Geodesic simplex based multiobjective endmember extraction for nonlinear hyperspectral mixtures
This paper presents a novel multiobjective endmember extraction approach for nonlinear hyperspectral mixtures by assuming that the distribution of mixtures conforms to a nonlinear manifold and the endmembers correspond to its extreme points. To identify the endmembers, the approach aims to seek a se...
Uloženo v:
| Vydáno v: | Information sciences Ročník 577; s. 398 - 423 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.10.2021
|
| Témata: | |
| ISSN: | 0020-0255, 1872-6291 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!