Functional porous carbons for zinc ion energy storage: Structure-Function relationship and future perspectives
•Functional porous carbon materials with various dimensions for Zn2+ storage.•The effects of microscopic morphology, pore size distribution and surface functional groups on the electrochemical behavior of electrode materials.•The properties and functions of various carbon materials are compared and...
Uložené v:
| Vydané v: | Coordination chemistry reviews Ročník 482; s. 215056 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.05.2023
|
| Predmet: | |
| ISSN: | 0010-8545, 1873-3840 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Functional porous carbon materials with various dimensions for Zn2+ storage.•The effects of microscopic morphology, pore size distribution and surface functional groups on the electrochemical behavior of electrode materials.•The properties and functions of various carbon materials are compared and discussed from the perspective of the interaction between electrolyte ions and electrode materials.•This review provides ideas for the future design of functional porous carbons as electrode materials for zinc ion energy storage.
Zinc ion energy storage (ZIES) has attracted lots of focus in the field of energy storage, which has the advantages of simple preparation process, low-risk, and high energy density. Carbon materials have been widely studied and applied in Zn2+ storage because of abundant raw material sources, low production cost, good electrical conductivity, high chemical stability as well as diverse and controllable microstructures. Here, various types of porous carbon materials used in Zn2+ storage are reviewed, including zero-dimensional (0D) carbon nanomaterials like nanospheres or hollow structure, one-dimensional (1D) carbon nanomaterials like carbon nanofibers and carbon nanotubes, two-dimensional (2D) carbon nanomaterials like graphene, graphdiyne and graphene-like carbon nanosheets, and three-dimensional (3D) carbon nanomaterials like porous carbon balls, activated carbon, cross-linked sheet-like porous carbon and porous carbon materials with irregular microstructures. The structure-effect relationship is summarized from the analysis of the effects of microstructure, pore size distribution and surface functional groups on the electrochemical behavior of electrode materials. Besides, from the microscopic point of view of electrolyte ions interaction with electrode materials, the characteristics and functions of various carbon materials are compared and discussed. Finally, the challenges and prospects of carbon materials in ZIESs are summarized. |
|---|---|
| AbstractList | •Functional porous carbon materials with various dimensions for Zn2+ storage.•The effects of microscopic morphology, pore size distribution and surface functional groups on the electrochemical behavior of electrode materials.•The properties and functions of various carbon materials are compared and discussed from the perspective of the interaction between electrolyte ions and electrode materials.•This review provides ideas for the future design of functional porous carbons as electrode materials for zinc ion energy storage.
Zinc ion energy storage (ZIES) has attracted lots of focus in the field of energy storage, which has the advantages of simple preparation process, low-risk, and high energy density. Carbon materials have been widely studied and applied in Zn2+ storage because of abundant raw material sources, low production cost, good electrical conductivity, high chemical stability as well as diverse and controllable microstructures. Here, various types of porous carbon materials used in Zn2+ storage are reviewed, including zero-dimensional (0D) carbon nanomaterials like nanospheres or hollow structure, one-dimensional (1D) carbon nanomaterials like carbon nanofibers and carbon nanotubes, two-dimensional (2D) carbon nanomaterials like graphene, graphdiyne and graphene-like carbon nanosheets, and three-dimensional (3D) carbon nanomaterials like porous carbon balls, activated carbon, cross-linked sheet-like porous carbon and porous carbon materials with irregular microstructures. The structure-effect relationship is summarized from the analysis of the effects of microstructure, pore size distribution and surface functional groups on the electrochemical behavior of electrode materials. Besides, from the microscopic point of view of electrolyte ions interaction with electrode materials, the characteristics and functions of various carbon materials are compared and discussed. Finally, the challenges and prospects of carbon materials in ZIESs are summarized. |
| ArticleNumber | 215056 |
| Author | Sun, Li Liu, Yanran Feng, Feng Zhang, Yingge Zhang, Hanfang Zhang, Jiahe Zhang, Yihe |
| Author_xml | – sequence: 1 givenname: Hanfang surname: Zhang fullname: Zhang, Hanfang – sequence: 2 givenname: Jiahe surname: Zhang fullname: Zhang, Jiahe – sequence: 3 givenname: Yanran surname: Liu fullname: Liu, Yanran – sequence: 4 givenname: Feng surname: Feng fullname: Feng, Feng – sequence: 5 givenname: Yingge surname: Zhang fullname: Zhang, Yingge – sequence: 6 givenname: Li surname: Sun fullname: Sun, Li email: sunli@cugb.edu.cn – sequence: 7 givenname: Yihe orcidid: 0000-0002-1407-4129 surname: Zhang fullname: Zhang, Yihe email: zyh@cugb.edu.cn |
| BookMark | eNp9kE1OwzAQhS1UJErhAOx8gRTbsesEVqjiT6rEAlhbrj0proodjZNK5fSkFDYsupoZzftG8945GcUUgZArzqac8dn1euocTgUT5VRwxdTshIx5pcuirCQbkTFjnBWVkuqMnOe8HsZZXYsxiQ99dF1I0W5omzD1mTqLyxQzbRLSrxAdHbYUIuBqR3OX0K7ghr522LuuRyj-DlCEjd03-SO01EZPm34voC1gbmHQbCFfkNPGbjJc_tYJeX-4f5s_FYuXx-f53aJwotZdAV42tZRWubpSeqa4htIzB1pZzpiul1rWWqjSLyslpFDClyBBNsrzylqvygnRh7sOU84IjXGh-_muQxs2hjOzj82szRCb2cdmDrENJP9Hthg-Le6OMrcHBgZL2wBosgsQHfiAg3HjUzhCfwPs6Ina |
| CitedBy_id | crossref_primary_10_1002_adfm_202424551 crossref_primary_10_1002_adfm_202501181 crossref_primary_10_1016_j_ccr_2024_216018 crossref_primary_10_1016_j_jechem_2024_09_016 crossref_primary_10_1016_j_diamond_2025_112245 crossref_primary_10_1016_j_jpowsour_2025_236313 crossref_primary_10_1016_j_jiec_2024_11_011 crossref_primary_10_1016_j_est_2024_113999 crossref_primary_10_1002_ente_202301436 crossref_primary_10_1016_j_micromeso_2023_112808 crossref_primary_10_1002_adfm_202311259 crossref_primary_10_1016_j_cej_2025_163974 crossref_primary_10_1016_j_jallcom_2024_177787 crossref_primary_10_1016_j_surfin_2023_103690 crossref_primary_10_1016_j_snb_2024_136597 crossref_primary_10_1016_j_cclet_2025_111850 |
| Cites_doi | 10.1039/D1NR02826J 10.1088/2053-1583/ac105a 10.1021/acsami.0c10512 10.1016/j.apsusc.2020.147220 10.1016/j.electacta.2015.03.076 10.1039/D2TA00202G 10.1002/smll.201903194 10.1002/anie.201106307 10.1038/nenergy.2016.10 10.1016/j.matlet.2022.131737 10.1021/acsmaterialslett.1c00325 10.1021/acs.chemrev.0c00080 10.1016/j.jcis.2021.04.114 10.1016/j.electacta.2019.134999 10.1002/anie.202203453 10.1007/s12274-019-2521-6 10.1021/acsami.1c02242 10.1002/anie.202005270 10.1007/s11581-021-04352-y 10.1039/C9TA00733D 10.1002/smll.202002837 10.1002/er.5944 10.1002/batt.202000250 10.1002/asia.202100526 10.1002/inf2.12378 10.1002/adma.201904948 10.1016/j.ensm.2021.08.018 10.1021/acsnano.0c02658 10.1021/acs.jpcc.7b05994 10.1016/j.jechem.2020.04.061 10.1016/j.apsusc.2020.145384 10.1039/D1TA10677E 10.1002/celc.202100282 10.1002/aenm.202000081 10.1016/j.ensm.2017.12.022 10.1007/s11581-021-04179-7 10.1021/acsaem.0c02945 10.1016/j.ensm.2022.01.011 10.1039/D0DT03459B 10.1016/j.carbon.2020.05.056 10.1016/j.cej.2022.137919 10.1016/j.electacta.2021.138170 10.1039/D2TA03488C 10.1016/j.ensm.2018.01.003 10.1016/j.jallcom.2022.164536 10.1016/j.jpowsour.2022.231586 10.1002/aenm.201904215 10.1002/slct.202102008 10.1016/j.jpowsour.2021.229528 10.1016/j.ensm.2021.07.042 10.1016/j.renene.2021.08.103 10.1016/j.apsusc.2019.03.197 10.1002/aenm.201703137 10.1039/D1NR07818F 10.1007/s12598-022-01975-6 10.1021/acssuschemeng.1c06569 10.1002/smll.201903817 10.1002/aenm.202002354 10.1021/acsnano.1c09936 10.1016/j.cej.2020.127502 10.1002/ente.202100490 10.1002/cssc.202002931 10.1021/acs.energyfuels.1c00107 10.1016/j.nanoen.2019.104132 10.1016/j.carbon.2021.09.019 10.1021/acsami.2c03323 10.1002/ente.201800912 10.1002/celc.202100862 10.1016/j.carbon.2021.08.060 10.1039/D1TA01242H 10.1007/s40820-021-00588-5 10.1002/aenm.201801445 10.1002/aenm.202001705 10.1038/d41586-018-05752-3 10.1016/j.ensm.2018.07.022 10.1016/j.jpowsour.2020.228831 10.1016/j.carbon.2019.02.050 10.1039/D0TA02770G 10.1039/D1TA03568A 10.1016/j.ensm.2020.01.028 10.1002/smll.202108057 10.1039/C8CC10060H 10.1016/j.scib.2017.04.010 10.1039/D1TA03501K 10.1007/s40843-021-2006-y 10.1016/j.ensm.2021.07.004 10.1016/j.diamond.2019.107603 10.1002/aenm.202003419 10.1016/j.ensm.2019.09.004 10.1016/j.jechem.2020.08.005 10.1016/j.jcis.2021.05.042 10.1002/anie.202212587 10.1002/adma.202070029 10.1016/j.nanoen.2020.105601 10.1039/D1TA05617D 10.1016/j.jpowsour.2021.230329 10.1016/j.jpowsour.2020.227716 10.1016/j.electacta.2019.05.147 10.1007/s40820-022-00839-z 10.1016/j.ensm.2020.06.014 10.1002/aenm.202003823 10.1021/acsenergylett.9b02029 10.1002/advs.201700146 10.1002/aenm.202001769 10.1016/j.jpowsour.2022.231484 10.1002/adma.201806005 10.1016/j.electacta.2022.140130 10.1021/acsami.9b20629 10.1002/anie.202114681 10.1002/adma.202001755 10.1002/aenm.202002741 |
| ContentType | Journal Article |
| Copyright | 2023 |
| Copyright_xml | – notice: 2023 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ccr.2023.215056 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1873-3840 |
| ExternalDocumentID | 10_1016_j_ccr_2023_215056 S0010854523000450 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 6J9 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M23 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSK SSZ T5K TN5 TWZ UPT WH7 XPP YK3 ZMT ~G- 29F 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EJD FEDTE FGOYB HMH HVGLF HZ~ H~9 NDZJH OHT R2- SCB SIC UQL VH1 WUQ ZKB ZY4 ~HD |
| ID | FETCH-LOGICAL-c297t-ed4f944a5c98576517e3d0ce75a10079b7497253db8524252d3e4e4f5d18aad53 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000943115500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-8545 |
| IngestDate | Sat Nov 29 07:31:54 EST 2025 Tue Nov 18 22:43:08 EST 2025 Fri Feb 23 02:37:43 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cathode material Porous carbons Zinc ion energy storage Structure-Effect |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-ed4f944a5c98576517e3d0ce75a10079b7497253db8524252d3e4e4f5d18aad53 |
| ORCID | 0000-0002-1407-4129 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ccr_2023_215056 crossref_primary_10_1016_j_ccr_2023_215056 elsevier_sciencedirect_doi_10_1016_j_ccr_2023_215056 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-01 2023-05-00 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Coordination chemistry reviews |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wang, Chen, Pan (b0295) 2021; 32 Liu, Wu, Zhou, Liu, Zhang, Li, Gao, Yang (b0190) 2019; 24 Li, An, Dong, Chen, Wu, Sun, Zhang (b0370) 2020; 31 Gao, Zhou, Fang, Gu, Liu, Chen, Liu, Yang (b0365) 2019; 147 Xu, Ma, Wang (b0495) 2022; 46 Li, Lu, Shang, Wu, Wang, Dong, He, Wu (b0150) 2021; 56 Wang, Li, Wang, Zhou, Das, Sun, Zheng, Wu (b0595) 2020; 10 Wei, Hu, Zhang, Yu, Zhou, Liu, Liu, Wang, Xie, Sun, Liang, Jiang (b0620) 2019; 7 Guo, Zhang, Yin, Zhu, Mohammed, Alshareef (b0310) 2021; 9 Wang, Wang, Tang (b0115) 2018; 13 Zhang, Liu, Fang, Teng, Liu, Fang, Tong, Lu (b0460) 2019; 31 Wei, Xu, Xu, Han, Ran, Lv (b0525) 2022; 28 Yin, Zhang, Wang, Alhebshi, Salah, Alshareef (b0105) 2020; 10 Lee, An (b0245) 2020; 12 Yuksel, Buyukcakir, Seong, Ruoff (b0635) 2020; 10 Zhang, Li, Gao, Wu, Deng (b0180) 2021; 8 Xie, Li, Wang, Zhi, Chao, Davey, Qiao (b0615) 2021; 11 Wang, Wang, Liu, Huang (b0470) 2021; 4 Nakata, Murayama, Fukuda, Yamane, Arai, Hirai, Uchimoto, Yamaki, Ogumi (b0540) 2015; 166 Luo, Wang, Wang, Yang, Wu, Ning, Zhou, Wang, Liu, Dou (b0570) 2020; 14 Fan, Liu, Ouyang, Cai, Chen, Liu, Liu, Wang, Liu (b0415) 2021; 8 Zheng, Zhao, Jia, Liu, Cui, Wei, Zheng, Liu (b0425) 2020; 387 Wei, Lv, Zhang, Zheng (b0505) 2021; 180 Deng, Li, Shan, Sha, Ma, Zhao (b0455) 2020; 8 Ma, Chen, Wu, Chi, Liu, Bai, Cheng, Li, Qu (b0550) 2020; 59 Zhang, Zhang, Zhang, Zhang, Ma, Sun (b0420) 2021; 6 Wang, Huang, Huang, Tang, Li, Peng, Zhang, Hu, Yuan, Chen (b0350) 2021; 9 Xu, Dou, Wei, Ma, Deng, Li, Liu, Dou (b0025) 2017; 4 Peng, Guo, He, Li, Tan, Chen (b0500) 2022; 65 Yue, Liu, Liu (b0285) 2019; 55 Pu, Cao, Gao, Yang, Cai, Chen, Tang, Fu, Pan, Guan (b0275) 2021; 9 Liu, Khanam, Ahmed, Wang, Wang, Song (b0560) 2021; 13 Zhang, Zhang, Qian, Zhang, Sun, Wang (b0450) 2022; 14 Zhao, Jian, Zhang, Wen, Zhu, Huang, Yin, Lu, Zhou, Zhang, Qiu (b0205) 2022; 53 Chen, Li, Xu, Liao, Wu, Dou, Zhang (b0385) 2021; 4 Sasaki, Yoshida, Kawasaki, Kuwabara, Ukyo, Ikuhara (b0535) 2021; 481 Ji, Wu, Liu, Mi, Liao, Wu, Cui, Li, Wu, Bai (b0070) 2022; 14 Liang, Wang, Mi, Sun, Ma, Li, He, Zhang (b0265) 2021; 425 Wang, Wang, Lu (b0330) 2021; 45 Liu, Liu, Huang, Li, Yan, Liu (b0335) 2020; 25 Yong, Ma, Wang, Mi, He, Zhang (b0075) 2020; 10 Gao, Du, Hao, Ma, Chang, Han, Guan, Tang (b0170) 2020; 380 Guo, Ming, Lei, Zhang, Xia, Cui, Alshareef (b0575) 2019; 4 Kolanowski, Graś-Ligocka, Krawczyk, Buchwald, Lota, Lota (b0255) 2022; 413 Zhang, Pei, Wang, Yuan, Wei, Pan, Mahmood, Shao, Chen (b0480) 2019; 15 Wang, Peng, Chen, Tang, Li, Hu, Yuan, Chen (b0140) 2022; 16 Cui, Wang, Huang, Liang, Chen, Chen, Wang, Yang, Hong, Fan, Zhi (b0010) 2022; 61 Turcheniuk, Bondarev, Singhal, Yushin (b0005) 2018; 559 Wu, Ji, Mi, Guo, Cui, Qiu, Yang (b0290) 2021; 13 Kim, Ahn, Wei, Jo, Jeong, Choi, Kim, Lewis (b0485) 1846; 12 N.R. Chodankar, S.J. Patil, S. Lee, J. Lee, S.-K. Hwang, P.A. Shinde, I.V. Bagal, S.V. Karekar, G. Seeta Rama Raju, K. Shanmugam Ranjith, D.P. Dubal, Y.-S. Huh, Y.-K. Han, InfoMat, 4 (2022) e12344. Zhu, Wang, Fan, Zhai, Wang, Shi, Huang, Liu, Li, Chen (b0085) 2022; 41 Wu, Xie, Ren, Yang, Wang (b0240) 2020; 49 Zhu, Guo, Yang, Mi, Yang, Qiu (b0400) 2021; 506 Yan, Zhang, Yang, Xia, Xu, Liu, Yu, Zhang, Shu (b0125) 2022; 452 Xia, Pu, Tao, Liu, Wang (b0630) 2019; 481 Chen, Ma, Zhang, Kamruzzaman, Zhi, Zapien (b0210) 2019; 7 Zhang, Hou (b0530) 2021; 11 Liu, Gao, Tan, Liu, Huang, Yan, Liu (b0375) 2019; 12 Chen, Cao, Wang, Zhou, Xiao (b0520) 2022; 538 Yan, Lu, Lee, Xiong, Hsu, Li, Zhao, Chu, Cui (b0610) 2016; 1 Li, Zhang, Yu, Gao, He, Liu, Guo, Zhang (b0215) 2021; 42 Han, Zhang, Li, Huang, Xu, Liu, Yang, Xu, Pan (b0155) 2021; 599 Wei, Zhang, Wang, Zhuang, Lv (b0055) 2022; 907 Chen, Hu, Pan, Wang (b0410) 2021; 38 Wu, Dong (b0095) 2021; 41 Li, Chen, An, Chen, Wu, Chen, Sun, Zhang (b0440) 2020; 28 Fan, Ding, Ding, Zheng, Song, Lin, Xiao, Zhong, Wang, Hu (b0445) 2021; 13 Han, Liu, Seo, Lee, Chu, Yang (b0250) 2021; 184 Shi, Zhang, Zeng, Wang, Cao, Liu, Lu (b0160) 2021; 3 Zhang, Li, Wang, Wang, Yang, Zhu, Zhuang, Schmidt, Feng (b0555) 2019; 31 Kong, Cai, Fan, Hu, Wang, Cui, Wang, Wang, Hu, Wu, Xue, Yan, Li, Zhao, Xing (b0030) 2022; 61 Luo, Wang, Wu, Jian, Yang, Jin, Cong, Ning, Zhou, Wang, Liu, Dou (b0465) 2021; 81 He, Lian, Chen, Xiong, Li, Zhang (b0135) 2022; 14 Cai, Wang, Wu, Han, Li (b0015) 2021; 42 Dai, Wan, Zhang, Cao, Niu (b0580) 2019; 17 Dong, Wu, Ren, Cheng, Bao (b0590) 2017; 62 Du, Xiao, Geng, Yang, Zhang, Ang, Ye, Li (b0305) 2020; 450 Muñoz-Noval, Fukami, Koyama, Kuruma, Kitada, Murase, Abe, Sakka, Hayakawa (b0545) 2017; 121 Nagaraju, Tagliaferri, Panagiotopoulos, Och, Quintin-Baxendale, Mattevi (b0130) 2022; 10 Zhang, Yin, Jian, Wu, Chen, Sun, Schwingenschlögl, Qiu, Alshareef (b0510) 2022; 103 Fu, Wei, Zhang, Wang, Zhang, Hu, Wang, Zuin, Zhou, Wu, Sun (b0600) 2018; 8 Sun, Xiao, Lu, Jin, Yang, Dai, Zhang, Zhao, Qu (b0515) 2020; 12 Liu, Chen, Ouyang, Fan, Liu, Li, Peng, Yan, Liu (b0300) 2021; 35 Lou, Pei, Wu, Lu, Wu, Zhu, Pang, Shen, Wu, Fu, Chen (b0320) 2021; 413 Shang, Liu, Mei, Liu, Wu, Dong, Zhao, Qiu (b0345) 2022; 18 Mao, Wu, Hu, Yuan, He, Kang (b0565) 2021; 52 Fan, Zhou, Li, Gao, Wang, He, Hu, Hu (b0390) 2021; 600 Huang, Wang, Peng, Peng, Li, Tang, Xu, Tan, Yuan, Chen (b0225) 2021; 9 Huang, Xiang, Luo, Zhang, Zhu, Shi, Zhu (b0340) 2021; 185 An (b0195) 2020; 530 Wang, Pan, Chen, Lu (b0395) 2021; 379 Fei, Wang, Wang, Qiu, Tang, Wang, He, Gong, Fan (b0200) 2020; 10 Wu, Liu, Li, Luo, Lai, Zhang, Li, Yu, Chen (b0355) 2022; 48 Zhuang, Wei, Zou, Wang, Han (b0080) 2022; 313 Yang, Guo, Yan, Wang, Liu, Huang, Wang, Li, Li, Song, Fan, Zhi (b0640) 2020; 32 Huang, Liu, Feng, Wang, Fan, Kuang, Dong, Zhao (b0175) 2021; 490 Kim, Kim, Ahn, Lee (b0475) 2020; 16 Park, Xu, Yoon, Park, Wang, Hyun, Park, Lim, Ko, Yun, Kang (b0020) 2020; 32 Yu, Zeng, Zeng, Dong, Hu, Liu, Zheng, Xiao, Lu, Liang (b0185) 2019; 327 Chen, Yang, Qin, Zeng, Meng, Chen (b0585) 2019; 317 Wang, Pan, Lu (b0325) 2020; 306 Jiang, Zou (b0435) 2020; 101 Chen, Yang, Zhao, Wang, Luo, Chen, Wu, Jiang, van Aken, Qu, Li, Du, Zhang, Wang, Wang (b0220) 2020; 8 Dong, Yang, Yang, Tian, Huang, Wang, Xu, Wang, Kang, Wang (b0625) 2020; 384 Pan, Lu, Xu, Wang (b0430) 2020; 510 Huang, Li, Jin, Zhang, Wang, Hiralal, Amaratunga, Zhou (b0260) 2020; 167 Xiong, Zhang, Lee, Xue (b0045) 2020; 10 Wei, Wei, Wang, Han, Lv (b0090) 2022; 450 Zeng, Yang, Yang, Lei, Wang, Lu (b0280) 2021; 508 Xu, Li, Du, Kang (b0165) 2012; 51 Dong, Ma, Li, Zhao, Liu, Cheng, Xu, Li, Yang, Kang (b0110) 2018; 13 Lei, Zheng, Zhang, Su, Zhou, Wu, Shen (b0230) 2021; 16 Zou, Luo, Wang, Zhang, Xu, Jiang (b0380) 2021; 44 Song, Liu, Mi, Chou, Chen, Shen (b0040) 2021; 17 Yu, Wang, Peng, Jia, Zhou, Yang, Li (b0145) 2021; 27 Yin, Zhu, Kong, Wang, Zhou, Qi, Tong, Zhang (b0315) 2021; 8 Lu, Li, Bai, Mi, Ji, Pang, Yu, Qiu (b0360) 2019; 66 Yang, Bissett, Dryfe (b0060) 2021; 14 Wang, Shao, Mei, Lu, Zhang, Sun, Matyjaszewski, Antonietti, Yuan (b0605) 2020; 120 Delmas (b0035) 2018; 8 Naik, Yadav, Nagaraj, Puttaswamy, Beere, Maiti, Mondal, Sanna Kotrappanavar, Ghosh (b0050) 2022; 10 Liu, Chen, Shi, Zhang, Xiao, Huang, Zhu (b0490) 2022; 187 Zhang, Chen, Zhang, Ma, Zhang, Bai, Sun (b0405) 2021; 9 Li, Yang, Ma, Shi, Chen, Chen, Hong, Cheng, Tang, He, Kang (b0645) 2022; 61 Li, Yu, Wang, He, Wang, Liu, Ma, Zhang (b0100) 2022; 10 Shang, Liu, Cai, Li, Wen (b0120) 2022; 10 Leng, Fedoseeva, Zhao, Yan, Okotrub, Wang, Fan, Qiu (b0235) 2022; 536 He, Lian, Chen, Xiong, Zhang (b0270) 2021; 421 Li (10.1016/j.ccr.2023.215056_b0645) 2022; 61 Shang (10.1016/j.ccr.2023.215056_b0120) 2022; 10 Yang (10.1016/j.ccr.2023.215056_b0060) 2021; 14 Wang (10.1016/j.ccr.2023.215056_b0295) 2021; 32 Guo (10.1016/j.ccr.2023.215056_b0575) 2019; 4 Yan (10.1016/j.ccr.2023.215056_b0125) 2022; 452 Gao (10.1016/j.ccr.2023.215056_b0365) 2019; 147 Wei (10.1016/j.ccr.2023.215056_b0055) 2022; 907 Cui (10.1016/j.ccr.2023.215056_b0010) 2022; 61 Wu (10.1016/j.ccr.2023.215056_b0290) 2021; 13 Cai (10.1016/j.ccr.2023.215056_b0015) 2021; 42 Dai (10.1016/j.ccr.2023.215056_b0580) 2019; 17 Wang (10.1016/j.ccr.2023.215056_b0395) 2021; 379 Zhang (10.1016/j.ccr.2023.215056_b0510) 2022; 103 Zeng (10.1016/j.ccr.2023.215056_b0280) 2021; 508 Xie (10.1016/j.ccr.2023.215056_b0615) 2021; 11 Zhu (10.1016/j.ccr.2023.215056_b0400) 2021; 506 Nakata (10.1016/j.ccr.2023.215056_b0540) 2015; 166 Chen (10.1016/j.ccr.2023.215056_b0410) 2021; 38 Wei (10.1016/j.ccr.2023.215056_b0505) 2021; 180 Li (10.1016/j.ccr.2023.215056_b0150) 2021; 56 Yu (10.1016/j.ccr.2023.215056_b0145) 2021; 27 Wei (10.1016/j.ccr.2023.215056_b0620) 2019; 7 Dong (10.1016/j.ccr.2023.215056_b0625) 2020; 384 Xu (10.1016/j.ccr.2023.215056_b0495) 2022; 46 Xia (10.1016/j.ccr.2023.215056_b0630) 2019; 481 Zhang (10.1016/j.ccr.2023.215056_b0180) 2021; 8 Liu (10.1016/j.ccr.2023.215056_b0375) 2019; 12 Fei (10.1016/j.ccr.2023.215056_b0200) 2020; 10 Sasaki (10.1016/j.ccr.2023.215056_b0535) 2021; 481 Zhang (10.1016/j.ccr.2023.215056_b0530) 2021; 11 Wu (10.1016/j.ccr.2023.215056_b0095) 2021; 41 Huang (10.1016/j.ccr.2023.215056_b0340) 2021; 185 Nagaraju (10.1016/j.ccr.2023.215056_b0130) 2022; 10 Chen (10.1016/j.ccr.2023.215056_b0520) 2022; 538 Pan (10.1016/j.ccr.2023.215056_b0430) 2020; 510 Wang (10.1016/j.ccr.2023.215056_b0595) 2020; 10 Liu (10.1016/j.ccr.2023.215056_b0300) 2021; 35 Wang (10.1016/j.ccr.2023.215056_b0350) 2021; 9 Dong (10.1016/j.ccr.2023.215056_b0110) 2018; 13 Lei (10.1016/j.ccr.2023.215056_b0230) 2021; 16 Wu (10.1016/j.ccr.2023.215056_b0240) 2020; 49 Muñoz-Noval (10.1016/j.ccr.2023.215056_b0545) 2017; 121 Fu (10.1016/j.ccr.2023.215056_b0600) 2018; 8 10.1016/j.ccr.2023.215056_b0065 Huang (10.1016/j.ccr.2023.215056_b0260) 2020; 167 Ma (10.1016/j.ccr.2023.215056_b0550) 2020; 59 Zhang (10.1016/j.ccr.2023.215056_b0555) 2019; 31 Yuksel (10.1016/j.ccr.2023.215056_b0635) 2020; 10 An (10.1016/j.ccr.2023.215056_b0195) 2020; 530 He (10.1016/j.ccr.2023.215056_b0270) 2021; 421 Li (10.1016/j.ccr.2023.215056_b0370) 2020; 31 Wei (10.1016/j.ccr.2023.215056_b0525) 2022; 28 Wu (10.1016/j.ccr.2023.215056_b0355) 2022; 48 Leng (10.1016/j.ccr.2023.215056_b0235) 2022; 536 Zheng (10.1016/j.ccr.2023.215056_b0425) 2020; 387 Liu (10.1016/j.ccr.2023.215056_b0560) 2021; 13 Turcheniuk (10.1016/j.ccr.2023.215056_b0005) 2018; 559 Huang (10.1016/j.ccr.2023.215056_b0175) 2021; 490 Liu (10.1016/j.ccr.2023.215056_b0335) 2020; 25 Wei (10.1016/j.ccr.2023.215056_b0090) 2022; 450 Jiang (10.1016/j.ccr.2023.215056_b0435) 2020; 101 Ji (10.1016/j.ccr.2023.215056_b0070) 2022; 14 Luo (10.1016/j.ccr.2023.215056_b0570) 2020; 14 He (10.1016/j.ccr.2023.215056_b0135) 2022; 14 Shi (10.1016/j.ccr.2023.215056_b0160) 2021; 3 Peng (10.1016/j.ccr.2023.215056_b0500) 2022; 65 Li (10.1016/j.ccr.2023.215056_b0100) 2022; 10 Xu (10.1016/j.ccr.2023.215056_b0025) 2017; 4 Yang (10.1016/j.ccr.2023.215056_b0640) 2020; 32 Zhang (10.1016/j.ccr.2023.215056_b0450) 2022; 14 Kolanowski (10.1016/j.ccr.2023.215056_b0255) 2022; 413 Fan (10.1016/j.ccr.2023.215056_b0445) 2021; 13 Deng (10.1016/j.ccr.2023.215056_b0455) 2020; 8 Zou (10.1016/j.ccr.2023.215056_b0380) 2021; 44 Li (10.1016/j.ccr.2023.215056_b0440) 2020; 28 Fan (10.1016/j.ccr.2023.215056_b0415) 2021; 8 Chen (10.1016/j.ccr.2023.215056_b0385) 2021; 4 Zhang (10.1016/j.ccr.2023.215056_b0405) 2021; 9 Kim (10.1016/j.ccr.2023.215056_b0485) 1846; 12 Sun (10.1016/j.ccr.2023.215056_b0515) 2020; 12 Naik (10.1016/j.ccr.2023.215056_b0050) 2022; 10 Yu (10.1016/j.ccr.2023.215056_b0185) 2019; 327 Wang (10.1016/j.ccr.2023.215056_b0140) 2022; 16 Wang (10.1016/j.ccr.2023.215056_b0605) 2020; 120 Luo (10.1016/j.ccr.2023.215056_b0465) 2021; 81 Park (10.1016/j.ccr.2023.215056_b0020) 2020; 32 Wang (10.1016/j.ccr.2023.215056_b0115) 2018; 13 Pu (10.1016/j.ccr.2023.215056_b0275) 2021; 9 Zhang (10.1016/j.ccr.2023.215056_b0460) 2019; 31 Liu (10.1016/j.ccr.2023.215056_b0190) 2019; 24 Mao (10.1016/j.ccr.2023.215056_b0565) 2021; 52 Xu (10.1016/j.ccr.2023.215056_b0165) 2012; 51 Zhu (10.1016/j.ccr.2023.215056_b0085) 2022; 41 Chen (10.1016/j.ccr.2023.215056_b0210) 2019; 7 Fan (10.1016/j.ccr.2023.215056_b0390) 2021; 600 Chen (10.1016/j.ccr.2023.215056_b0220) 2020; 8 Gao (10.1016/j.ccr.2023.215056_b0170) 2020; 380 Huang (10.1016/j.ccr.2023.215056_b0225) 2021; 9 Yue (10.1016/j.ccr.2023.215056_b0285) 2019; 55 Kong (10.1016/j.ccr.2023.215056_b0030) 2022; 61 Yong (10.1016/j.ccr.2023.215056_b0075) 2020; 10 Liang (10.1016/j.ccr.2023.215056_b0265) 2021; 425 Wang (10.1016/j.ccr.2023.215056_b0325) 2020; 306 Liu (10.1016/j.ccr.2023.215056_b0490) 2022; 187 Kim (10.1016/j.ccr.2023.215056_b0475) 2020; 16 Yin (10.1016/j.ccr.2023.215056_b0105) 2020; 10 Zhuang (10.1016/j.ccr.2023.215056_b0080) 2022; 313 Zhang (10.1016/j.ccr.2023.215056_b0480) 2019; 15 Delmas (10.1016/j.ccr.2023.215056_b0035) 2018; 8 Zhao (10.1016/j.ccr.2023.215056_b0205) 2022; 53 Lee (10.1016/j.ccr.2023.215056_b0245) 2020; 12 Chen (10.1016/j.ccr.2023.215056_b0585) 2019; 317 Lou (10.1016/j.ccr.2023.215056_b0320) 2021; 413 Han (10.1016/j.ccr.2023.215056_b0155) 2021; 599 Guo (10.1016/j.ccr.2023.215056_b0310) 2021; 9 Shang (10.1016/j.ccr.2023.215056_b0345) 2022; 18 Yin (10.1016/j.ccr.2023.215056_b0315) 2021; 8 Song (10.1016/j.ccr.2023.215056_b0040) 2021; 17 Lu (10.1016/j.ccr.2023.215056_b0360) 2019; 66 Du (10.1016/j.ccr.2023.215056_b0305) 2020; 450 Li (10.1016/j.ccr.2023.215056_b0215) 2021; 42 Zhang (10.1016/j.ccr.2023.215056_b0420) 2021; 6 Yan (10.1016/j.ccr.2023.215056_b0610) 2016; 1 Han (10.1016/j.ccr.2023.215056_b0250) 2021; 184 Wang (10.1016/j.ccr.2023.215056_b0470) 2021; 4 Xiong (10.1016/j.ccr.2023.215056_b0045) 2020; 10 Wang (10.1016/j.ccr.2023.215056_b0330) 2021; 45 Dong (10.1016/j.ccr.2023.215056_b0590) 2017; 62 |
| References_xml | – volume: 13 start-page: 1 year: 2018 end-page: 7 ident: b0115 publication-title: Energy Storage Mater. – volume: 14 start-page: 7328 year: 2020 end-page: 7337 ident: b0570 publication-title: ACS Nano – volume: 38 year: 2021 ident: b0410 publication-title: J. Storage Mater. – volume: 15 start-page: 1903817 year: 2019 ident: b0480 publication-title: Small – volume: 538 year: 2022 ident: b0520 publication-title: J. Power Sources – volume: 10 start-page: 2002741 year: 2020 ident: b0200 publication-title: Adv. Energy Mater. – volume: 28 start-page: 1419 year: 2022 end-page: 1426 ident: b0525 publication-title: Ionics – volume: 9 start-page: 17292 year: 2021 end-page: 17299 ident: b0275 publication-title: J. Mater. Chem. A – volume: 4 start-page: 1833 year: 2021 end-page: 1839 ident: b0470 publication-title: ACS Appl. Energy Mater. – volume: 62 start-page: 724 year: 2017 end-page: 740 ident: b0590 publication-title: Sci. Bull. – volume: 384 year: 2020 ident: b0625 publication-title: Chem. Eng. J. – volume: 313 year: 2022 ident: b0080 publication-title: Mater. Lett. – volume: 450 year: 2022 ident: b0090 publication-title: Chem. Eng. J. – volume: 10 start-page: 15665 year: 2022 end-page: 15676 ident: b0130 publication-title: J. Mater. Chem. A – volume: 8 start-page: 1541 year: 2021 end-page: 1557 ident: b0180 publication-title: ChemElectroChem – volume: 8 year: 2020 ident: b0220 publication-title: Front. Chem. – volume: 11 start-page: 2003823 year: 2021 ident: b0530 publication-title: Adv. Energy Mater. – volume: 32 start-page: 2070029 year: 2020 ident: b0020 publication-title: Adv. Mater. – volume: 51 start-page: 933 year: 2012 end-page: 935 ident: b0165 publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 2000081 year: 2020 ident: b0595 publication-title: Adv. Energy Mater. – volume: 481 start-page: 852 year: 2019 end-page: 859 ident: b0630 publication-title: Appl. Surf. Sci. – volume: 184 start-page: 534 year: 2021 end-page: 543 ident: b0250 publication-title: Carbon – volume: 9 start-page: 16565 year: 2021 end-page: 16574 ident: b0405 publication-title: J. Mater. Chem. A – volume: 14 start-page: 23452 year: 2022 end-page: 23464 ident: b0070 publication-title: ACS Appl. Mater. Interfaces – volume: 55 start-page: 1647 year: 2019 end-page: 1650 ident: b0285 publication-title: Chem. Commun. – volume: 7 start-page: 1800912 year: 2019 ident: b0620 publication-title: Energ. Technol. – volume: 452 year: 2022 ident: b0125 publication-title: Coord. Chem. Rev. – volume: 17 start-page: 143 year: 2019 end-page: 150 ident: b0580 publication-title: Energy Storage Mater. – volume: 180 start-page: 683 year: 2021 end-page: 690 ident: b0505 publication-title: Renew. Energy – volume: 42 start-page: 705 year: 2021 end-page: 714 ident: b0215 publication-title: Energy Storage Mater. – volume: 32 year: 2021 ident: b0295 publication-title: Nanotechnology – volume: 8 start-page: 1801445 year: 2018 ident: b0600 publication-title: Adv. Energy Mater. – volume: 421 year: 2021 ident: b0270 publication-title: Chem. Eng. J. – volume: 3 start-page: 1291 year: 2021 end-page: 1299 ident: b0160 publication-title: ACS Mater. Lett. – volume: 9 start-page: 15404 year: 2021 end-page: 15414 ident: b0350 publication-title: J. Mater. Chem. A – volume: 121 start-page: 18047 year: 2017 end-page: 18056 ident: b0545 publication-title: J. Phys. Chem. C – volume: 6 start-page: 6937 year: 2021 end-page: 6943 ident: b0420 publication-title: ChemistrySelect – volume: 66 year: 2019 ident: b0360 publication-title: Nano Energy – volume: 10 start-page: 1904215 year: 2020 ident: b0635 publication-title: Adv. Energy Mater. – volume: 16 start-page: 2146 year: 2021 end-page: 2153 ident: b0230 publication-title: Chem. –Asian J. – volume: 31 start-page: 252 year: 2020 end-page: 266 ident: b0370 publication-title: Energy Storage Mater. – volume: 14 start-page: 1700 year: 2021 end-page: 1709 ident: b0060 publication-title: ChemSusChem – volume: 490 year: 2021 ident: b0175 publication-title: J. Power Sources – volume: 481 year: 2021 ident: b0535 publication-title: J. Power Sources – volume: 12 start-page: 2835 year: 2019 end-page: 2841 ident: b0375 publication-title: Nano Res. – volume: 31 start-page: 1806005 year: 2019 ident: b0555 publication-title: Adv. Mater. – volume: 49 start-page: 17629 year: 2020 end-page: 17634 ident: b0240 publication-title: Dalton Trans. – volume: 11 start-page: 2003419 year: 2021 ident: b0615 publication-title: Adv. Energy Mater. – volume: 27 start-page: 4495 year: 2021 end-page: 4505 ident: b0145 publication-title: Ionics – volume: 9 start-page: 2100490 year: 2021 ident: b0310 publication-title: Energ. Technol. – volume: 413 year: 2021 ident: b0320 publication-title: Chem. Eng. J. – volume: 4 start-page: 680 year: 2021 end-page: 686 ident: b0385 publication-title: Batteries Supercaps – volume: 81 year: 2021 ident: b0465 publication-title: Nano Energy – volume: 41 start-page: 2505 year: 2022 end-page: 2516 ident: b0085 publication-title: Rare Met. – volume: 187 year: 2022 ident: b0490 publication-title: Ind. Crop. Prod. – volume: 413 year: 2022 ident: b0255 publication-title: Electrochim. Acta – volume: 10 start-page: 2001769 year: 2020 ident: b0045 publication-title: Adv. Energy Mater. – volume: 7 start-page: 7784 year: 2019 end-page: 7790 ident: b0210 publication-title: J. Mater. Chem. A – volume: 42 start-page: 277 year: 2021 end-page: 285 ident: b0015 publication-title: Energy Storage Mater. – volume: 10 start-page: 9355 year: 2022 end-page: 9362 ident: b0100 publication-title: J. Mater. Chem. A – volume: 9 start-page: 8435 year: 2021 end-page: 8443 ident: b0225 publication-title: J. Mater. Chem. A – volume: 31 start-page: 1904948 year: 2019 ident: b0460 publication-title: Adv. Mater. – volume: 61 start-page: e202114681 year: 2022 ident: b0030 publication-title: Angew. Chem. Int. Ed. – volume: 44 year: 2021 ident: b0380 publication-title: J. Storage Mater. – volume: 510 year: 2020 ident: b0430 publication-title: Appl. Surf. Sci. – volume: 120 start-page: 9363 year: 2020 end-page: 9419 ident: b0605 publication-title: Chem. Rev. – volume: 35 start-page: 5352 year: 2021 end-page: 5359 ident: b0300 publication-title: Energy Fuel – volume: 32 start-page: 2001755 year: 2020 ident: b0640 publication-title: Adv. Mater. – volume: 16 start-page: 2002837 year: 2020 ident: b0475 publication-title: Small – volume: 18 start-page: 2108057 year: 2022 ident: b0345 publication-title: Small – volume: 450 year: 2020 ident: b0305 publication-title: J. Power Sources – volume: 306 year: 2020 ident: b0325 publication-title: Microporous Mesoporous Mater. – volume: 45 start-page: 2498 year: 2021 end-page: 2510 ident: b0330 publication-title: Int. J. Energy Res. – volume: 13 start-page: 59 year: 2021 ident: b0445 publication-title: Nano-Micro Lett. – volume: 13 start-page: 16454 year: 2021 end-page: 16468 ident: b0560 publication-title: ACS Appl. Mater. Interfaces – volume: 101 year: 2020 ident: b0435 publication-title: Diam. Relat. Mater. – volume: 8 start-page: 1703137 year: 2018 ident: b0035 publication-title: Adv. Energy Mater. – reference: N.R. Chodankar, S.J. Patil, S. Lee, J. Lee, S.-K. Hwang, P.A. Shinde, I.V. Bagal, S.V. Karekar, G. Seeta Rama Raju, K. Shanmugam Ranjith, D.P. Dubal, Y.-S. Huh, Y.-K. Han, InfoMat, 4 (2022) e12344. – volume: 52 start-page: 277 year: 2021 end-page: 283 ident: b0565 publication-title: J. Energy Chem. – volume: 10 start-page: 6489 year: 2022 end-page: 6498 ident: b0120 publication-title: J. Mater. Chem. A – volume: 1 start-page: 16010 year: 2016 ident: b0610 publication-title: Nat. Energy – volume: 53 year: 2022 ident: b0205 publication-title: J. Storage Mater. – volume: 387 year: 2020 ident: b0425 publication-title: Chem. Eng. J. – volume: 508 year: 2021 ident: b0280 publication-title: J. Power Sources – volume: 10 start-page: 2002354 year: 2020 ident: b0075 publication-title: Adv. Energy Mater. – volume: 41 start-page: 715 year: 2021 end-page: 737 ident: b0095 publication-title: Energy Storage Mater. – volume: 103 year: 2022 ident: b0510 publication-title: Nano Energy – volume: 16 start-page: 2877 year: 2022 end-page: 2888 ident: b0140 publication-title: ACS Nano – volume: 14 start-page: 2004 year: 2022 end-page: 2012 ident: b0450 publication-title: Nanoscale – volume: 14 start-page: 106 year: 2022 ident: b0135 publication-title: Nano-Micro Letters – volume: 327 year: 2019 ident: b0185 publication-title: Electrochim. Acta – volume: 65 start-page: 2401 year: 2022 end-page: 2411 ident: b0500 publication-title: Sci. China Mater. – volume: 530 year: 2020 ident: b0195 publication-title: Appl. Surf. Sci. – volume: 10 start-page: 1471 year: 2022 end-page: 1481 ident: b0050 publication-title: ACS Sustain. Chem. Eng. – volume: 536 year: 2022 ident: b0235 publication-title: J. Power Sources – volume: 8 start-page: 044003 year: 2021 ident: b0315 publication-title: 2D Materials – volume: 24 year: 2019 ident: b0190 publication-title: Molecules – volume: 317 start-page: 155 year: 2019 end-page: 163 ident: b0585 publication-title: Electrochim. Acta – volume: 8 start-page: 3572 year: 2021 end-page: 3578 ident: b0415 publication-title: ChemElectroChem – volume: 61 start-page: e202212587 year: 2022 ident: b0645 publication-title: Angew. Chem. Int. Ed. – volume: 48 year: 2022 ident: b0355 publication-title: J. Storage Mater. – volume: 8 start-page: 11617 year: 2020 end-page: 11625 ident: b0455 publication-title: J. Mater. Chem. A – volume: 56 start-page: 404 year: 2021 end-page: 411 ident: b0150 publication-title: J. Energy Chem. – volume: 425 year: 2021 ident: b0265 publication-title: Chem. Eng. J. – volume: 61 start-page: e202203453 year: 2022 ident: b0010 publication-title: Angew. Chem. Int. Ed. – volume: 559 start-page: 467 year: 2018 end-page: 470 ident: b0005 publication-title: Nature – volume: 379 year: 2021 ident: b0395 publication-title: Electrochim. Acta – volume: 600 start-page: 681 year: 2021 end-page: 690 ident: b0390 publication-title: J. Colloid Interface Sci. – volume: 28 start-page: 307 year: 2020 end-page: 314 ident: b0440 publication-title: Energy Storage Mater. – volume: 185 start-page: 1 year: 2021 end-page: 8 ident: b0340 publication-title: Carbon – volume: 147 start-page: 157 year: 2019 end-page: 163 ident: b0365 publication-title: Carbon – volume: 4 start-page: 2776 year: 2019 end-page: 2781 ident: b0575 publication-title: ACS Energy Lett. – volume: 4 start-page: 1700146 year: 2017 ident: b0025 publication-title: Adv. Sci. – volume: 506 year: 2021 ident: b0400 publication-title: J. Power Sources – volume: 10 start-page: 2001705 year: 2020 ident: b0105 publication-title: Adv. Energy Mater. – volume: 907 year: 2022 ident: b0055 publication-title: J. Alloy. Compd. – volume: 166 start-page: 82 year: 2015 end-page: 87 ident: b0540 publication-title: Electrochim. Acta – volume: 599 start-page: 556 year: 2021 end-page: 565 ident: b0155 publication-title: J. Colloid Interface Sci. – volume: 167 start-page: 431 year: 2020 end-page: 438 ident: b0260 publication-title: Carbon – volume: 25 start-page: 858 year: 2020 end-page: 865 ident: b0335 publication-title: Energy Storage Mater. – volume: 13 start-page: 15869 year: 2021 end-page: 15881 ident: b0290 publication-title: Nanoscale – volume: 46 start-page: 233 year: 2022 end-page: 242 ident: b0495 publication-title: Energy Storage Mater. – volume: 12 start-page: 41342 year: 2020 end-page: 41349 ident: b0245 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 11838 year: 1846 end-page: 111831 ident: b0485 publication-title: ACS Nano – volume: 59 start-page: 14541 year: 2020 end-page: 14549 ident: b0550 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 7239 year: 2020 end-page: 7248 ident: b0515 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 96 year: 2018 end-page: 102 ident: b0110 publication-title: Energy Storage Mater. – volume: 380 year: 2020 ident: b0170 publication-title: Chem. Eng. J. – volume: 17 start-page: 1903194 year: 2021 ident: b0040 publication-title: Small – volume: 13 start-page: 15869 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0290 publication-title: Nanoscale doi: 10.1039/D1NR02826J – volume: 8 start-page: 044003 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0315 publication-title: 2D Materials doi: 10.1088/2053-1583/ac105a – volume: 12 start-page: 41342 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0245 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c10512 – volume: 530 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0195 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147220 – volume: 166 start-page: 82 year: 2015 ident: 10.1016/j.ccr.2023.215056_b0540 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.03.076 – volume: 12 start-page: 11838 issue: 2018 year: 1846 ident: 10.1016/j.ccr.2023.215056_b0485 publication-title: ACS Nano – volume: 187 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0490 publication-title: Ind. Crop. Prod. – volume: 10 start-page: 6489 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0120 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA00202G – volume: 17 start-page: 1903194 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0040 publication-title: Small doi: 10.1002/smll.201903194 – volume: 51 start-page: 933 year: 2012 ident: 10.1016/j.ccr.2023.215056_b0165 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201106307 – volume: 32 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0295 publication-title: Nanotechnology – volume: 1 start-page: 16010 year: 2016 ident: 10.1016/j.ccr.2023.215056_b0610 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.10 – volume: 313 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0080 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2022.131737 – volume: 3 start-page: 1291 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0160 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.1c00325 – volume: 120 start-page: 9363 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0605 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00080 – volume: 599 start-page: 556 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0155 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.04.114 – volume: 327 year: 2019 ident: 10.1016/j.ccr.2023.215056_b0185 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.134999 – volume: 61 start-page: e202203453 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0010 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202203453 – volume: 12 start-page: 2835 year: 2019 ident: 10.1016/j.ccr.2023.215056_b0375 publication-title: Nano Res. doi: 10.1007/s12274-019-2521-6 – volume: 13 start-page: 16454 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0560 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c02242 – volume: 59 start-page: 14541 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0550 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202005270 – volume: 28 start-page: 1419 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0525 publication-title: Ionics doi: 10.1007/s11581-021-04352-y – volume: 452 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0125 publication-title: Coord. Chem. Rev. – volume: 7 start-page: 7784 year: 2019 ident: 10.1016/j.ccr.2023.215056_b0210 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00733D – volume: 16 start-page: 2002837 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0475 publication-title: Small doi: 10.1002/smll.202002837 – volume: 384 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0625 publication-title: Chem. Eng. J. – volume: 45 start-page: 2498 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0330 publication-title: Int. J. Energy Res. doi: 10.1002/er.5944 – volume: 4 start-page: 680 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0385 publication-title: Batteries Supercaps doi: 10.1002/batt.202000250 – volume: 16 start-page: 2146 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0230 publication-title: Chem. –Asian J. doi: 10.1002/asia.202100526 – ident: 10.1016/j.ccr.2023.215056_b0065 doi: 10.1002/inf2.12378 – volume: 31 start-page: 1904948 year: 2019 ident: 10.1016/j.ccr.2023.215056_b0460 publication-title: Adv. Mater. doi: 10.1002/adma.201904948 – volume: 42 start-page: 705 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0215 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.08.018 – volume: 38 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0410 publication-title: J. Storage Mater. – volume: 14 start-page: 7328 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0570 publication-title: ACS Nano doi: 10.1021/acsnano.0c02658 – volume: 506 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0400 publication-title: J. Power Sources – volume: 121 start-page: 18047 year: 2017 ident: 10.1016/j.ccr.2023.215056_b0545 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b05994 – volume: 52 start-page: 277 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0565 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.04.061 – volume: 510 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0430 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145384 – volume: 10 start-page: 9355 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0100 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA10677E – volume: 8 start-page: 1541 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0180 publication-title: ChemElectroChem doi: 10.1002/celc.202100282 – volume: 10 start-page: 2000081 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0595 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000081 – volume: 103 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0510 publication-title: Nano Energy – volume: 13 start-page: 1 year: 2018 ident: 10.1016/j.ccr.2023.215056_b0115 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.12.022 – volume: 425 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0265 publication-title: Chem. Eng. J. – volume: 27 start-page: 4495 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0145 publication-title: Ionics doi: 10.1007/s11581-021-04179-7 – volume: 4 start-page: 1833 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0470 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c02945 – volume: 46 start-page: 233 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0495 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.01.011 – volume: 8 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0220 publication-title: Front. Chem. – volume: 49 start-page: 17629 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0240 publication-title: Dalton Trans. doi: 10.1039/D0DT03459B – volume: 167 start-page: 431 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0260 publication-title: Carbon doi: 10.1016/j.carbon.2020.05.056 – volume: 450 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0090 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137919 – volume: 379 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0395 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.138170 – volume: 10 start-page: 15665 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0130 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA03488C – volume: 13 start-page: 96 year: 2018 ident: 10.1016/j.ccr.2023.215056_b0110 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.01.003 – volume: 907 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0055 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2022.164536 – volume: 538 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0520 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.231586 – volume: 10 start-page: 1904215 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0635 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201904215 – volume: 6 start-page: 6937 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0420 publication-title: ChemistrySelect doi: 10.1002/slct.202102008 – volume: 490 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0175 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.229528 – volume: 42 start-page: 277 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0015 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.07.042 – volume: 180 start-page: 683 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0505 publication-title: Renew. Energy doi: 10.1016/j.renene.2021.08.103 – volume: 481 start-page: 852 year: 2019 ident: 10.1016/j.ccr.2023.215056_b0630 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.03.197 – volume: 24 year: 2019 ident: 10.1016/j.ccr.2023.215056_b0190 publication-title: Molecules – volume: 8 start-page: 1703137 year: 2018 ident: 10.1016/j.ccr.2023.215056_b0035 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703137 – volume: 14 start-page: 2004 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0450 publication-title: Nanoscale doi: 10.1039/D1NR07818F – volume: 41 start-page: 2505 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0085 publication-title: Rare Met. doi: 10.1007/s12598-022-01975-6 – volume: 10 start-page: 1471 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0050 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c06569 – volume: 44 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0380 publication-title: J. Storage Mater. – volume: 15 start-page: 1903817 year: 2019 ident: 10.1016/j.ccr.2023.215056_b0480 publication-title: Small doi: 10.1002/smll.201903817 – volume: 10 start-page: 2002354 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0075 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002354 – volume: 16 start-page: 2877 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0140 publication-title: ACS Nano doi: 10.1021/acsnano.1c09936 – volume: 413 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0320 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127502 – volume: 9 start-page: 2100490 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0310 publication-title: Energ. Technol. doi: 10.1002/ente.202100490 – volume: 14 start-page: 1700 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0060 publication-title: ChemSusChem doi: 10.1002/cssc.202002931 – volume: 35 start-page: 5352 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0300 publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.1c00107 – volume: 66 year: 2019 ident: 10.1016/j.ccr.2023.215056_b0360 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104132 – volume: 185 start-page: 1 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0340 publication-title: Carbon doi: 10.1016/j.carbon.2021.09.019 – volume: 14 start-page: 23452 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0070 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c03323 – volume: 48 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0355 publication-title: J. Storage Mater. – volume: 7 start-page: 1800912 year: 2019 ident: 10.1016/j.ccr.2023.215056_b0620 publication-title: Energ. Technol. doi: 10.1002/ente.201800912 – volume: 8 start-page: 3572 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0415 publication-title: ChemElectroChem doi: 10.1002/celc.202100862 – volume: 184 start-page: 534 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0250 publication-title: Carbon doi: 10.1016/j.carbon.2021.08.060 – volume: 9 start-page: 8435 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0225 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA01242H – volume: 13 start-page: 59 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0445 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00588-5 – volume: 8 start-page: 1801445 year: 2018 ident: 10.1016/j.ccr.2023.215056_b0600 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801445 – volume: 10 start-page: 2001705 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0105 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001705 – volume: 559 start-page: 467 year: 2018 ident: 10.1016/j.ccr.2023.215056_b0005 publication-title: Nature doi: 10.1038/d41586-018-05752-3 – volume: 17 start-page: 143 year: 2019 ident: 10.1016/j.ccr.2023.215056_b0580 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.07.022 – volume: 481 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0535 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228831 – volume: 380 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0170 publication-title: Chem. Eng. J. – volume: 147 start-page: 157 year: 2019 ident: 10.1016/j.ccr.2023.215056_b0365 publication-title: Carbon doi: 10.1016/j.carbon.2019.02.050 – volume: 8 start-page: 11617 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0455 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02770G – volume: 9 start-page: 15404 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0350 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA03568A – volume: 28 start-page: 307 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0440 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.01.028 – volume: 387 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0425 publication-title: Chem. Eng. J. – volume: 18 start-page: 2108057 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0345 publication-title: Small doi: 10.1002/smll.202108057 – volume: 55 start-page: 1647 year: 2019 ident: 10.1016/j.ccr.2023.215056_b0285 publication-title: Chem. Commun. doi: 10.1039/C8CC10060H – volume: 62 start-page: 724 year: 2017 ident: 10.1016/j.ccr.2023.215056_b0590 publication-title: Sci. Bull. doi: 10.1016/j.scib.2017.04.010 – volume: 9 start-page: 16565 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0405 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA03501K – volume: 65 start-page: 2401 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0500 publication-title: Sci. China Mater. doi: 10.1007/s40843-021-2006-y – volume: 41 start-page: 715 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0095 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.07.004 – volume: 101 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0435 publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2019.107603 – volume: 11 start-page: 2003419 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0615 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003419 – volume: 25 start-page: 858 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0335 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.09.004 – volume: 56 start-page: 404 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0150 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.08.005 – volume: 600 start-page: 681 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0390 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.05.042 – volume: 61 start-page: e202212587 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0645 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202212587 – volume: 32 start-page: 2070029 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0020 publication-title: Adv. Mater. doi: 10.1002/adma.202070029 – volume: 81 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0465 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105601 – volume: 9 start-page: 17292 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0275 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA05617D – volume: 53 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0205 publication-title: J. Storage Mater. – volume: 508 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0280 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230329 – volume: 450 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0305 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.227716 – volume: 317 start-page: 155 year: 2019 ident: 10.1016/j.ccr.2023.215056_b0585 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.05.147 – volume: 14 start-page: 106 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0135 publication-title: Nano-Micro Letters doi: 10.1007/s40820-022-00839-z – volume: 31 start-page: 252 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0370 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.06.014 – volume: 421 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0270 publication-title: Chem. Eng. J. – volume: 11 start-page: 2003823 year: 2021 ident: 10.1016/j.ccr.2023.215056_b0530 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003823 – volume: 4 start-page: 2776 year: 2019 ident: 10.1016/j.ccr.2023.215056_b0575 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02029 – volume: 4 start-page: 1700146 year: 2017 ident: 10.1016/j.ccr.2023.215056_b0025 publication-title: Adv. Sci. doi: 10.1002/advs.201700146 – volume: 10 start-page: 2001769 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0045 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001769 – volume: 536 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0235 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.231484 – volume: 31 start-page: 1806005 year: 2019 ident: 10.1016/j.ccr.2023.215056_b0555 publication-title: Adv. Mater. doi: 10.1002/adma.201806005 – volume: 413 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0255 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.140130 – volume: 12 start-page: 7239 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0515 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b20629 – volume: 61 start-page: e202114681 year: 2022 ident: 10.1016/j.ccr.2023.215056_b0030 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202114681 – volume: 32 start-page: 2001755 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0640 publication-title: Adv. Mater. doi: 10.1002/adma.202001755 – volume: 10 start-page: 2002741 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0200 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002741 – volume: 306 year: 2020 ident: 10.1016/j.ccr.2023.215056_b0325 publication-title: Microporous Mesoporous Mater. |
| SSID | ssj0016992 |
| Score | 2.5207407 |
| SecondaryResourceType | review_article |
| Snippet | •Functional porous carbon materials with various dimensions for Zn2+ storage.•The effects of microscopic morphology, pore size distribution and surface... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 215056 |
| SubjectTerms | Cathode material Porous carbons Structure-Effect Zinc ion energy storage |
| Title | Functional porous carbons for zinc ion energy storage: Structure-Function relationship and future perspectives |
| URI | https://dx.doi.org/10.1016/j.ccr.2023.215056 |
| Volume | 482 |
| WOSCitedRecordID | wos000943115500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3840 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016992 issn: 0010-8545 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpNBeSp80faFDTw1evLZkSb2FJSENIRSSwt6MXqYOwQmbB6Hn_vDOWJLXZNvSFnpYr_Fa1qL50Hwaz3wi5D0vcmO845nhQmSscU2mZDPL4GOkYZWrTC-ZfyiOjuRioT5PJt9TLczNmeg6eXurLv6rqeEaGBtLZ__C3MND4QKcg9HhCGaH4x8Zfg88VQzwAbfGDFerlwYzYjCj8Fvb2W00uQ9Ff5gcCVMKBgaOeynZ66XP0iNipUtM6cIQe5AgQbHjVKJ5Oaa383NYy7YhwLht015ysT5mYO9DkHpfd42OrnN8_aDVXwfAHbbXvZ_Q3XKFZBjx_k78HgcuilGaYIimrVXUhBka_ILkQWJy6sOkLEWZlTLIOqVZm4U9i9Y8QAhGnE6tRbXXopwCp8n5HbXt3n8fY1_YFazCkNnm98hmIbiCuXFz59Pu4mB4G1UpFVTn439Lb8f7PME7Hf2c34w4y8lj8iguNuhOAMkTMvHdU_JgnuzyjHQrsNAAFhrBQgEsFMFC4VcawEIjWD7SdajQMVQoQIUGqNAxVJ6TL3u7J_P9LO7AkdlCiavMO9YoxjS3SsLClM-EL11uveAas2uUEUyJgpfOSI5r18KVnnnWcDeTWjteviAb3XnnXxJa5VLnuc8tcHrGvTCiqEorgE3OpAeavEXyNG61jfL0uEvKWZ3yEE9rGOoah7oOQ71FPgxNLoI2y-9uZskYdSSXgTTWgJxfN3v1b81ek4cryL8hG2AV_5bctzdX7eXyXcTXD18yoNs |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+porous+carbons+for+zinc+ion+energy+storage%3A+Structure-Function+relationship+and+future+perspectives&rft.jtitle=Coordination+chemistry+reviews&rft.au=Zhang%2C+Hanfang&rft.au=Zhang%2C+Jiahe&rft.au=Liu%2C+Yanran&rft.au=Feng%2C+Feng&rft.date=2023-05-01&rft.pub=Elsevier+B.V&rft.issn=0010-8545&rft.eissn=1873-3840&rft.volume=482&rft_id=info:doi/10.1016%2Fj.ccr.2023.215056&rft.externalDocID=S0010854523000450 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-8545&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-8545&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-8545&client=summon |