Geodesic simplex based multiobjective endmember extraction for nonlinear hyperspectral mixtures

This paper presents a novel multiobjective endmember extraction approach for nonlinear hyperspectral mixtures by assuming that the distribution of mixtures conforms to a nonlinear manifold and the endmembers correspond to its extreme points. To identify the endmembers, the approach aims to seek a se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences Jg. 577; S. 398 - 423
Hauptverfasser: Jiang, Xiangming, Gong, Maoguo, Zhan, Tao, Li, Hao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.10.2021
Schlagworte:
ISSN:0020-0255, 1872-6291
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents a novel multiobjective endmember extraction approach for nonlinear hyperspectral mixtures by assuming that the distribution of mixtures conforms to a nonlinear manifold and the endmembers correspond to its extreme points. To identify the endmembers, the approach aims to seek a set of pixels which define a simplex with the maximum volume along the manifold. Meanwhile, several obstacles are properly settled to make it a good performance. First, calculating a simplex’s volume along the manifold needs to calculate the geodesic distance (i.e., the shortest path) between its vertices on the k-nearest neighbor (kNN) graph of the manifold data, but it is time-consuming to go through all the manifold points to search the desired simplex. Therefore, a boundary detection technique is proposed to restrict the identification of endmembers within the boundary points of the manifold to improve the time efficiency. Second, the volume of the geodesic distance based simplex is sensitive to the deviations in the geodesic distance caused by noise. To settle this issue, the multiple regression based noise estimation method is applied due to the high correlation among hundreds of spectral bands. Therefore, the spectral noise can be removed before the calculation of geodesic distance. Third, the number of endmembers is of crucial importance but hard to determine, so it is usually specified beforehand in most unmixing approaches. The proposed approach can instinctively obtain a set of simplices with the maximum volume corresponding to different numbers of endmembers, thus providing more insight for determining the optimal combination of endmembers. In addition, the proposed method is a population based optimization method which is less likely to get trapped into the local optimum. The experiments on synthetic as well as real data sets demonstrate the validity and superiority of the proposed method as compared with the methods of the same type.
AbstractList This paper presents a novel multiobjective endmember extraction approach for nonlinear hyperspectral mixtures by assuming that the distribution of mixtures conforms to a nonlinear manifold and the endmembers correspond to its extreme points. To identify the endmembers, the approach aims to seek a set of pixels which define a simplex with the maximum volume along the manifold. Meanwhile, several obstacles are properly settled to make it a good performance. First, calculating a simplex’s volume along the manifold needs to calculate the geodesic distance (i.e., the shortest path) between its vertices on the k-nearest neighbor (kNN) graph of the manifold data, but it is time-consuming to go through all the manifold points to search the desired simplex. Therefore, a boundary detection technique is proposed to restrict the identification of endmembers within the boundary points of the manifold to improve the time efficiency. Second, the volume of the geodesic distance based simplex is sensitive to the deviations in the geodesic distance caused by noise. To settle this issue, the multiple regression based noise estimation method is applied due to the high correlation among hundreds of spectral bands. Therefore, the spectral noise can be removed before the calculation of geodesic distance. Third, the number of endmembers is of crucial importance but hard to determine, so it is usually specified beforehand in most unmixing approaches. The proposed approach can instinctively obtain a set of simplices with the maximum volume corresponding to different numbers of endmembers, thus providing more insight for determining the optimal combination of endmembers. In addition, the proposed method is a population based optimization method which is less likely to get trapped into the local optimum. The experiments on synthetic as well as real data sets demonstrate the validity and superiority of the proposed method as compared with the methods of the same type.
