Accurate quotient-difference algorithm: Error analysis, improvements and applications

The compensated quotient-difference (Compqd) algorithm is proposed along with some applications. The main motivation is based on the fact that the standard quotient-difference (qd) algorithm can be numerically unstable. The Compqd algorithm is obtained by applying error-free transformations to impro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation Jg. 309; S. 245 - 271
Hauptverfasser: Du, Peibing, Barrio, Roberto, Jiang, Hao, Cheng, Lizhi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 15.09.2017
Schlagworte:
ISSN:0096-3003, 1873-5649
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The compensated quotient-difference (Compqd) algorithm is proposed along with some applications. The main motivation is based on the fact that the standard quotient-difference (qd) algorithm can be numerically unstable. The Compqd algorithm is obtained by applying error-free transformations to improve the traditional qd algorithm. We study in detail the error analysis of the qd and Compqd algorithms and we introduce new condition numbers so that the relative forward rounding error bounds can be derived directly. Our numerical experiments illustrate that the Compqd algorithm is much more accurate than the qd algorithm, relegating the influence of the condition numbers up to second order in the rounding unit of the computer. Three applications of the new algorithm in the obtention of continued fractions and in pole and zero detection are shown.
AbstractList The compensated quotient-difference (Compqd) algorithm is proposed along with some applications. The main motivation is based on the fact that the standard quotient-difference (qd) algorithm can be numerically unstable. The Compqd algorithm is obtained by applying error-free transformations to improve the traditional qd algorithm. We study in detail the error analysis of the qd and Compqd algorithms and we introduce new condition numbers so that the relative forward rounding error bounds can be derived directly. Our numerical experiments illustrate that the Compqd algorithm is much more accurate than the qd algorithm, relegating the influence of the condition numbers up to second order in the rounding unit of the computer. Three applications of the new algorithm in the obtention of continued fractions and in pole and zero detection are shown.
Author Du, Peibing
Jiang, Hao
Barrio, Roberto
Cheng, Lizhi
Author_xml – sequence: 1
  givenname: Peibing
  orcidid: 0000-0002-7971-7842
  surname: Du
  fullname: Du, Peibing
  email: dupeibing10@nudt.edu.cn
  organization: School of Science, National University of Defense Technology, Changsha 410073, China
– sequence: 2
  givenname: Roberto
  surname: Barrio
  fullname: Barrio, Roberto
  email: rbarrio@unizar.es
  organization: Departamento de Matemática Aplicada and IUMA, University of Zaragoza, Zaragoza E-50009, Spain
– sequence: 3
  givenname: Hao
  surname: Jiang
  fullname: Jiang, Hao
  email: haojiang@nudt.edu.cn, jhnudt@163.com
  organization: College of Computer, National University of Defense Technology, Changsha 410073, China
– sequence: 4
  givenname: Lizhi
  surname: Cheng
  fullname: Cheng, Lizhi
  email: clzcheng@nudt.edu.cn
  organization: School of Science, National University of Defense Technology, Changsha 410073, China
BookMark eNp9kMtOwzAQRS1UJErhA9jlA0gYO67TwKqqykOqxIauLdcZg6skDrZbqX-PS1mx6Gqk0ZzRveeajHrXIyF3FAoKVDxsC9XpggGtCuAFAL8gYzqrynwqeD0iY4Ba5CVAeUWuQ9gCQCUoH5P1XOudVxGz752LFvuYN9YY9NhrzFT76byNX91jtvTe-Uz1qj0EG-4z2w3e7bFLREjrJlPD0FqtonV9uCGXRrUBb__mhKyflx-L13z1_vK2mK9yzeoq5oaB0IisYg0IWrMpKrbhpuSKzyqY0dLUhrN0wGqDjJdqA2Jag9rwhlEusJwQevqrvQvBo5GDt53yB0lBHr3IrUxe5NGLBC6Tl8RU_xht42_s6JVtz5JPJxJTpb1FL4O2R0-N9aijbJw9Q_8AQMGAeQ
CitedBy_id crossref_primary_10_1007_s42514_023_00141_3
crossref_primary_10_1016_j_amc_2018_02_004
crossref_primary_10_1016_j_amc_2022_127611
crossref_primary_10_1134_S1995423924600093
crossref_primary_10_1155_2018_5025672
Cites_doi 10.1017/S0370164600022070
10.1007/BF01601216
10.1145/365559.365619
10.1006/jsco.1997.0162
10.1017/S0370164600023026
10.1137/030601818
10.1016/j.camwa.2010.05.021
10.1093/imanum/drq003
10.1007/s002110050024
10.1137/07068816X
10.1007/BF03186531
10.1016/j.apnum.2010.03.016
10.1145/641876.641878
10.6028/jres.045.026
10.1016/j.apnum.2010.04.006
10.1137/050645671
10.1017/S096249291000005X
10.1007/BF01600331
10.1007/BF01397083
10.1145/567806.567808
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright_xml – notice: 2017 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.amc.2017.04.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 271
ExternalDocumentID 10_1016_j_amc_2017_04_004
S0096300317302394
GrantInformation_xml – fundername: European Social Fund
  grantid: E48
– fundername: National Natural Science Foundation of China
  grantid: 61402495; 61602166; 61303189; 61402496
– fundername: National University of Defense Technology
  grantid: JC120201
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
5VS
9DU
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
SEW
TAE
VH1
VOH
WUQ
~HD
ID FETCH-LOGICAL-c297t-f206cee272d061925ea2b4f34a4870813f9f42ee229fe243ab06590ab4d2146e3
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000401598800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Sat Nov 29 02:52:20 EST 2025
Tue Nov 18 22:29:40 EST 2025
Fri Feb 23 02:30:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Rounding error
Compensated qd algorithm
Qd algorithm
Pole detection
Error-free transformation
Continued fractions
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-f206cee272d061925ea2b4f34a4870813f9f42ee229fe243ab06590ab4d2146e3
ORCID 0000-0002-7971-7842
PageCount 27
ParticipantIDs crossref_primary_10_1016_j_amc_2017_04_004
crossref_citationtrail_10_1016_j_amc_2017_04_004
elsevier_sciencedirect_doi_10_1016_j_amc_2017_04_004
PublicationCentury 2000
PublicationDate 2017-09-15
PublicationDateYYYYMMDD 2017-09-15
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied mathematics and computation
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Lorentzen (bib0006) 2010; 60
Gutknecht (bib0005) 2011; 31
Langlois, Louvet (bib0035) 2007
Rutishauser (bib0011) 1954; 5
Graillat, Langlois, Louvet (bib0020) 2005
Allouche, Cuyt (bib0010) 2010; 60
Rump, Ogita, Oishi (bib0018) 2008; 31
Du, Jiang, Cheng (bib0024) 2014
Nievergelt (bib0037) 2003; 29
Henrici (bib0009) 1974
Jones, Thron (bib0008) 1980
Fernando, Parlett (bib0014) 1994; 67
Aitken (bib0002) 1926; 46
Dekker (bib0029) 1971; 18
Rutishauser (bib0012) 1958; 49
Pichat, Vignes (bib0031) 1993
Henrici, Watkins (bib0038) 1965; 8
Rump (bib0027) 2010; 19
Markstein (bib0036) 2000
Cuyt, Petersen, Verdonk, Waadeland, Jones (bib0007) 2008
Lanczos (bib0004) 1950; 45
Graillat, Langlois, Louvet (bib0019) 2009; 26
Szegö (bib0039) 1939; 23
(online).
D.H. Bailey, QD Library in High-Precision Software Directory.
Jiang, Li, Cheng, Su (bib0022) 2010; 60
Higham (bib0026) 2002
Parlett (bib0013) 1996
Hida, Li, Bailey (bib0034) 2001
Aitken (bib0003) 1931; 51
Cuyt (bib0015) 1997; 24
Ogita, Rump, Oishi (bib0016) 2005; 26
Li, Demmel, Bailey, Henry, Hida, Iskandar, Kahan, Kang, Kapur, Martin, Thompson, Tung, Yoo (bib0032) 2002; 28
Jiang, Barrio, Li, Liao, Cheng, Su (bib0023) 2011; 217
Rutishauser (bib0025) 1954; 5
Rump, Ogita, Oishi (bib0017) 2008; 31
Hadamard (bib0001) 1992; 8
Langlois, Louvet (bib0021) 2007
Knuth (bib0028) 1998
Louvet (bib0030) 2007
Rutishauser (10.1016/j.amc.2017.04.004_bib0025) 1954; 5
Langlois (10.1016/j.amc.2017.04.004_bib0035) 2007
Henrici (10.1016/j.amc.2017.04.004_bib0038) 1965; 8
Cuyt (10.1016/j.amc.2017.04.004_bib0007) 2008
Rump (10.1016/j.amc.2017.04.004_bib0027) 2010; 19
Cuyt (10.1016/j.amc.2017.04.004_bib0015) 1997; 24
Jiang (10.1016/j.amc.2017.04.004_bib0022) 2010; 60
Markstein (10.1016/j.amc.2017.04.004_bib0036) 2000
Nievergelt (10.1016/j.amc.2017.04.004_bib0037) 2003; 29
Jones (10.1016/j.amc.2017.04.004_bib0008) 1980
Aitken (10.1016/j.amc.2017.04.004_bib0002) 1926; 46
Ogita (10.1016/j.amc.2017.04.004_bib0016) 2005; 26
Rump (10.1016/j.amc.2017.04.004_bib0018) 2008; 31
Henrici (10.1016/j.amc.2017.04.004_bib0009) 1974
Graillat (10.1016/j.amc.2017.04.004_bib0019) 2009; 26
Hadamard (10.1016/j.amc.2017.04.004_bib0001) 1992; 8
Aitken (10.1016/j.amc.2017.04.004_bib0003) 1931; 51
Higham (10.1016/j.amc.2017.04.004_bib0026) 2002
Louvet (10.1016/j.amc.2017.04.004_bib0030) 2007
Pichat (10.1016/j.amc.2017.04.004_bib0031) 1993
Jiang (10.1016/j.amc.2017.04.004_bib0023) 2011; 217
Dekker (10.1016/j.amc.2017.04.004_bib0029) 1971; 18
Lorentzen (10.1016/j.amc.2017.04.004_bib0006) 2010; 60
Hida (10.1016/j.amc.2017.04.004_bib0034) 2001
Rutishauser (10.1016/j.amc.2017.04.004_bib0012) 1958; 49
Parlett (10.1016/j.amc.2017.04.004_bib0013) 1996
Fernando (10.1016/j.amc.2017.04.004_bib0014) 1994; 67
Graillat (10.1016/j.amc.2017.04.004_bib0020) 2005
Langlois (10.1016/j.amc.2017.04.004_bib0021) 2007
Gutknecht (10.1016/j.amc.2017.04.004_bib0005) 2011; 31
Lanczos (10.1016/j.amc.2017.04.004_bib0004) 1950; 45
Allouche (10.1016/j.amc.2017.04.004_bib0010) 2010; 60
Rutishauser (10.1016/j.amc.2017.04.004_bib0011) 1954; 5
Rump (10.1016/j.amc.2017.04.004_bib0017) 2008; 31
Li (10.1016/j.amc.2017.04.004_bib0032) 2002; 28
Du (10.1016/j.amc.2017.04.004_sbref0024) 2014
Szegö (10.1016/j.amc.2017.04.004_bib0039) 1939; 23
Knuth (10.1016/j.amc.2017.04.004_bib0028) 1998
10.1016/j.amc.2017.04.004_bib0033
References_xml – reference: D.H. Bailey, QD Library in High-Precision Software Directory.
– volume: 28
  start-page: 152
  year: 2002
  end-page: 205
  ident: bib0032
  article-title: Design, implementation and testing of extended and mixed precision BLAS
  publication-title: ACM Trans. Math. Softw.
– volume: 49
  start-page: 47
  year: 1958
  end-page: 81
  ident: bib0012
  article-title: Solution of eigenvalue problems with the LR-transformation
  publication-title: Nat. Bur. Stand. Appl. Math. Ser.
– volume: 18
  start-page: 224
  year: 1971
  end-page: 242
  ident: bib0029
  article-title: A floating-point technique for extending the available precision
  publication-title: Numer. Math.
– volume: 31
  start-page: 189
  year: 2008
  end-page: 224
  ident: bib0017
  article-title: Accurate floating-point summation part I: faithful rounding
  publication-title: SIAM J. Sci. Comput.
– year: 2005
  ident: bib0020
  publication-title: Compensated Horner Scheme
– start-page: 155
  year: 2001
  end-page: 162
  ident: bib0034
  article-title: Algorithms for quad-double precision floating point arithmetic
  publication-title: Proceedings of the Fifteenth IEEE Symposium on Computer Arithmetic
– volume: 217
  start-page: 9702
  year: 2011
  end-page: 9716
  ident: bib0023
  article-title: Accurate evaluation of a polynomial in Chebyshev form
  publication-title: Appl. Math. Comput.
– volume: 5
  start-page: 496
  year: 1954
  end-page: 508
  ident: bib0011
  article-title: Anwendungen des quotienten-differenzen-algorithmus
  publication-title: Z. Angel. Math. Phys.
– volume: 19
  start-page: 287
  year: 2010
  end-page: 449
  ident: bib0027
  article-title: Verification methods: rigorous results using floating-point arithmetic
  publication-title: Acta Numer.
– volume: 23
  year: 1939
  ident: bib0039
  article-title: Orthogonal Polynomials, American Mathematical Society Colloquium Publications
– volume: 51
  start-page: 80
  year: 1931
  end-page: 90
  ident: bib0003
  article-title: Further numerical studies in algebraic equations and matrices
  publication-title: Proc. R. Soc. Edinb.
– year: 2008
  ident: bib0007
  article-title: Handbook of Continued Fractions for Special Functions
– start-page: 141
  year: 2007
  end-page: 149
  ident: bib0021
  article-title: How to ensure a faithful polynomial evaluation with the compensated Horner algorithm
  publication-title: Proceedings of the Eighteenth IEEE International Symposium on Computer Arithmetic
– volume: 26
  start-page: 1955
  year: 2005
  end-page: 1988
  ident: bib0016
  article-title: Accurate sum and dot product
  publication-title: SIAM J. Sci. Comput.
– volume: 31
  start-page: 741
  year: 2011
  end-page: 754
  ident: bib0005
  article-title: From qd to LR, or, how were the qd and LR algorithms discovered
  publication-title: IMA J. Numer. Anal.
– volume: 24
  start-page: 695
  year: 1997
  end-page: 703
  ident: bib0015
  article-title: Floating-point versus symbolic computations in the qd-algorithm
  publication-title: J. Symb. Comput.
– year: 1998
  ident: bib0028
  article-title: The Art of Computer Programming: Seminumerical Algorithms
– volume: 8
  start-page: 101
  year: 1992
  end-page: 186
  ident: bib0001
  article-title: Essai sur l’étude des fonctions donnée par leurs dénveloppement de Taylor
  publication-title: J. Math. Pures Appl.
– volume: 45
  start-page: 255
  year: 1950
  end-page: 281
  ident: bib0004
  article-title: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators
  publication-title: J. Res. Natl. Bur. Stand.
– volume: 60
  start-page: 1364
  year: 2010
  end-page: 1370
  ident: bib0006
  article-title: Padé approximation and continued fractions
  publication-title: Appl. Numer. Math.
– volume: 26
  start-page: 191
  year: 2009
  end-page: 214
  ident: bib0019
  article-title: Algorithms for accurate validated and fast polynomial evaluation
  publication-title: Jpn. J. Indust. Appl. Math.
– volume: 67
  start-page: 191
  year: 1994
  end-page: 229
  ident: bib0014
  article-title: Accurate singular values and differential qd algorithms
  publication-title: Numer. Math.
– volume: 31
  start-page: 1269
  year: 2008
  end-page: 1302
  ident: bib0018
  article-title: Accurate floating-point summation part II: sign, K-fold faithful and rounding to nearest
  publication-title: SIAM J. Sci. Comput.
– volume: 5
  start-page: 233
  year: 1954
  end-page: 251
  ident: bib0025
  article-title: Der quotienten-differenzen-algorithmus
  publication-title: Z. Angew. Math. Phys.
– year: 2000
  ident: bib0036
  article-title: IA-64 and Elementary Functions: Speed and Precision
– volume: 8
  start-page: 570
  year: 1965
  end-page: 574
  ident: bib0038
  article-title: Finding zeros of a polynomial by the qd algorithm
  publication-title: Comm. ACM
– year: 1980
  ident: bib0008
  article-title: Continued Fractions: Analytic Theory and Applications
– year: 1996
  ident: bib0013
  publication-title: What Hadamard Missed
– year: 2007
  ident: bib0030
  publication-title: Compensated algorithms in floating-point arithmetic: accuracy, validation, performances
– volume: 29
  start-page: 27
  year: 2003
  end-page: 48
  ident: bib0037
  article-title: Scalar fused multiply-add instructions produce floating-point matrix arithmetic provably accurate to the penultimate digit
  publication-title: ACM Trans. Math. Softw.
– start-page: 13
  year: 2014
  ident: bib0024
  article-title: Accurateevaluation of polynomials in Legendre basis
  publication-title: J. Appl. Math.
– year: 1974
  ident: bib0009
  article-title: Applied and Computational Complex Analysis, vol. 1
– year: 2002
  ident: bib0026
  article-title: Accuracy and Stability of Numerical Algorithm
– volume: 60
  start-page: 1188
  year: 2010
  end-page: 1208
  ident: bib0010
  article-title: Reliable root detection with the qd-algorithm: when Bernoulli, Hadamard and Rutishauser cooperate
  publication-title: Appl. Numer. Math.
– year: 2007
  ident: bib0035
  publication-title: More instruction level parallelism explains the actual efficiency of compensated algorithm
– reference: (online).
– volume: 60
  start-page: 744
  year: 2010
  end-page: 755
  ident: bib0022
  article-title: Accurate evaluation of a polynomial and its derivative in Bernstein form
  publication-title: Comput. Math. Appl.
– volume: 46
  start-page: 289
  year: 1926
  end-page: 305
  ident: bib0002
  article-title: On Bernoulli’s numerical solution of algebraic equations
  publication-title: Proc. R. Soc. Edinb.
– year: 1993
  ident: bib0031
  publication-title: Ingénierie du contrôle de la préision des calculs sur ordinateur
– volume: 46
  start-page: 289
  year: 1926
  ident: 10.1016/j.amc.2017.04.004_bib0002
  article-title: On Bernoulli’s numerical solution of algebraic equations
  publication-title: Proc. R. Soc. Edinb.
  doi: 10.1017/S0370164600022070
– volume: 5
  start-page: 496
  year: 1954
  ident: 10.1016/j.amc.2017.04.004_bib0011
  article-title: Anwendungen des quotienten-differenzen-algorithmus
  publication-title: Z. Angel. Math. Phys.
  doi: 10.1007/BF01601216
– year: 1996
  ident: 10.1016/j.amc.2017.04.004_bib0013
– volume: 8
  start-page: 570
  issue: 9
  year: 1965
  ident: 10.1016/j.amc.2017.04.004_bib0038
  article-title: Finding zeros of a polynomial by the qd algorithm
  publication-title: Comm. ACM
  doi: 10.1145/365559.365619
– volume: 24
  start-page: 695
  issue: 6
  year: 1997
  ident: 10.1016/j.amc.2017.04.004_bib0015
  article-title: Floating-point versus symbolic computations in the qd-algorithm
  publication-title: J. Symb. Comput.
  doi: 10.1006/jsco.1997.0162
– volume: 51
  start-page: 80
  year: 1931
  ident: 10.1016/j.amc.2017.04.004_bib0003
  article-title: Further numerical studies in algebraic equations and matrices
  publication-title: Proc. R. Soc. Edinb.
  doi: 10.1017/S0370164600023026
– volume: 49
  start-page: 47
  year: 1958
  ident: 10.1016/j.amc.2017.04.004_bib0012
  article-title: Solution of eigenvalue problems with the LR-transformation
  publication-title: Nat. Bur. Stand. Appl. Math. Ser.
– year: 1993
  ident: 10.1016/j.amc.2017.04.004_bib0031
– year: 1974
  ident: 10.1016/j.amc.2017.04.004_bib0009
– volume: 26
  start-page: 1955
  year: 2005
  ident: 10.1016/j.amc.2017.04.004_bib0016
  article-title: Accurate sum and dot product
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/030601818
– year: 1980
  ident: 10.1016/j.amc.2017.04.004_bib0008
– volume: 217
  start-page: 9702
  year: 2011
  ident: 10.1016/j.amc.2017.04.004_bib0023
  article-title: Accurate evaluation of a polynomial in Chebyshev form
  publication-title: Appl. Math. Comput.
– year: 2007
  ident: 10.1016/j.amc.2017.04.004_bib0035
– volume: 60
  start-page: 744
  year: 2010
  ident: 10.1016/j.amc.2017.04.004_bib0022
  article-title: Accurate evaluation of a polynomial and its derivative in Bernstein form
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2010.05.021
– volume: 31
  start-page: 741
  year: 2011
  ident: 10.1016/j.amc.2017.04.004_bib0005
  article-title: From qd to LR, or, how were the qd and LR algorithms discovered
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drq003
– start-page: 13
  year: 2014
  ident: 10.1016/j.amc.2017.04.004_sbref0024
  article-title: Accurateevaluation of polynomials in Legendre basis
  publication-title: J. Appl. Math.
– volume: 67
  start-page: 191
  year: 1994
  ident: 10.1016/j.amc.2017.04.004_bib0014
  article-title: Accurate singular values and differential qd algorithms
  publication-title: Numer. Math.
  doi: 10.1007/s002110050024
– volume: 31
  start-page: 1269
  year: 2008
  ident: 10.1016/j.amc.2017.04.004_bib0018
  article-title: Accurate floating-point summation part II: sign, K-fold faithful and rounding to nearest
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/07068816X
– volume: 26
  start-page: 191
  issue: 2–3
  year: 2009
  ident: 10.1016/j.amc.2017.04.004_bib0019
  article-title: Algorithms for accurate validated and fast polynomial evaluation
  publication-title: Jpn. J. Indust. Appl. Math.
  doi: 10.1007/BF03186531
– volume: 23
  year: 1939
  ident: 10.1016/j.amc.2017.04.004_bib0039
– year: 2007
  ident: 10.1016/j.amc.2017.04.004_bib0030
– volume: 60
  start-page: 1364
  year: 2010
  ident: 10.1016/j.amc.2017.04.004_bib0006
  article-title: Padé approximation and continued fractions
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2010.03.016
– volume: 29
  start-page: 27
  issue: 1
  year: 2003
  ident: 10.1016/j.amc.2017.04.004_bib0037
  article-title: Scalar fused multiply-add instructions produce floating-point matrix arithmetic provably accurate to the penultimate digit
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/641876.641878
– ident: 10.1016/j.amc.2017.04.004_bib0033
– start-page: 155
  year: 2001
  ident: 10.1016/j.amc.2017.04.004_bib0034
  article-title: Algorithms for quad-double precision floating point arithmetic
– volume: 8
  start-page: 101
  year: 1992
  ident: 10.1016/j.amc.2017.04.004_bib0001
  article-title: Essai sur l’étude des fonctions donnée par leurs dénveloppement de Taylor
  publication-title: J. Math. Pures Appl.
– volume: 45
  start-page: 255
  year: 1950
  ident: 10.1016/j.amc.2017.04.004_bib0004
  article-title: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators
  publication-title: J. Res. Natl. Bur. Stand.
  doi: 10.6028/jres.045.026
– volume: 60
  start-page: 1188
  year: 2010
  ident: 10.1016/j.amc.2017.04.004_bib0010
  article-title: Reliable root detection with the qd-algorithm: when Bernoulli, Hadamard and Rutishauser cooperate
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2010.04.006
– volume: 31
  start-page: 189
  year: 2008
  ident: 10.1016/j.amc.2017.04.004_bib0017
  article-title: Accurate floating-point summation part I: faithful rounding
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/050645671
– volume: 19
  start-page: 287
  year: 2010
  ident: 10.1016/j.amc.2017.04.004_bib0027
  article-title: Verification methods: rigorous results using floating-point arithmetic
  publication-title: Acta Numer.
  doi: 10.1017/S096249291000005X
– start-page: 141
  year: 2007
  ident: 10.1016/j.amc.2017.04.004_bib0021
  article-title: How to ensure a faithful polynomial evaluation with the compensated Horner algorithm
– volume: 5
  start-page: 233
  year: 1954
  ident: 10.1016/j.amc.2017.04.004_bib0025
  article-title: Der quotienten-differenzen-algorithmus
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/BF01600331
– year: 2008
  ident: 10.1016/j.amc.2017.04.004_bib0007
– volume: 18
  start-page: 224
  year: 1971
  ident: 10.1016/j.amc.2017.04.004_bib0029
  article-title: A floating-point technique for extending the available precision
  publication-title: Numer. Math.
  doi: 10.1007/BF01397083
– year: 2002
  ident: 10.1016/j.amc.2017.04.004_bib0026
– year: 1998
  ident: 10.1016/j.amc.2017.04.004_bib0028
– year: 2005
  ident: 10.1016/j.amc.2017.04.004_bib0020
– volume: 28
  start-page: 152
  issue: 2
  year: 2002
  ident: 10.1016/j.amc.2017.04.004_bib0032
  article-title: Design, implementation and testing of extended and mixed precision BLAS
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/567806.567808
– year: 2000
  ident: 10.1016/j.amc.2017.04.004_bib0036
SSID ssj0007614
Score 2.2755005
Snippet The compensated quotient-difference (Compqd) algorithm is proposed along with some applications. The main motivation is based on the fact that the standard...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 245
SubjectTerms Compensated qd algorithm
Continued fractions
Error-free transformation
Pole detection
Qd algorithm
Rounding error
Title Accurate quotient-difference algorithm: Error analysis, improvements and applications
URI https://dx.doi.org/10.1016/j.amc.2017.04.004
Volume 309
WOSCitedRecordID wos000401598800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbKxgM8TPwUY2PKA09AkGM7dc1btXUaaExIbKhvkeM4a6YuKVkzTfwT_Muc7TjNxkCAxEtUWXFr3X31nc933yH0UqhcgVeQhhisW2jYX-A_R0UY8dyUPrKRtMGcL4f86Gg0nYpPg8F3XwtzOedlObq6Eov_qmoYA2Wb0tm_UHf3pTAAn0Hp8AS1w_OPFD9WqjH8D6-_NpXlTA19ExRTGzA_repiObPh-Uld2xRKR0tihF3YEIN2ZW-WxrV3v933Y73zet6xvl74CrlFc_12f69xecBF6q2kDZzWdVGtUrurLpOnaAPYB7Ib251pN3ZYfJsV_TgF2D7TZyFeBc98Ac21_E5zggopxm6P024PBrCE8dAxmfpNmmLR32YdBWVrsYlr4vKTMXBxibO38txwVUbcctq6Zsc3OLY_m3WYZUSc2mbxd9A64bGAbXJ9_H4y_dAZdz50dPF-3f6i3KYM3vih212dnvty_ABttOeOYOzw8hANdPkI3f-4Ut9jdOKRE9yCnKBDzrvA4ibwuHkT9FEDw1nQR80TdLI_Od49CNuuG6Eigi_DnOAheE6Ekwyb03WsJUlZTpmEsy04kDQXOSPwAhG5JozK1FzNY5myzDSJ1_QpWiurUj9DQW5ylGMlIyEzlqVxSiNFMz00xdtRKugmwl5AiWop6U1nlHnicw_PEpBpYmSaYJaATDfRq27KwvGx_O5l5qWetA6lcxQTgMivpz3_t2lb6N4K99tobVk3-gW6qy6XxUW90wLpB_35mec
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+quotient-difference+algorithm%3A+Error+analysis%2C+improvements+and+applications&rft.jtitle=Applied+mathematics+and+computation&rft.au=Du%2C+Peibing&rft.au=Barrio%2C+Roberto&rft.au=Jiang%2C+Hao&rft.au=Cheng%2C+Lizhi&rft.date=2017-09-15&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.eissn=1873-5649&rft.volume=309&rft.spage=245&rft.epage=271&rft_id=info:doi/10.1016%2Fj.amc.2017.04.004&rft.externalDocID=S0096300317302394
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon