Analysis and numerical approximation of singular boundary value problems with the p-Laplacian in fluid mechanics

This paper studies a generalization of the Cahn–Hilliard continuum model for multi-phase fluids where the classical Laplacian has been replaced by a degenerate one (i.e., the so-called p-Laplacian). The solution’s asymptotic behavior is analyzed at two singular points; namely, at the origin and at i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational and applied mathematics Ročník 262; s. 87 - 104
Hlavní autori: Kulikov, G.Yu, Lima, P.M., Morgado, M.L.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 15.05.2014
Predmet:
ISSN:0377-0427, 1879-1778
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper studies a generalization of the Cahn–Hilliard continuum model for multi-phase fluids where the classical Laplacian has been replaced by a degenerate one (i.e., the so-called p-Laplacian). The solution’s asymptotic behavior is analyzed at two singular points; namely, at the origin and at infinity. An efficient technique for treating such singular boundary value problems is presented, and results of numerical integration are discussed and compared with earlier computed data.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2013.09.071