Author Jiang, Xiangming
Gong, Maoguo
Zhan, Tao
Li, Hao
Author_xml – sequence: 1
  givenname: Xiangming
  surname: Jiang
  fullname: Jiang, Xiangming
  organization: School of Electronic Engineering, The Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, No. 2 South TaiBai Road, Xi’an 710071, China
– sequence: 2
  givenname: Maoguo
  surname: Gong
  fullname: Gong, Maoguo
  email: gong@ieee.org
  organization: School of Electronic Engineering, The Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, No. 2 South TaiBai Road, Xi’an 710071, China
– sequence: 3
  givenname: Tao
  surname: Zhan
  fullname: Zhan, Tao
  organization: School of Computer Science, The Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, No. 2 South TaiBai Road, Xi’an 710071, China
– sequence: 4
  givenname: Hao
  surname: Li
  fullname: Li, Hao
  organization: School of Electronic Engineering, The Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, No. 2 South TaiBai Road, Xi’an 710071, China
BookMark eNp9kE1LAzEQhoNUsK3-AG_5A7tOsl8pnqRoFQpe9ByyyQSz7BfJtrT_3iz15KGngWGel3mfFVn0Q4-EPDJIGbDyqUldH1IOnKVQpQCbG7JkouJJyTdsQZYAHBLgRXFHViE0AJBXZbkkcoeDweA0Da4bWzzRWgU0tDu0kxvqBvXkjkixNx12NXqKp8mruBx6agdP4xut61F5-nMe0YcxAl61tHOn6eAx3JNbq9qAD39zTb7fXr-278n-c_exfdknmm-qKUFbCGFznZVZXZtaiSznSgmRcWOsrrRFXuelAlTGaFHEm1zbTAudZbnlkVoTdsnVfgjBo5Wjd53yZ8lAzoZkI6MhORuSUMloKDLVP0a7Sc3VYgXXXiWfLyTGSkeHXgbtsNdonI8CpBncFfoXA2GHew
CitedBy_id crossref_primary_10_1016_j_asoc_2024_112160
crossref_primary_10_1016_j_asoc_2025_113762
crossref_primary_10_1109_TGRS_2022_3199261
crossref_primary_10_1016_j_infrared_2024_105498
Cites_doi 10.1016/j.jpba.2008.08.014
10.1109/TGRS.2006.881803
10.1117/12.366289
10.1109/JSTARS.2014.2320576
10.1109/TGRS.2005.844293
10.1109/TGRS.2008.918089
10.1007/BF01386390
10.1016/j.isprsjprs.2013.11.014
10.1016/j.tifs.2007.06.001
10.1109/36.934072
10.1016/S0034-4257(99)00112-1
10.1109/JSTARS.2021.3054926
10.1109/MSP.2013.2279274
10.1109/T-C.1969.222678
10.1109/TSP.2009.2025802
10.1145/367766.368168
10.1029/JB092iB10p10391
10.1109/2945.998671
10.1109/TGRS.2016.2580702
10.1016/j.jqsrt.2012.04.010
10.1109/JSTARS.2014.2319894
10.1109/JSTARS.2019.2962609
10.1029/JB086iB04p03039
10.1109/IGARSS.2008.4779330
10.1109/79.974727
10.1109/TIP.2015.2456508
10.1109/JSTARS.2017.2682281
10.1109/TGRS.2017.2751060
10.1109/TEVC.2013.2287153
10.1016/j.rse.2005.10.007
10.1109/TGRS.2010.2098414
10.1109/TBME.2010.2049110
10.1109/TGRS.2020.2988519
10.1109/TGRS.2015.2453915
10.1029/JB092iB10p10376
10.1109/TEVC.2007.892759
10.1109/JSTSP.2010.2088377
10.1080/01431160802558659
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2021.07.009
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 423
ExternalDocumentID 10_1016_j_ins_2021_07_009
S002002552100699X
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-ef588f4c363bbdba8342aa8832ddfc7cfe2b46a0eaddc85bbd4cf3c8c334f2363
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000709264000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 07:25:53 EST 2025
Tue Nov 18 22:11:29 EST 2025
Fri Feb 23 02:44:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nonlinear manifold
Boundary detection
Multiobjective endmember extraction
Geodesic distance
Maximum volume
Multiple regression
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-ef588f4c363bbdba8342aa8832ddfc7cfe2b46a0eaddc85bbd4cf3c8c334f2363
PageCount 26
ParticipantIDs crossref_primary_10_1016_j_ins_2021_07_009
crossref_citationtrail_10_1016_j_ins_2021_07_009
elsevier_sciencedirect_doi_10_1016_j_ins_2021_07_009
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Floyd (b0050) 1962; 5
Winter, M.E. (1999). N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. In Proc. SPIE Image Spectrom. V (pp. 266–275). volume 3753.
Yang, Chen, Wang (b0170) 2020; 13
Dobigeon, Tourneret, Richard, Bermudez, McLaughlin, Hero (b0040) 2013; 31
Li, Bioucas-Dias, Plaza, Lin (b0115) 2016; 54
Heylen, Burazerovic, Scheunders (b0075) 2010; 5
Dennison, Charoensiri, Roberts, Peterson, Green (b0030) 2006; 100
Zhang, Li (b0180) 2007; 11
Nascimento, Dias (b0140) 2005; 43
Yang, Luo, Wang (b0175) 2017; 10
Dijkstra (b0035) 1959; 1
Heylen, Parente, Gader (b0080) 2014; 7
Li, Yao, Stolkin, Gong, He (b0120) 2014; 18
Fan, Hu, Miller, Li (b0045) 2009; 30
Hapke (b0070) 1981; 86
Sammon (b0145) 1969; 100
Bioucas-Dias, Nascimento (b0010) 2008; 46
Shipman, Adams (b0150) 1987; 92
Keshava, Mustard (b0105) 2002; 19
Chang, Wu, Liu, Ouyang (b0025) 2006; 44
McGwire, Minor, Fenstermaker (b0130) 2000; 72
Mustard, Pieters (b0135) 1987; 92
Jiang, Gong, Zhan, Zhang (b0100) 2020; 58
Zigelman, Kimmel, Kiryati (b0195) 2002; 8
Manolakis, Siracusa, Shaw (b0125) 2001; 39
Halimi, Altmann, Dobigeon, Tourneret (b0065) 2011; 49
Zhu, Wang, Xiang, Fan, Pan (b0190) 2014; 88
Jiang, Gong, Zhan, Sheng, Xu (bib196) 2021; 14
Akbari, Kosugi, Kojima, Tanaka (b0005) 2010; 57
Boardman, J.W., Kruse, F.A., & Green, R.O. (1995). Mapping target signatures via partial unmixing of aviris data. In Proc. Fifth Annu. JPL Airborne Earth Sci. Workshop (pp. 23–26). Pasadena, USA: JPL.
Gowen, O’Donnell, Cullen, Downey, Frias (b0060) 2007; 18
Chan, Chi, Huang, Ma (b0020) 2009; 57
Jiang, Gong, Li, Zhang, Li (b0095) 2018; 56
Wang, Pan, Xiang, Zhu (b0160) 2015; 24
Zhu (b0185) 2017; 1708
Heylen, Scheunders (b0090) 2016; 54
Li, J., & Bioucas-Dias, J.M. (2008). Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data. In IEEE Int. Geosci. Remote Sens. Symp. (pp. III–250). Piscataway, NJ: IEEE.
Heylen, Scheunders (b0085) 2014; 7
Shkuratov, Kaydash, Korokhin, Velikodsky, Petrov, Zubko, Stankevich, Videen (b0155) 2012; 113
Gendrin, Roggo, Collet (b0055) 2008; 48
Hapke (10.1016/j.ins.2021.07.009_b0070) 1981; 86
Dijkstra (10.1016/j.ins.2021.07.009_b0035) 1959; 1
Shkuratov (10.1016/j.ins.2021.07.009_b0155) 2012; 113
Wang (10.1016/j.ins.2021.07.009_b0160) 2015; 24
Keshava (10.1016/j.ins.2021.07.009_b0105) 2002; 19
Zigelman (10.1016/j.ins.2021.07.009_b0195) 2002; 8
Yang (10.1016/j.ins.2021.07.009_b0175) 2017; 10
Heylen (10.1016/j.ins.2021.07.009_b0075) 2010; 5
10.1016/j.ins.2021.07.009_b0110
Fan (10.1016/j.ins.2021.07.009_b0045) 2009; 30
Gendrin (10.1016/j.ins.2021.07.009_b0055) 2008; 48
Mustard (10.1016/j.ins.2021.07.009_b0135) 1987; 92
Heylen (10.1016/j.ins.2021.07.009_b0090) 2016; 54
Jiang (10.1016/j.ins.2021.07.009_b0095) 2018; 56
Jiang (10.1016/j.ins.2021.07.009_b0100) 2020; 58
Dobigeon (10.1016/j.ins.2021.07.009_b0040) 2013; 31
Sammon (10.1016/j.ins.2021.07.009_b0145) 1969; 100
10.1016/j.ins.2021.07.009_b0015
Zhu (10.1016/j.ins.2021.07.009_b0185) 2017; 1708
Nascimento (10.1016/j.ins.2021.07.009_b0140) 2005; 43
Yang (10.1016/j.ins.2021.07.009_b0170) 2020; 13
Shipman (10.1016/j.ins.2021.07.009_b0150) 1987; 92
Bioucas-Dias (10.1016/j.ins.2021.07.009_b0010) 2008; 46
Halimi (10.1016/j.ins.2021.07.009_b0065) 2011; 49
Akbari (10.1016/j.ins.2021.07.009_b0005) 2010; 57
Heylen (10.1016/j.ins.2021.07.009_b0085) 2014; 7
Chang (10.1016/j.ins.2021.07.009_b0025) 2006; 44
Dennison (10.1016/j.ins.2021.07.009_b0030) 2006; 100
Jiang (10.1016/j.ins.2021.07.009_bib196) 2021; 14
Zhu (10.1016/j.ins.2021.07.009_b0190) 2014; 88
Floyd (10.1016/j.ins.2021.07.009_b0050) 1962; 5
Manolakis (10.1016/j.ins.2021.07.009_b0125) 2001; 39
10.1016/j.ins.2021.07.009_b0165
Li (10.1016/j.ins.2021.07.009_b0120) 2014; 18
Zhang (10.1016/j.ins.2021.07.009_b0180) 2007; 11
Gowen (10.1016/j.ins.2021.07.009_b0060) 2007; 18
Li (10.1016/j.ins.2021.07.009_b0115) 2016; 54
Chan (10.1016/j.ins.2021.07.009_b0020) 2009; 57
Heylen (10.1016/j.ins.2021.07.009_b0080) 2014; 7
McGwire (10.1016/j.ins.2021.07.009_b0130) 2000; 72
References_xml – volume: 57
  start-page: 2011
  year: 2010
  end-page: 2017
  ident: b0005
  article-title: Detection and analysis of the intestinal ischemia using visible and invisible hyperspectral imaging
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 31
  start-page: 82
  year: 2013
  end-page: 94
  ident: b0040
  article-title: Nonlinear unmixing of hyperspectral images: Models and algorithms
  publication-title: IEEE Signal Process Mag.
– volume: 1
  start-page: 269
  year: 1959
  end-page: 271
  ident: b0035
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer. Math.
– volume: 49
  start-page: 4153
  year: 2011
  end-page: 4162
  ident: b0065
  article-title: Nonlinear unmixing of hyperspectral images using a generalized bilinear model
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 54
  start-page: 6076
  year: 2016
  end-page: 6090
  ident: b0115
  article-title: Robust collaborative nonnegative matrix factorization for hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 113
  start-page: 2431
  year: 2012
  end-page: 2456
  ident: b0155
  article-title: A critical assessment of the hapke photometric model
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– reference: Winter, M.E. (1999). N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. In Proc. SPIE Image Spectrom. V (pp. 266–275). volume 3753.
– volume: 7
  start-page: 1844
  year: 2014
  end-page: 1868
  ident: b0080
  article-title: A review of nonlinear hyperspectral unmixing methods
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 57
  start-page: 4418
  year: 2009
  end-page: 4432
  ident: b0020
  article-title: A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
  publication-title: IEEE Trans. Signal Process.
– volume: 5
  start-page: 345
  year: 1962
  ident: b0050
  article-title: Algorithm 97: Shortest path
  publication-title: Commun. ACM
– volume: 46
  start-page: 2435
  year: 2008
  end-page: 2445
  ident: b0010
  article-title: Hyperspectral subspace identification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 72
  start-page: 360
  year: 2000
  end-page: 374
  ident: b0130
  article-title: Hyperspectral mixture modeling for quantifying sparse vegetation cover in arid environments
  publication-title: Remote Sens. Environ.
– reference: Boardman, J.W., Kruse, F.A., & Green, R.O. (1995). Mapping target signatures via partial unmixing of aviris data. In Proc. Fifth Annu. JPL Airborne Earth Sci. Workshop (pp. 23–26). Pasadena, USA: JPL.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b0180
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 43
  start-page: 898
  year: 2005
  end-page: 910
  ident: b0140
  article-title: Vertex component analysis: A fast algorithm to unmix hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 54
  start-page: 240
  year: 2016
  end-page: 251
  ident: b0090
  article-title: A multilinear mixing model for nonlinear spectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 56
  start-page: 508
  year: 2018
  end-page: 523
  ident: b0095
  article-title: A two-phase multiobjective sparse unmixing approach for hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 58
  start-page: 8192
  year: 2020
  end-page: 8210
  ident: b0100
  article-title: Multiobjective endmember extraction based on bilinear mixture model
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 18
  start-page: 827
  year: 2014
  end-page: 845
  ident: b0120
  article-title: An evolutionary multiobjective approach to sparse reconstruction
  publication-title: IEEE Trans. Evol. Comput.
– volume: 86
  start-page: 3039
  year: 1981
  end-page: 3054
  ident: b0070
  article-title: Bidirectional reflectance spectroscopy: 1. theory
  publication-title: J. Geophys. Res. Solid Earth
– volume: 88
  start-page: 101
  year: 2014
  end-page: 118
  ident: b0190
  article-title: Structured sparse method for hyperspectral unmixing
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 13
  start-page: 351
  year: 2020
  end-page: 366
  ident: b0170
  article-title: Nonlinear endmember identification for hyperspectral imagery via hyperpath-based simplex growing and fuzzy assessment. IEEE J
  publication-title: Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 39
  start-page: 1392
  year: 2001
  end-page: 1409
  ident: b0125
  article-title: Hyperspectral subpixel target detection using the linear mixing model
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 100
  start-page: 212
  year: 2006
  end-page: 222
  ident: b0030
  article-title: Wildfire temperature and land cover modeling using hyperspectral data
  publication-title: Remote Sens. Environ.
– volume: 92
  start-page: 10391
  year: 1987
  end-page: 10402
  ident: b0150
  article-title: Detectability of minerals on desert alluvial fans using reflectance spectra
  publication-title: J. Geophys. Res. Solid Earth
– volume: 7
  start-page: 1879
  year: 2014
  end-page: 1888
  ident: b0085
  article-title: A distance geometric framework for nonlinear hyperspectral unmixing. IEEE J
  publication-title: Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 10
  start-page: 3693
  year: 2017
  end-page: 3710
  ident: b0175
  article-title: Constrained nonnegative matrix factorization based on particle swarm optimization for hyperspectral unmixing. IEEE J
  publication-title: Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 44
  start-page: 2804
  year: 2006
  end-page: 2819
  ident: b0025
  article-title: A new growing method for simplex-based endmember extraction algorithm
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 1708
  start-page: 05125
  year: 2017
  ident: b0185
  article-title: Spectral unmixing datasets with ground truths
  publication-title: CoRR, arXiv
– volume: 18
  start-page: 590
  year: 2007
  end-page: 598
  ident: b0060
  article-title: Hyperspectral imaging–an emerging process analytical tool for food quality and safety control
  publication-title: Trends Food Sci. Technol.
– volume: 19
  start-page: 44
  year: 2002
  end-page: 57
  ident: b0105
  article-title: Spectral unmixing
  publication-title: IEEE Signal Process Mag.
– reference: Li, J., & Bioucas-Dias, J.M. (2008). Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data. In IEEE Int. Geosci. Remote Sens. Symp. (pp. III–250). Piscataway, NJ: IEEE.
– volume: 92
  start-page: 10376
  year: 1987
  end-page: 10390
  ident: b0135
  article-title: Abundance and distribution of ultramafic microbreccia in moses rock dike: Quantitative application of mapping spectroscopy
  publication-title: J. Geophys. Res. Solid Earth
– volume: 24
  start-page: 4027
  year: 2015
  end-page: 4040
  ident: b0160
  article-title: Robust hyperspectral unmixing with correntropy-based metric
  publication-title: IEEE Trans. Image Process.
– volume: 5
  start-page: 534
  year: 2010
  end-page: 542
  ident: b0075
  article-title: Non-linear spectral unmixing by geodesic simplex volume maximization
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 8
  start-page: 198
  year: 2002
  end-page: 207
  ident: b0195
  article-title: Texture mapping using surface flattening via multidimensional scaling
  publication-title: IEEE Trans. Visual Comput. Graphics
– volume: 30
  start-page: 2951
  year: 2009
  end-page: 2962
  ident: b0045
  article-title: Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data
  publication-title: Int. J. Remote Sens.
– volume: 48
  start-page: 533
  year: 2008
  end-page: 553
  ident: b0055
  article-title: Pharmaceutical applications of vibrational chemical imaging and chemometrics: A review
  publication-title: J. Pharm. Biomed. Anal.
– volume: 100
  start-page: 401
  year: 1969
  end-page: 409
  ident: b0145
  article-title: A nonlinear mapping for data structure analysis
  publication-title: IEEE Trans. Comput.
– volume: 14
  start-page: 2418
  year: 2021
  end-page: 2431
  ident: bib196
  article-title: Efficient two-phase multiobjective sparse unmixing approach for hyperspectral data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens.
– volume: 48
  start-page: 533
  year: 2008
  ident: 10.1016/j.ins.2021.07.009_b0055
  article-title: Pharmaceutical applications of vibrational chemical imaging and chemometrics: A review
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2008.08.014
– volume: 44
  start-page: 2804
  year: 2006
  ident: 10.1016/j.ins.2021.07.009_b0025
  article-title: A new growing method for simplex-based endmember extraction algorithm
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.881803
– ident: 10.1016/j.ins.2021.07.009_b0165
  doi: 10.1117/12.366289
– volume: 7
  start-page: 1844
  year: 2014
  ident: 10.1016/j.ins.2021.07.009_b0080
  article-title: A review of nonlinear hyperspectral unmixing methods
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2320576
– volume: 43
  start-page: 898
  year: 2005
  ident: 10.1016/j.ins.2021.07.009_b0140
  article-title: Vertex component analysis: A fast algorithm to unmix hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2005.844293
– volume: 46
  start-page: 2435
  year: 2008
  ident: 10.1016/j.ins.2021.07.009_b0010
  article-title: Hyperspectral subspace identification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.918089
– volume: 1
  start-page: 269
  year: 1959
  ident: 10.1016/j.ins.2021.07.009_b0035
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer. Math.
  doi: 10.1007/BF01386390
– volume: 88
  start-page: 101
  year: 2014
  ident: 10.1016/j.ins.2021.07.009_b0190
  article-title: Structured sparse method for hyperspectral unmixing
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.11.014
– volume: 18
  start-page: 590
  year: 2007
  ident: 10.1016/j.ins.2021.07.009_b0060
  article-title: Hyperspectral imaging–an emerging process analytical tool for food quality and safety control
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2007.06.001
– volume: 39
  start-page: 1392
  year: 2001
  ident: 10.1016/j.ins.2021.07.009_b0125
  article-title: Hyperspectral subpixel target detection using the linear mixing model
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.934072
– volume: 72
  start-page: 360
  year: 2000
  ident: 10.1016/j.ins.2021.07.009_b0130
  article-title: Hyperspectral mixture modeling for quantifying sparse vegetation cover in arid environments
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(99)00112-1
– volume: 14
  start-page: 2418
  year: 2021
  ident: 10.1016/j.ins.2021.07.009_bib196
  article-title: Efficient two-phase multiobjective sparse unmixing approach for hyperspectral data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens.
  doi: 10.1109/JSTARS.2021.3054926
– volume: 31
  start-page: 82
  year: 2013
  ident: 10.1016/j.ins.2021.07.009_b0040
  article-title: Nonlinear unmixing of hyperspectral images: Models and algorithms
  publication-title: IEEE Signal Process Mag.
  doi: 10.1109/MSP.2013.2279274
– volume: 100
  start-page: 401
  year: 1969
  ident: 10.1016/j.ins.2021.07.009_b0145
  article-title: A nonlinear mapping for data structure analysis
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/T-C.1969.222678
– volume: 57
  start-page: 4418
  year: 2009
  ident: 10.1016/j.ins.2021.07.009_b0020
  article-title: A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2025802
– volume: 5
  start-page: 345
  year: 1962
  ident: 10.1016/j.ins.2021.07.009_b0050
  article-title: Algorithm 97: Shortest path
  publication-title: Commun. ACM
  doi: 10.1145/367766.368168
– volume: 92
  start-page: 10391
  year: 1987
  ident: 10.1016/j.ins.2021.07.009_b0150
  article-title: Detectability of minerals on desert alluvial fans using reflectance spectra
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/JB092iB10p10391
– volume: 8
  start-page: 198
  year: 2002
  ident: 10.1016/j.ins.2021.07.009_b0195
  article-title: Texture mapping using surface flattening via multidimensional scaling
  publication-title: IEEE Trans. Visual Comput. Graphics
  doi: 10.1109/2945.998671
– volume: 54
  start-page: 6076
  year: 2016
  ident: 10.1016/j.ins.2021.07.009_b0115
  article-title: Robust collaborative nonnegative matrix factorization for hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2580702
– volume: 113
  start-page: 2431
  year: 2012
  ident: 10.1016/j.ins.2021.07.009_b0155
  article-title: A critical assessment of the hapke photometric model
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
  doi: 10.1016/j.jqsrt.2012.04.010
– volume: 7
  start-page: 1879
  year: 2014
  ident: 10.1016/j.ins.2021.07.009_b0085
  article-title: A distance geometric framework for nonlinear hyperspectral unmixing. IEEE J
  publication-title: Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2319894
– volume: 13
  start-page: 351
  year: 2020
  ident: 10.1016/j.ins.2021.07.009_b0170
  article-title: Nonlinear endmember identification for hyperspectral imagery via hyperpath-based simplex growing and fuzzy assessment. IEEE J
  publication-title: Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2962609
– volume: 86
  start-page: 3039
  year: 1981
  ident: 10.1016/j.ins.2021.07.009_b0070
  article-title: Bidirectional reflectance spectroscopy: 1. theory
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/JB086iB04p03039
– ident: 10.1016/j.ins.2021.07.009_b0110
  doi: 10.1109/IGARSS.2008.4779330
– ident: 10.1016/j.ins.2021.07.009_b0015
– volume: 19
  start-page: 44
  year: 2002
  ident: 10.1016/j.ins.2021.07.009_b0105
  article-title: Spectral unmixing
  publication-title: IEEE Signal Process Mag.
  doi: 10.1109/79.974727
– volume: 24
  start-page: 4027
  year: 2015
  ident: 10.1016/j.ins.2021.07.009_b0160
  article-title: Robust hyperspectral unmixing with correntropy-based metric
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2456508
– volume: 1708
  start-page: 05125
  year: 2017
  ident: 10.1016/j.ins.2021.07.009_b0185
  article-title: Spectral unmixing datasets with ground truths
  publication-title: CoRR, arXiv
– volume: 10
  start-page: 3693
  year: 2017
  ident: 10.1016/j.ins.2021.07.009_b0175
  article-title: Constrained nonnegative matrix factorization based on particle swarm optimization for hyperspectral unmixing. IEEE J
  publication-title: Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2682281
– volume: 56
  start-page: 508
  year: 2018
  ident: 10.1016/j.ins.2021.07.009_b0095
  article-title: A two-phase multiobjective sparse unmixing approach for hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2751060
– volume: 18
  start-page: 827
  year: 2014
  ident: 10.1016/j.ins.2021.07.009_b0120
  article-title: An evolutionary multiobjective approach to sparse reconstruction
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2287153
– volume: 100
  start-page: 212
  year: 2006
  ident: 10.1016/j.ins.2021.07.009_b0030
  article-title: Wildfire temperature and land cover modeling using hyperspectral data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.10.007
– volume: 49
  start-page: 4153
  year: 2011
  ident: 10.1016/j.ins.2021.07.009_b0065
  article-title: Nonlinear unmixing of hyperspectral images using a generalized bilinear model
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2098414
– volume: 57
  start-page: 2011
  year: 2010
  ident: 10.1016/j.ins.2021.07.009_b0005
  article-title: Detection and analysis of the intestinal ischemia using visible and invisible hyperspectral imaging
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2049110
– volume: 58
  start-page: 8192
  year: 2020
  ident: 10.1016/j.ins.2021.07.009_b0100
  article-title: Multiobjective endmember extraction based on bilinear mixture model
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2988519
– volume: 54
  start-page: 240
  year: 2016
  ident: 10.1016/j.ins.2021.07.009_b0090
  article-title: A multilinear mixing model for nonlinear spectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2453915
– volume: 92
  start-page: 10376
  year: 1987
  ident: 10.1016/j.ins.2021.07.009_b0135
  article-title: Abundance and distribution of ultramafic microbreccia in moses rock dike: Quantitative application of mapping spectroscopy
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/JB092iB10p10376
– volume: 11
  start-page: 712
  year: 2007
  ident: 10.1016/j.ins.2021.07.009_b0180
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 5
  start-page: 534
  year: 2010
  ident: 10.1016/j.ins.2021.07.009_b0075
  article-title: Non-linear spectral unmixing by geodesic simplex volume maximization
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2010.2088377
– volume: 30
  start-page: 2951
  year: 2009
  ident: 10.1016/j.ins.2021.07.009_b0045
  article-title: Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160802558659
SSID ssj0004766
Score 2.3823447
Snippet This paper presents a novel multiobjective endmember extraction approach for nonlinear hyperspectral mixtures by assuming that the distribution of mixtures...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 398
SubjectTerms Boundary detection
Geodesic distance
Maximum volume
Multiobjective endmember extraction
Multiple regression
Nonlinear manifold
Title Geodesic simplex based multiobjective endmember extraction for nonlinear hyperspectral mixtures
URI https://dx.doi.org/10.1016/j.ins.2021.07.009
Volume 577
WOSCitedRecordID wos000709264000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGKQc4ICigFijyAXEgipQ4TuwcK1Q2lYpDQblFjheYUSdTzUyrOfPLeY7tJMMmQOJiRU6cRH6f32K_BaFnWWqEYKmJSUbzmCotgA9CQxmVtgASaTpv90-n7OyMV1X5YTL5GmJhri9Y2_Lttrz8r6SGPiC2DZ39C3L3L4UOuAaiQwtkh_aPCP9aL5WGuY_WM5v5dxtZQaWc5-CymTsGF-lWLbQtBhIBd175guHW5bB1uTPEKvoCJqqLxLRB_IvZ1h42rMfarI9l6sZ6UTp4JM78TnRlLxZBQnap-N2N92L5-Wo53rnuwCP6rlNXUdt3-K0JkvZObn6_LMTM7Lh0WgU1tpaMk0CO7XJG4oK4ul2BL-e-vovjrJkrVu2FNHVByj_wf7cVMQejxaZiJ2mXmDUpB2HXuyDaU-rOoAKbNynKsrqB9gjLSz5Fe8dvT6p3Q3Qtcyfe4b_D2XjnJfjdh36u3Yw0lvO76I43NfCxg8g9NNHtPro9SkC5j4582Ap-jke0xJ7h30d1ABP2YMIdmPAumHAPJjyACcPrcA8mvAMmHMD0AH18dXL-8k3sS3LEkpRsE2uTc26ozIqsaVQjeEaJEBzEglJGMmk0aWghYLUrJXkOz1BpMsllllFDYNRDNIVP6wObLCDnKeNFYlRBeZmKguqCU5ookhtN9SFKwlTW0uert2VTLurgmDivYfZrO_t1Yr0oykP0oh9y6ZK1_O5hGuhT-yXitMgawPTrYY_-bdhjdGtYIU_QdLO60kfoprzezNarpx5y3wBnBain
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geodesic+simplex+based+multiobjective+endmember+extraction+for+nonlinear+hyperspectral+mixtures&rft.jtitle=Information+sciences&rft.au=Jiang%2C+Xiangming&rft.au=Gong%2C+Maoguo&rft.au=Zhan%2C+Tao&rft.au=Li%2C+Hao&rft.date=2021-10-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=577&rft.spage=398&rft.epage=423&rft_id=info:doi/10.1016%2Fj.ins.2021.07.009&rft.externalDocID=S002002552100699X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon