Accurate quotient-difference algorithm: Error analysis, improvements and applications

The compensated quotient-difference (Compqd) algorithm is proposed along with some applications. The main motivation is based on the fact that the standard quotient-difference (qd) algorithm can be numerically unstable. The Compqd algorithm is obtained by applying error-free transformations to impro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 309; s. 245 - 271
Hlavní autoři: Du, Peibing, Barrio, Roberto, Jiang, Hao, Cheng, Lizhi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.09.2017
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The compensated quotient-difference (Compqd) algorithm is proposed along with some applications. The main motivation is based on the fact that the standard quotient-difference (qd) algorithm can be numerically unstable. The Compqd algorithm is obtained by applying error-free transformations to improve the traditional qd algorithm. We study in detail the error analysis of the qd and Compqd algorithms and we introduce new condition numbers so that the relative forward rounding error bounds can be derived directly. Our numerical experiments illustrate that the Compqd algorithm is much more accurate than the qd algorithm, relegating the influence of the condition numbers up to second order in the rounding unit of the computer. Three applications of the new algorithm in the obtention of continued fractions and in pole and zero detection are shown.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2017.04.004