Non-parallel bounded support matrix machine and its application in roller bearing fault diagnosis
•A novel non-parallel bounded support matrix machine (NPBSMM) is proposed.•A constraint norm group (CNG) is constructed, which can suppress negative influence of outliers and enhance robustness.•The dual problem of NPBSMM avoids the calculation of matrix inversion.•Multi-rank left and right projecti...
Gespeichert in:
| Veröffentlicht in: | Information sciences Jg. 624; S. 395 - 415 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.05.2023
|
| Schlagworte: | |
| ISSN: | 0020-0255, 1872-6291 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •A novel non-parallel bounded support matrix machine (NPBSMM) is proposed.•A constraint norm group (CNG) is constructed, which can suppress negative influence of outliers and enhance robustness.•The dual problem of NPBSMM avoids the calculation of matrix inversion.•Multi-rank left and right projection matrices are employed to realize a better ability of data fitting.
At present, the excellent performance of support vector machine (SVM) has made it successfully applied in many fields. However, when SVM is used for two-dimensional matrix data classification, vectorization of these data easily leads to dimension curse and the loss of structural information. Moreover, SVM is sensitive to outliers, which causes the hyperplane to move towards outliers. Therefore, this paper proposes a novel classification method for data in matrix-form, named non-parallel bounded support matrix machine (NPBSMM). In NPBSMM, a constraint norm group (CNG) is constructed and applied to objective function, which can not only suppress the negative impact of outliers on the model, but also make NPBSMM has better sparsity. By constructing CNG, the operation of matrix inversion in dual problem of traditional classification methods is avoided, so NPBSMM is more suitable for solving large-scale data problems. Further, to extract structure information of matrix for modeling, multi-rank left and right projection matrices are employed to establish objective function, which makes NPBSMM has a better ability of data fitting. Experiments performed on three roller bearing fault datasets show that the proposed NPBSMM method has powerful performance and robustness as compared with other typical classification methods. |
|---|---|
| AbstractList | •A novel non-parallel bounded support matrix machine (NPBSMM) is proposed.•A constraint norm group (CNG) is constructed, which can suppress negative influence of outliers and enhance robustness.•The dual problem of NPBSMM avoids the calculation of matrix inversion.•Multi-rank left and right projection matrices are employed to realize a better ability of data fitting.
At present, the excellent performance of support vector machine (SVM) has made it successfully applied in many fields. However, when SVM is used for two-dimensional matrix data classification, vectorization of these data easily leads to dimension curse and the loss of structural information. Moreover, SVM is sensitive to outliers, which causes the hyperplane to move towards outliers. Therefore, this paper proposes a novel classification method for data in matrix-form, named non-parallel bounded support matrix machine (NPBSMM). In NPBSMM, a constraint norm group (CNG) is constructed and applied to objective function, which can not only suppress the negative impact of outliers on the model, but also make NPBSMM has better sparsity. By constructing CNG, the operation of matrix inversion in dual problem of traditional classification methods is avoided, so NPBSMM is more suitable for solving large-scale data problems. Further, to extract structure information of matrix for modeling, multi-rank left and right projection matrices are employed to establish objective function, which makes NPBSMM has a better ability of data fitting. Experiments performed on three roller bearing fault datasets show that the proposed NPBSMM method has powerful performance and robustness as compared with other typical classification methods. |
| Author | Pan, Haiyang Xu, Haifeng Zheng, Jinde Tong, Jinyu |
| Author_xml | – sequence: 1 givenname: Haiyang surname: Pan fullname: Pan, Haiyang email: pansea@ahut.edu.cn – sequence: 2 givenname: Haifeng surname: Xu fullname: Xu, Haifeng – sequence: 3 givenname: Jinde surname: Zheng fullname: Zheng, Jinde email: lqdlzheng@126.com – sequence: 4 givenname: Jinyu surname: Tong fullname: Tong, Jinyu email: jytong@ahut.edu.cn |
| BookMark | eNp9kL1OwzAUhS1UJNrCA7D5BRJsJ3ESMaGKP6mCBWbrxrHLrVI7sl0Eb09KmRg6HZ3hu7rnW5CZ884Qcs1ZzhmXN9scXcwFEyLnImctOyNz3tQik6LlMzJnTLCMiaq6IIsYt4yxspZyTuDFu2yEAMNgBtr5vetNT-N-HH1IdAcp4NcU-gOdoeB6iilSGMcBNST0jqKjwU9woJ2BgG5DLeyHRHuEjfMR4yU5tzBEc_WXS_L-cP-2esrWr4_Pq7t1pkVbp8wK3TdVyTvNyxa4bZnspdTFVDvg2jasaIwsObfGNkXZtY0ogZW2buqqqKwtlqQ-3tXBxxiMVRrT748pAA6KM3UwpbZqMqUOphQXajI1kfwfOQbcQfg-ydweGTNN-kQTVNRonDY9BqOT6j2eoH8AdXGFMA |
| CitedBy_id | crossref_primary_10_1177_10775463241276645 crossref_primary_10_1007_s10115_024_02281_6 crossref_primary_10_1088_1361_6501_addddb crossref_primary_10_1016_j_ins_2023_119402 crossref_primary_10_1088_1361_6501_ad8fc4 crossref_primary_10_1016_j_engappai_2024_107973 crossref_primary_10_1109_JSEN_2023_3322040 crossref_primary_10_1016_j_eswa_2024_123859 crossref_primary_10_1109_JSEN_2023_3346495 crossref_primary_10_1016_j_aei_2024_102832 crossref_primary_10_3390_s24123762 crossref_primary_10_1016_j_knosys_2025_113410 crossref_primary_10_1088_1361_6501_adba7e crossref_primary_10_1016_j_ress_2023_109882 crossref_primary_10_1093_ijlct_ctae119 crossref_primary_10_1016_j_eswa_2023_121159 crossref_primary_10_1016_j_ymssp_2024_111174 crossref_primary_10_1088_1361_6501_acf77f crossref_primary_10_1109_TIM_2023_3293567 crossref_primary_10_1016_j_measurement_2023_113622 crossref_primary_10_1088_1361_6501_aced4e crossref_primary_10_1016_j_asoc_2024_111311 crossref_primary_10_1177_14759217241298394 crossref_primary_10_1088_1361_6501_ad6c75 crossref_primary_10_1016_j_ins_2023_119496 crossref_primary_10_1016_j_eswa_2023_122497 crossref_primary_10_1016_j_isatra_2025_09_020 crossref_primary_10_1088_1361_6501_acd9e0 crossref_primary_10_1016_j_ins_2024_120656 crossref_primary_10_1109_TIM_2024_3460883 crossref_primary_10_1109_JSEN_2023_3340408 crossref_primary_10_1109_TIA_2023_3337063 crossref_primary_10_1016_j_ymssp_2025_112571 crossref_primary_10_1016_j_eswa_2024_125214 crossref_primary_10_1016_j_eswa_2025_127677 crossref_primary_10_1016_j_measurement_2023_113677 crossref_primary_10_1016_j_ymssp_2025_113182 crossref_primary_10_1177_14759217251346390 crossref_primary_10_1109_ACCESS_2024_3375400 crossref_primary_10_1177_09544062251318929 crossref_primary_10_1088_1361_6501_adb76e crossref_primary_10_1109_TIM_2025_3552866 crossref_primary_10_3390_s24092878 crossref_primary_10_1007_s11760_025_04300_7 crossref_primary_10_1088_1361_6501_acb459 crossref_primary_10_1088_1361_6501_ace46c crossref_primary_10_1016_j_asoc_2024_111229 crossref_primary_10_1016_j_triboint_2024_110164 crossref_primary_10_1177_14759217251353728 crossref_primary_10_1109_ACCESS_2024_3418414 crossref_primary_10_1109_ACCESS_2024_3380842 crossref_primary_10_1016_j_ymssp_2024_111192 crossref_primary_10_1080_10589759_2024_2416003 crossref_primary_10_1177_10775463231172344 crossref_primary_10_1016_j_aei_2024_102667 crossref_primary_10_1016_j_neunet_2024_106767 crossref_primary_10_1088_1361_6501_ad9bd0 crossref_primary_10_3390_s25123682 crossref_primary_10_1007_s11071_024_10157_1 crossref_primary_10_1016_j_aei_2023_102088 crossref_primary_10_1109_TIM_2023_3311065 crossref_primary_10_3390_s23115137 crossref_primary_10_1016_j_heliyon_2024_e26141 crossref_primary_10_1016_j_neucom_2024_128258 crossref_primary_10_1007_s10489_025_06449_7 crossref_primary_10_1016_j_knosys_2023_110795 crossref_primary_10_1088_1361_6501_ad1a86 crossref_primary_10_1016_j_neucom_2025_130307 |
| Cites_doi | 10.1016/j.patcog.2017.10.003 10.1016/j.applthermaleng.2019.03.111 10.1016/j.asoc.2019.02.022 10.1016/j.ymssp.2022.109096 10.1016/j.ymssp.2020.107351 10.1016/j.compind.2019.05.005 10.1016/j.ymssp.2018.05.019 10.1016/j.eswa.2018.03.053 10.1016/j.neucom.2017.09.030 10.1016/j.ins.2019.04.032 10.1016/j.knosys.2022.108779 10.1016/j.apenergy.2018.10.048 10.1016/j.knosys.2014.08.005 10.1016/j.ins.2021.01.059 10.1016/j.ins.2016.01.023 10.1016/j.ins.2019.07.066 10.1007/s10489-018-1225-z 10.1109/TAC.2015.2512043 10.1007/s10489-018-1377-x 10.1016/j.ins.2022.07.036 10.1145/1961189.1961199 10.1016/j.asoc.2021.107816 10.1109/TII.2021.3125385 10.1016/j.ymssp.2021.108139 10.1007/s00521-020-05240-8 10.1007/s00330-018-5710-x 10.1016/j.ins.2017.08.033 10.1016/j.knosys.2022.109391 10.1016/j.aei.2019.100977 10.1016/j.knosys.2020.105944 10.1016/j.ins.2020.08.082 10.1016/j.apenergy.2018.03.179 10.1016/j.isatra.2020.12.054 10.1016/j.apenergy.2021.118338 10.1016/j.patcog.2017.09.035 10.1016/j.patcog.2013.07.002 10.1016/j.eswa.2018.02.017 10.1109/TNNLS.2019.2944992 10.1016/j.energy.2020.118866 10.1016/j.engappai.2018.08.005 10.1016/j.mechmachtheory.2019.103676 10.1016/j.knosys.2012.08.001 10.1016/j.knosys.2014.10.011 10.1016/j.ins.2015.09.019 10.1109/TII.2021.3100284 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Inc. |
| Copyright_xml | – notice: 2022 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2022.12.090 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 415 |
| ExternalDocumentID | 10_1016_j_ins_2022_12_090 S0020025522015857 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-f2cd8541bc149a1f906d66c3c14ba1cf8038e6411fef834b9824a04f787535ff3 |
| ISICitedReferencesCount | 69 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000929023700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Sat Nov 29 07:25:54 EST 2025 Tue Nov 18 21:55:37 EST 2025 Fri Feb 23 02:37:20 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fault diagnosis Roller bearing Non-parallel bounded support matrix machine Multi-rank left and right projection matrix Constraint norm group |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-f2cd8541bc149a1f906d66c3c14ba1cf8038e6411fef834b9824a04f787535ff3 |
| PageCount | 21 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2022_12_090 crossref_primary_10_1016_j_ins_2022_12_090 elsevier_sciencedirect_doi_10_1016_j_ins_2022_12_090 |
| PublicationCentury | 2000 |
| PublicationDate | May 2023 2023-05-00 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Yao, Fang, Xiao, Hou, Fu (b0045) 2021; 214 Yan, Ye, Zhang, Yu, Yuan, Xu, Fu (b0150) 2018; 74 Cheng, Yang, Li, Cheng (b0220) 2022; 174 Peng, Chen, Kong (b0180) 2014; 71 Li, Yang, Pan, Cheng, Cheng (b0105) 2020; 145 Xu, Pan, Zheng, Liu, Tong (b0130) 2022; 247 Yoo, Kim, Kim, Kang (b0200) 2021; 546 Hazarika, Gupta, Borah (b0245) 2021; 112 Goh, Tan, Cheah, Lim (b0195) 2019; 505 Cheng, Yang, Hu, Cheng, Cheng (b0215) 2021; 149 Sun, Fujita, Zheng, Ai (b0030) 2021; 559 Liu, Jiang, Wu, Li (b0015) 2022; 163 Mir, Nasiri (b0080) 2018; 48 Richhariya, Tanveer (b0025) 2018; 106 Zhu, Ye, Jiang, Wang, Wu, Xie, Wei (b0050) 2019; 233 Pan, Xu, Zheng, Tong, Cheng (b0205) 2022; 252 Ding, Ma, Ma, Suo, Tao, Cheng, Lu (b0005) 2019; 42 Bayati, Balouji, Baghaee, Hajizadeh, Soltani, Lin, Savaghebia (b0040) 2022; 308 Zheng, Zhu, Qin, Heng (b0115) 2018; 275 Chang, Lin (b0140) 2011; 2 Zheng, Vong (b0165) 2021; 402 He, Zheng, Cheng, Tang, Chen, Liu (b0020) 2022; 608 Li, Yang, Pan, Cheng, Cheng (b0065) 2019; 110 Lu, Wang, Zhou (b0240) 2019; 49 Shao, Wang, Chen, Deng (b0085) 2013; 37 Li, Cheng, Shao, Liu, Cai (b0125) 2022; 18 Guo, Ferreira, Fink, Westman, Granberg (b0225) 2019; 29 Tanveer, Tiwari, Choudhary, Jalan (b0090) 2019; 78 Jiang, Yang (b0135) 2018; 35 Morales, Toledo, Acosta (b0145) 2016; 329 Han, Cui, Fan, Qing (b0060) 2019; 154 Shao, Chen, Wang, Li, Deng (b0095) 2015; 73 Qi, Jin, Wang, Xiao, Zhang (b0170) 2020; 31 Pan, Yang, Li, Zheng, Cheng (b0210) 2019; 114 Bianchi, Hachem, Iutzeler (b0185) 2016; 61 Feng, Liao (b0055) 2017; 418 Zheng, Zhu, Qin, Chen, Heng (b0120) 2018; 76 Hazarika, Gupta (b0235) 2021; 33 Wang, Yao, Chen, Ding (b0035) 2021; 114 L. Luo, Y. Xie, Z. Zhang, W. J. Li, Support matrix machines, Proceedings of the 32nd International Conference on Machine Learning (ICML), Lille, France (2015) 938-947. Liu, Zio (b0070) 2018; 102 Tanveer, Sharma, Suganthan (b0100) 2019; 494 Hou, Nie, Zhang, Yi, Wu (b0190) 2014; 47 Akbay, Kalayci, Polat (b0175) 2020; 198 Tomar, Agarwal (b0075) 2015; 16 Fan, Zhang, Son (b0010) 2021; 18 Wang, Huang, Huang, Zhang (b0230) 2018; 75 Peng, Xu, Kong, Chen (b0155) 2016; 340 Killian, Zauner, Kozek (b0160) 2018; 222 Pan (10.1016/j.ins.2022.12.090_b0205) 2022; 252 Wang (10.1016/j.ins.2022.12.090_b0230) 2018; 75 Li (10.1016/j.ins.2022.12.090_b0065) 2019; 110 10.1016/j.ins.2022.12.090_b0110 Cheng (10.1016/j.ins.2022.12.090_b0215) 2021; 149 Zheng (10.1016/j.ins.2022.12.090_b0115) 2018; 275 Pan (10.1016/j.ins.2022.12.090_b0210) 2019; 114 Feng (10.1016/j.ins.2022.12.090_b0055) 2017; 418 Bayati (10.1016/j.ins.2022.12.090_b0040) 2022; 308 Shao (10.1016/j.ins.2022.12.090_b0085) 2013; 37 Liu (10.1016/j.ins.2022.12.090_b0015) 2022; 163 Chang (10.1016/j.ins.2022.12.090_b0140) 2011; 2 He (10.1016/j.ins.2022.12.090_b0020) 2022; 608 Sun (10.1016/j.ins.2022.12.090_b0030) 2021; 559 Guo (10.1016/j.ins.2022.12.090_b0225) 2019; 29 Bianchi (10.1016/j.ins.2022.12.090_b0185) 2016; 61 Xu (10.1016/j.ins.2022.12.090_b0130) 2022; 247 Killian (10.1016/j.ins.2022.12.090_b0160) 2018; 222 Jiang (10.1016/j.ins.2022.12.090_b0135) 2018; 35 Ding (10.1016/j.ins.2022.12.090_b0005) 2019; 42 Tanveer (10.1016/j.ins.2022.12.090_b0090) 2019; 78 Lu (10.1016/j.ins.2022.12.090_b0240) 2019; 49 Yan (10.1016/j.ins.2022.12.090_b0150) 2018; 74 Li (10.1016/j.ins.2022.12.090_b0105) 2020; 145 Fan (10.1016/j.ins.2022.12.090_b0010) 2021; 18 Peng (10.1016/j.ins.2022.12.090_b0180) 2014; 71 Wang (10.1016/j.ins.2022.12.090_b0035) 2021; 114 Tanveer (10.1016/j.ins.2022.12.090_b0100) 2019; 494 Li (10.1016/j.ins.2022.12.090_b0125) 2022; 18 Hazarika (10.1016/j.ins.2022.12.090_b0245) 2021; 112 Han (10.1016/j.ins.2022.12.090_b0060) 2019; 154 Zheng (10.1016/j.ins.2022.12.090_b0120) 2018; 76 Tomar (10.1016/j.ins.2022.12.090_b0075) 2015; 16 Goh (10.1016/j.ins.2022.12.090_b0195) 2019; 505 Zheng (10.1016/j.ins.2022.12.090_b0165) 2021; 402 Morales (10.1016/j.ins.2022.12.090_b0145) 2016; 329 Zhu (10.1016/j.ins.2022.12.090_b0050) 2019; 233 Mir (10.1016/j.ins.2022.12.090_b0080) 2018; 48 Yao (10.1016/j.ins.2022.12.090_b0045) 2021; 214 Akbay (10.1016/j.ins.2022.12.090_b0175) 2020; 198 Peng (10.1016/j.ins.2022.12.090_b0155) 2016; 340 Hazarika (10.1016/j.ins.2022.12.090_b0235) 2021; 33 Cheng (10.1016/j.ins.2022.12.090_b0220) 2022; 174 Shao (10.1016/j.ins.2022.12.090_b0095) 2015; 73 Richhariya (10.1016/j.ins.2022.12.090_b0025) 2018; 106 Liu (10.1016/j.ins.2022.12.090_b0070) 2018; 102 Qi (10.1016/j.ins.2022.12.090_b0170) 2020; 31 Hou (10.1016/j.ins.2022.12.090_b0190) 2014; 47 Yoo (10.1016/j.ins.2022.12.090_b0200) 2021; 546 |
| References_xml | – volume: 37 start-page: 203 year: 2013 end-page: 210 ident: b0085 article-title: A regularization for the projection twin support vector machine publication-title: Knowl.-Based Syst. – volume: 61 start-page: 2947 year: 2016 end-page: 2957 ident: b0185 article-title: A coordinate descent primal-dual algorithm and application to distributed asynchronous optimization publication-title: IEEE Trans. Autom. Control – volume: 18 start-page: 2518 year: 2021 end-page: 2527 ident: b0010 article-title: Imbalanced sample selection with deep reinforcement learning for fault diagnosis publication-title: IEEE Trans. Ind. Inf. – volume: 71 start-page: 266 year: 2014 end-page: 278 ident: b0180 article-title: A clipping dual coordinate descent algorithm for solving support vector machines publication-title: Knowl.-Based Syst. – volume: 75 start-page: 102 year: 2018 end-page: 113 ident: b0230 article-title: Source term estimation of hazardous material releases using hybrid genetic algorithm with composite cost functions publication-title: Eng. Appl. Artif. Intel. – volume: 35 start-page: 5741 year: 2018 end-page: 5754 ident: b0135 article-title: Multiple rank multi-linear twin support matrix classification machine publication-title: J. Intell. Fuzzy Syst. – volume: 47 start-page: 454 year: 2014 end-page: 469 ident: b0190 article-title: Multiple rank multi-linear SVM for matrix data classification publication-title: Pattern Recogn. – volume: 329 start-page: 105 year: 2016 end-page: 124 ident: b0145 article-title: Generating automatic road network definition files for unstructured areas using a multiclass support vector machine publication-title: Inf. Sci. – volume: 340 start-page: 86 year: 2016 end-page: 103 ident: b0155 article-title: L1-norm loss based twin support vector machine for data recognition publication-title: Inf. Sci. – volume: 198 year: 2020 ident: b0175 article-title: A parallel variable neighborhood search algorithm with quadratic programming for cardinality constrained portfolio optimization publication-title: Knowl.-Based Syst. – volume: 149 year: 2021 ident: b0215 article-title: A noise reduction method based on adaptive weighted symplectic geometry decomposition and its application in early gear fault diagnosis publication-title: Mech. Syst. Sig. Process. – volume: 174 start-page: 109096 year: 2022 ident: b0220 article-title: Symplectic geometry packet decomposition and its applications to gear fault diagnosis publication-title: Mech. Syst. Sig. Process. – volume: 2 start-page: 1 year: 2011 end-page: 27 ident: b0140 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – volume: 214 year: 2021 ident: b0045 article-title: An intelligent fault diagnosis method for lithium battery systems based on grid search support vector machine publication-title: Energy – volume: 275 start-page: 869 year: 2018 end-page: 880 ident: b0115 article-title: Multiclass support matrix machine for single trial EEG classification publication-title: Neurocomputing – volume: 418 start-page: 480 year: 2017 end-page: 494 ident: b0055 article-title: Scalable Gaussian kernel support vector machines with sublinear training time complexity publication-title: Inf. Sci. – volume: 102 start-page: 36 year: 2018 end-page: 43 ident: b0070 article-title: A scalable fuzzy support vector machine for fault detection in transportation systems publication-title: Expert Syst. Appl. – volume: 308 year: 2022 ident: b0040 article-title: Locating high-impedance faults in DC microgrid clusters using support vector machines publication-title: Appl. Energy – volume: 106 start-page: 169 year: 2018 end-page: 182 ident: b0025 article-title: EEG signal classification using universum support vector machine publication-title: Expert Syst. Appl. – volume: 114 start-page: 470 year: 2021 end-page: 484 ident: b0035 article-title: Modified multiscale weighted permutation entropy and optimized support vector machine method for rolling bearing fault diagnosis with complex signals publication-title: ISA Trans. – volume: 233 start-page: 196 year: 2019 end-page: 207 ident: b0050 article-title: Achieving the carbon intensity target of China: A least squares support vector machine with mixture kernel function approach publication-title: Appl. Energy – volume: 145 year: 2020 ident: b0105 article-title: Non-parallel least squares support matrix machine for rolling bearing fault diagnosis publication-title: Mech. Mach. Theory – volume: 76 start-page: 715 year: 2018 end-page: 726 ident: b0120 article-title: Sparse support matrix machine publication-title: Pattern Recogn. – volume: 16 start-page: 55 year: 2015 end-page: 69 ident: b0075 article-title: Twin support vector machine: a review from 2007 to 2014 publication-title: Egpt. Inform. J. – volume: 505 start-page: 127 year: 2019 end-page: 143 ident: b0195 article-title: Adaptive rough radial basis function neural network with prototype outlier removal publication-title: Inf. Sci. – volume: 78 start-page: 164 year: 2019 end-page: 175 ident: b0090 article-title: Sparse pinball twin support vector machines publication-title: Appl. Soft Comput. – volume: 494 start-page: 311 year: 2019 end-page: 327 ident: b0100 article-title: General twin support vector machine with pinball loss function publication-title: Inf. Sci. – volume: 74 start-page: 434 year: 2018 end-page: 447 ident: b0150 article-title: Least squares twin bounded support vector machines based on L1-norm distance metric for classification publication-title: Pattern Recogn. – volume: 29 start-page: 1355 year: 2019 end-page: 1364 ident: b0225 article-title: Repeatability and reproducibility of FreeSurfer, FSL-SIENAX and SPM brain volumetric measurements and the effect of lesion filling in multiple sclerosis publication-title: Eur. Radiol. – volume: 110 start-page: 36 year: 2019 end-page: 47 ident: b0065 article-title: A novel deep stacking least squares support vector machine for rolling bearing fault diagnosis publication-title: Comput. Ind. – volume: 49 start-page: 2301 year: 2019 end-page: 2314 ident: b0240 article-title: All-in-one multicategory ramp loss maximum margin of twin spheres support vector machine publication-title: Appl. Intell. – volume: 114 start-page: 189 year: 2019 end-page: 211 ident: b0210 article-title: Symplectic geometry mode decomposition and its application to rotating machinery compound fault diagnosis publication-title: Mech. Syst. Sig. Process. – volume: 48 start-page: 4551 year: 2018 end-page: 4564 ident: b0080 article-title: KNN-based least squares twin support vector machine for pattern classification publication-title: Appl. Intell. – volume: 33 start-page: 4243 year: 2021 end-page: 4261 ident: b0235 article-title: Density-weighted support vector machines for binary class imbalance learning publication-title: Neural Comput. & Applic. – volume: 559 start-page: 153 year: 2021 end-page: 170 ident: b0030 article-title: Multi-class financial distress prediction based on support vector machines integrated with the decomposition and fusion methods publication-title: Inf. Sci. – volume: 222 start-page: 662 year: 2018 end-page: 672 ident: b0160 article-title: Comprehensive smart home energy management system using mixed-integer quadratic-programming publication-title: Appl. Energy – volume: 252 year: 2022 ident: b0205 article-title: Twin robust matrix machine for intelligent fault identification of outlier samples in roller bearing publication-title: Knowl.-Based Syst. – volume: 112 year: 2021 ident: b0245 article-title: An intuitionistic fuzzy kernel ridge regression classifier for binary classification publication-title: Appl. Soft Comput. – volume: 546 start-page: 420 year: 2021 end-page: 435 ident: b0200 article-title: AI-HydRa: Advanced hybrid approach using random forest and deep learning for malware classification publication-title: Inf. Sci. – volume: 31 start-page: 3555 year: 2020 end-page: 3569 ident: b0170 article-title: Complex-valued discrete-time neural dynamics for perturbed time-dependent complex quadratic programming with applications publication-title: IEEE Trans. Neural Netw. Learning Syst. – volume: 247 year: 2022 ident: b0130 article-title: Dynamic penalty adaptive matrix machine for the intelligent detection of unbalanced faults in roller bearing publication-title: Knowl.-Based Syst. – volume: 154 start-page: 540 year: 2019 end-page: 547 ident: b0060 article-title: Least squares support vector machine (LS-SVM)-based chiller fault diagnosis using fault indicative features publication-title: Appl. Therm. Eng. – volume: 42 year: 2019 ident: b0005 article-title: Intelligent fault diagnosis for rotating machinery using deep Q-network based health state classification: a deep reinforcement learning approach publication-title: Adv. Eng. Inf. – reference: L. Luo, Y. Xie, Z. Zhang, W. J. Li, Support matrix machines, Proceedings of the 32nd International Conference on Machine Learning (ICML), Lille, France (2015) 938-947. – volume: 402 year: 2021 ident: b0165 article-title: On the modulus-based successive overrelaxation iteration method for horizontal linear complementarity problems arising from hydrodynamic lubrication publication-title: Appl. Math Comput. – volume: 73 start-page: 276 year: 2015 end-page: 288 ident: b0095 article-title: Weighted linear loss twin support vector machine for large-scale classification publication-title: Knowl.-Based Syst. – volume: 18 start-page: 5180 year: 2022 end-page: 5189 ident: b0125 article-title: A fusion CWSMM-based framework for rotating machinery fault diagnosis under strong interference and imbalanced case publication-title: IEEE Trans. Ind. Inf. – volume: 608 start-page: 1464 year: 2022 end-page: 1479 ident: b0020 article-title: Semi-supervised overlapping community detection in attributed graph with graph convolutional autoencoder publication-title: Inf. Sci. – volume: 163 year: 2022 ident: b0015 article-title: Data synthesis using deep feature enhanced generative adversarial networks for rolling bearing imbalanced fault diagnosis publication-title: Mech. Syst. Sig. Process. – volume: 402 year: 2021 ident: 10.1016/j.ins.2022.12.090_b0165 article-title: On the modulus-based successive overrelaxation iteration method for horizontal linear complementarity problems arising from hydrodynamic lubrication publication-title: Appl. Math Comput. – volume: 76 start-page: 715 year: 2018 ident: 10.1016/j.ins.2022.12.090_b0120 article-title: Sparse support matrix machine publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2017.10.003 – volume: 154 start-page: 540 year: 2019 ident: 10.1016/j.ins.2022.12.090_b0060 article-title: Least squares support vector machine (LS-SVM)-based chiller fault diagnosis using fault indicative features publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.03.111 – volume: 78 start-page: 164 year: 2019 ident: 10.1016/j.ins.2022.12.090_b0090 article-title: Sparse pinball twin support vector machines publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.02.022 – volume: 174 start-page: 109096 year: 2022 ident: 10.1016/j.ins.2022.12.090_b0220 article-title: Symplectic geometry packet decomposition and its applications to gear fault diagnosis publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2022.109096 – volume: 149 year: 2021 ident: 10.1016/j.ins.2022.12.090_b0215 article-title: A noise reduction method based on adaptive weighted symplectic geometry decomposition and its application in early gear fault diagnosis publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2020.107351 – volume: 110 start-page: 36 year: 2019 ident: 10.1016/j.ins.2022.12.090_b0065 article-title: A novel deep stacking least squares support vector machine for rolling bearing fault diagnosis publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.05.005 – volume: 114 start-page: 189 year: 2019 ident: 10.1016/j.ins.2022.12.090_b0210 article-title: Symplectic geometry mode decomposition and its application to rotating machinery compound fault diagnosis publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2018.05.019 – volume: 106 start-page: 169 year: 2018 ident: 10.1016/j.ins.2022.12.090_b0025 article-title: EEG signal classification using universum support vector machine publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.03.053 – volume: 275 start-page: 869 year: 2018 ident: 10.1016/j.ins.2022.12.090_b0115 article-title: Multiclass support matrix machine for single trial EEG classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.09.030 – volume: 494 start-page: 311 year: 2019 ident: 10.1016/j.ins.2022.12.090_b0100 article-title: General twin support vector machine with pinball loss function publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.04.032 – volume: 247 year: 2022 ident: 10.1016/j.ins.2022.12.090_b0130 article-title: Dynamic penalty adaptive matrix machine for the intelligent detection of unbalanced faults in roller bearing publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108779 – volume: 233 start-page: 196 year: 2019 ident: 10.1016/j.ins.2022.12.090_b0050 article-title: Achieving the carbon intensity target of China: A least squares support vector machine with mixture kernel function approach publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.10.048 – volume: 16 start-page: 55 issue: 1 year: 2015 ident: 10.1016/j.ins.2022.12.090_b0075 article-title: Twin support vector machine: a review from 2007 to 2014 publication-title: Egpt. Inform. J. – volume: 71 start-page: 266 year: 2014 ident: 10.1016/j.ins.2022.12.090_b0180 article-title: A clipping dual coordinate descent algorithm for solving support vector machines publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.08.005 – volume: 559 start-page: 153 year: 2021 ident: 10.1016/j.ins.2022.12.090_b0030 article-title: Multi-class financial distress prediction based on support vector machines integrated with the decomposition and fusion methods publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.01.059 – volume: 340 start-page: 86 year: 2016 ident: 10.1016/j.ins.2022.12.090_b0155 article-title: L1-norm loss based twin support vector machine for data recognition publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.01.023 – volume: 505 start-page: 127 year: 2019 ident: 10.1016/j.ins.2022.12.090_b0195 article-title: Adaptive rough radial basis function neural network with prototype outlier removal publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.07.066 – volume: 48 start-page: 4551 issue: 12 year: 2018 ident: 10.1016/j.ins.2022.12.090_b0080 article-title: KNN-based least squares twin support vector machine for pattern classification publication-title: Appl. Intell. doi: 10.1007/s10489-018-1225-z – volume: 61 start-page: 2947 issue: 10 year: 2016 ident: 10.1016/j.ins.2022.12.090_b0185 article-title: A coordinate descent primal-dual algorithm and application to distributed asynchronous optimization publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2015.2512043 – volume: 49 start-page: 2301 issue: 6 year: 2019 ident: 10.1016/j.ins.2022.12.090_b0240 article-title: All-in-one multicategory ramp loss maximum margin of twin spheres support vector machine publication-title: Appl. Intell. doi: 10.1007/s10489-018-1377-x – volume: 608 start-page: 1464 year: 2022 ident: 10.1016/j.ins.2022.12.090_b0020 article-title: Semi-supervised overlapping community detection in attributed graph with graph convolutional autoencoder publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.07.036 – volume: 2 start-page: 1 issue: 3 year: 2011 ident: 10.1016/j.ins.2022.12.090_b0140 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. (TIST) doi: 10.1145/1961189.1961199 – volume: 112 year: 2021 ident: 10.1016/j.ins.2022.12.090_b0245 article-title: An intuitionistic fuzzy kernel ridge regression classifier for binary classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107816 – volume: 18 start-page: 5180 issue: 8 year: 2022 ident: 10.1016/j.ins.2022.12.090_b0125 article-title: A fusion CWSMM-based framework for rotating machinery fault diagnosis under strong interference and imbalanced case publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2021.3125385 – volume: 163 year: 2022 ident: 10.1016/j.ins.2022.12.090_b0015 article-title: Data synthesis using deep feature enhanced generative adversarial networks for rolling bearing imbalanced fault diagnosis publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2021.108139 – volume: 33 start-page: 4243 issue: 9 year: 2021 ident: 10.1016/j.ins.2022.12.090_b0235 article-title: Density-weighted support vector machines for binary class imbalance learning publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-020-05240-8 – volume: 29 start-page: 1355 issue: 3 year: 2019 ident: 10.1016/j.ins.2022.12.090_b0225 article-title: Repeatability and reproducibility of FreeSurfer, FSL-SIENAX and SPM brain volumetric measurements and the effect of lesion filling in multiple sclerosis publication-title: Eur. Radiol. doi: 10.1007/s00330-018-5710-x – volume: 418 start-page: 480 year: 2017 ident: 10.1016/j.ins.2022.12.090_b0055 article-title: Scalable Gaussian kernel support vector machines with sublinear training time complexity publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.08.033 – volume: 252 year: 2022 ident: 10.1016/j.ins.2022.12.090_b0205 article-title: Twin robust matrix machine for intelligent fault identification of outlier samples in roller bearing publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.109391 – volume: 42 year: 2019 ident: 10.1016/j.ins.2022.12.090_b0005 article-title: Intelligent fault diagnosis for rotating machinery using deep Q-network based health state classification: a deep reinforcement learning approach publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2019.100977 – volume: 198 year: 2020 ident: 10.1016/j.ins.2022.12.090_b0175 article-title: A parallel variable neighborhood search algorithm with quadratic programming for cardinality constrained portfolio optimization publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105944 – volume: 546 start-page: 420 year: 2021 ident: 10.1016/j.ins.2022.12.090_b0200 article-title: AI-HydRa: Advanced hybrid approach using random forest and deep learning for malware classification publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.08.082 – volume: 222 start-page: 662 year: 2018 ident: 10.1016/j.ins.2022.12.090_b0160 article-title: Comprehensive smart home energy management system using mixed-integer quadratic-programming publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.03.179 – volume: 35 start-page: 5741 year: 2018 ident: 10.1016/j.ins.2022.12.090_b0135 article-title: Multiple rank multi-linear twin support matrix classification machine publication-title: J. Intell. Fuzzy Syst. – volume: 114 start-page: 470 year: 2021 ident: 10.1016/j.ins.2022.12.090_b0035 article-title: Modified multiscale weighted permutation entropy and optimized support vector machine method for rolling bearing fault diagnosis with complex signals publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.12.054 – volume: 308 year: 2022 ident: 10.1016/j.ins.2022.12.090_b0040 article-title: Locating high-impedance faults in DC microgrid clusters using support vector machines publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.118338 – volume: 74 start-page: 434 year: 2018 ident: 10.1016/j.ins.2022.12.090_b0150 article-title: Least squares twin bounded support vector machines based on L1-norm distance metric for classification publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2017.09.035 – volume: 47 start-page: 454 issue: 1 year: 2014 ident: 10.1016/j.ins.2022.12.090_b0190 article-title: Multiple rank multi-linear SVM for matrix data classification publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2013.07.002 – volume: 102 start-page: 36 year: 2018 ident: 10.1016/j.ins.2022.12.090_b0070 article-title: A scalable fuzzy support vector machine for fault detection in transportation systems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.02.017 – volume: 31 start-page: 3555 issue: 9 year: 2020 ident: 10.1016/j.ins.2022.12.090_b0170 article-title: Complex-valued discrete-time neural dynamics for perturbed time-dependent complex quadratic programming with applications publication-title: IEEE Trans. Neural Netw. Learning Syst. doi: 10.1109/TNNLS.2019.2944992 – volume: 214 year: 2021 ident: 10.1016/j.ins.2022.12.090_b0045 article-title: An intelligent fault diagnosis method for lithium battery systems based on grid search support vector machine publication-title: Energy doi: 10.1016/j.energy.2020.118866 – volume: 75 start-page: 102 year: 2018 ident: 10.1016/j.ins.2022.12.090_b0230 article-title: Source term estimation of hazardous material releases using hybrid genetic algorithm with composite cost functions publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2018.08.005 – volume: 145 year: 2020 ident: 10.1016/j.ins.2022.12.090_b0105 article-title: Non-parallel least squares support matrix machine for rolling bearing fault diagnosis publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2019.103676 – ident: 10.1016/j.ins.2022.12.090_b0110 – volume: 37 start-page: 203 year: 2013 ident: 10.1016/j.ins.2022.12.090_b0085 article-title: A regularization for the projection twin support vector machine publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2012.08.001 – volume: 73 start-page: 276 year: 2015 ident: 10.1016/j.ins.2022.12.090_b0095 article-title: Weighted linear loss twin support vector machine for large-scale classification publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.10.011 – volume: 329 start-page: 105 year: 2016 ident: 10.1016/j.ins.2022.12.090_b0145 article-title: Generating automatic road network definition files for unstructured areas using a multiclass support vector machine publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.09.019 – volume: 18 start-page: 2518 issue: 4 year: 2021 ident: 10.1016/j.ins.2022.12.090_b0010 article-title: Imbalanced sample selection with deep reinforcement learning for fault diagnosis publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2021.3100284 |
| SSID | ssj0004766 |
| Score | 2.6114278 |
| Snippet | •A novel non-parallel bounded support matrix machine (NPBSMM) is proposed.•A constraint norm group (CNG) is constructed, which can suppress negative influence... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 395 |
| SubjectTerms | Constraint norm group Fault diagnosis Multi-rank left and right projection matrix Non-parallel bounded support matrix machine Roller bearing |
| Title | Non-parallel bounded support matrix machine and its application in roller bearing fault diagnosis |
| URI | https://dx.doi.org/10.1016/j.ins.2022.12.090 |
| Volume | 624 |
| WOSCitedRecordID | wos000929023700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOCAaIbQz5gDhQRUocN7GPExraOFQ7DKniEtmOLTqFrGqbqZP2x-85dhIzGNoOXJL2qXaavF_8Pvw-EPpohOIaNItoypmMaClMJHhiIp1lpQSNuCTGNZvIZzM2n_Oz0eimy4W5qvK6ZtstX_5XVgMNmG1TZx_B7n5SIMBnYDocge1wfBDjZ5d1ZAt6V5WuJtJ2TQKdct0sraI9-WUr8m_hZEMoh52DYBu7TXCx3oTVRMKjaQMtRVNtrJfWBuUt1qE-67OZ2oFemPZK-pnzrZ6IxbXw8hGo88YTjR6IP35qHxlsqzcOnu-eeN2E7gkSBAP26QJxZA2XcMnNCA0WzdS12fTyl7r0zj-WdudluAB7xFZZJ6T14rpWo7-X0b4j3vqgwy6e7aKAKQo7RZGQAqZ4gnZIDlgdo52j0-P5tyGvNnd73d0tdLvibXzgnf_xd70m0FXOX6IX3sjARw4cr9BI17voeVB6chcd-oQV_AkHPMR-qX-NRAgj7GGEPYywgxH2MMIAIwwwwgGM8KLGDkbYwwi3MMI9jN6g71-Pz7-cRL4dR6QIzzeRIapkU5pIBVa1SAyPszLLVApfpUiUYXHKdEaTxGjDUio5I1TE1OTWJJ4ak75F4_qy1u8QlpLZLX-lcmlAiEgmbSk6VZZc8alk6R6Ku4dZKF-r3rZMqYp7mbiHPvdDlq5Qy79-TDsOFf7lcBpkAWi7f9j-Y65xgJ4N78N7NN6sGn2InqqrzWK9-uChdgu_wqHu |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-parallel+bounded+support+matrix+machine+and+its+application+in+roller+bearing+fault+diagnosis&rft.jtitle=Information+sciences&rft.au=Pan%2C+Haiyang&rft.au=Xu%2C+Haifeng&rft.au=Zheng%2C+Jinde&rft.au=Tong%2C+Jinyu&rft.date=2023-05-01&rft.issn=0020-0255&rft.volume=624&rft.spage=395&rft.epage=415&rft_id=info:doi/10.1016%2Fj.ins.2022.12.090&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2022_12_090 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |