9qf4TXqb1Zb9Qbdl7tNtV69dZC7Bt07rXk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+of+machining+process+anomalies+in+diamond+turning+of+Ti6Al4V+alloy+using+transfer+learning-based+algorithms&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Manjunath%2C+K&rft.au=Tewary%2C+Suman&rft.au=Khatri%2C+Neha&rft.au=Cheng%2C+Kai&rft.date=2023-08-01&rft.issn=0360-8352&rft.volume=182&rft.spage=109359&rft_id=info:doi/10.1016%2Fj.cie.2023.109359&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2023_109359 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |