Minimum maximal acyclic matching in proper interval graphs
Given a graph G, Min-Max-Acy-Matching is the problem of finding a maximal matching M in G of minimum cardinality such that the set of M-saturated vertices induces an acyclic subgraph in G. The decision version of Min-Max-Acy-Matching is known to be NP-complete. In this paper, we strengthen this resu...
Uložené v:
| Vydané v: | Discrete Applied Mathematics Ročník 360; s. 414 - 427 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
15.01.2025
|
| Predmet: | |
| ISSN: | 0166-218X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Given a graph G, Min-Max-Acy-Matching is the problem of finding a maximal matching M in G of minimum cardinality such that the set of M-saturated vertices induces an acyclic subgraph in G. The decision version of Min-Max-Acy-Matching is known to be NP-complete. In this paper, we strengthen this result by proving that the decision version of Min-Max-Acy-Matching is NP-complete even for dually chordal graphs. Also, we give the first positive algorithmic result for Min-Max-Acy-Matching by proposing a linear-time algorithm for computing a minimum cardinality maximal acyclic matching in proper interval graphs, a subclass of dually chordal graphs. |
|---|---|
| ISSN: | 0166-218X |
| DOI: | 10.1016/j.dam.2024.10.012 |