Analysis and numerical approximation of singular boundary value problems with the p-Laplacian in fluid mechanics

This paper studies a generalization of the Cahn–Hilliard continuum model for multi-phase fluids where the classical Laplacian has been replaced by a degenerate one (i.e., the so-called p-Laplacian). The solution’s asymptotic behavior is analyzed at two singular points; namely, at the origin and at i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and applied mathematics Ročník 262; s. 87 - 104
Hlavní autoři: Kulikov, G.Yu, Lima, P.M., Morgado, M.L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 15.05.2014
Témata:
ISSN:0377-0427, 1879-1778
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper studies a generalization of the Cahn–Hilliard continuum model for multi-phase fluids where the classical Laplacian has been replaced by a degenerate one (i.e., the so-called p-Laplacian). The solution’s asymptotic behavior is analyzed at two singular points; namely, at the origin and at infinity. An efficient technique for treating such singular boundary value problems is presented, and results of numerical integration are discussed and compared with earlier computed data.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2013.09.071