A fitness-based adaptive differential evolution algorithm

The performance of differential evolution (DE) mainly depends on its breeding offspring strategy (i.e., trial vector generation strategies and associated control parameters). To take full advantage of several effective breeding offspring strategies proposed in recent years, a fitness-based adaptive...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information sciences Ročník 549; s. 116 - 141
Hlavní autori: Xia, Xuewen, Gui, Ling, Zhang, Yinglong, Xu, Xing, Yu, Fei, Wu, Hongrun, Wei, Bo, He, Guoliang, Li, Yuanxiang, Li, Kangshun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.03.2021
Predmet:
ISSN:0020-0255, 1872-6291
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The performance of differential evolution (DE) mainly depends on its breeding offspring strategy (i.e., trial vector generation strategies and associated control parameters). To take full advantage of several effective breeding offspring strategies proposed in recent years, a fitness-based adaptive differential evolution algorithm (FADE) is proposed in this paper. In FADE, the entire population is split into multiple small-sized swarms, and three popular breeding strategies are saved in an archive which can be utilized by the multiple swarms. In each generation, different individuals in a same swarm adaptively select their own breeding strategy from the archive based on their fitness. With the adaptive breeding strategy, the individuals in a same swarm can exhibit distinct search behaviors. Moreover, the population size can be adaptively adjusted during the evolutionary process according to the performance of the best individual. Based on the adaptive population size, computational resources can be rationally assigned in different evolutionary stages, and then to satisfy diverse requirements of different fitness landscapes. The comprehensive performance of FADE is extensively evaluated by comparisons between it and other eight state-of-art DE variants based on CEC2013 and CEC2017 test suites as well as seven real applications. In addition, the effectiveness and efficiency of the newly introduced adaptive strategies are further confirmed by a set of experiments.
AbstractList The performance of differential evolution (DE) mainly depends on its breeding offspring strategy (i.e., trial vector generation strategies and associated control parameters). To take full advantage of several effective breeding offspring strategies proposed in recent years, a fitness-based adaptive differential evolution algorithm (FADE) is proposed in this paper. In FADE, the entire population is split into multiple small-sized swarms, and three popular breeding strategies are saved in an archive which can be utilized by the multiple swarms. In each generation, different individuals in a same swarm adaptively select their own breeding strategy from the archive based on their fitness. With the adaptive breeding strategy, the individuals in a same swarm can exhibit distinct search behaviors. Moreover, the population size can be adaptively adjusted during the evolutionary process according to the performance of the best individual. Based on the adaptive population size, computational resources can be rationally assigned in different evolutionary stages, and then to satisfy diverse requirements of different fitness landscapes. The comprehensive performance of FADE is extensively evaluated by comparisons between it and other eight state-of-art DE variants based on CEC2013 and CEC2017 test suites as well as seven real applications. In addition, the effectiveness and efficiency of the newly introduced adaptive strategies are further confirmed by a set of experiments.
Author Wu, Hongrun
Zhang, Yinglong
Yu, Fei
Xu, Xing
He, Guoliang
Gui, Ling
Xia, Xuewen
Li, Kangshun
Li, Yuanxiang
Wei, Bo
Author_xml – sequence: 1
  givenname: Xuewen
  surname: Xia
  fullname: Xia, Xuewen
  email: xwxia@whu.edu.cn
  organization: College of Physics and Information Engineering, Minnan Normal University, Zhangzhou, China
– sequence: 2
  givenname: Ling
  surname: Gui
  fullname: Gui, Ling
  organization: College of Physics and Information Engineering, Minnan Normal University, Zhangzhou, China
– sequence: 3
  givenname: Yinglong
  surname: Zhang
  fullname: Zhang, Yinglong
  email: Zhang_yinglong@126.com
  organization: College of Physics and Information Engineering, Minnan Normal University, Zhangzhou, China
– sequence: 4
  givenname: Xing
  surname: Xu
  fullname: Xu, Xing
  organization: College of Physics and Information Engineering, Minnan Normal University, Zhangzhou, China
– sequence: 5
  givenname: Fei
  surname: Yu
  fullname: Yu, Fei
  organization: College of Physics and Information Engineering, Minnan Normal University, Zhangzhou, China
– sequence: 6
  givenname: Hongrun
  surname: Wu
  fullname: Wu, Hongrun
  organization: College of Physics and Information Engineering, Minnan Normal University, Zhangzhou, China
– sequence: 7
  givenname: Bo
  surname: Wei
  fullname: Wei, Bo
  organization: School of Informatics Science and Technology, Zhejiang Sci-Tech University, Hangzhou, China
– sequence: 8
  givenname: Guoliang
  surname: He
  fullname: He, Guoliang
  organization: School of Computer, Wuhan University, Wuhan, China
– sequence: 9
  givenname: Yuanxiang
  surname: Li
  fullname: Li, Yuanxiang
  organization: College of Physics and Information Engineering, Minnan Normal University, Zhangzhou, China
– sequence: 10
  givenname: Kangshun
  surname: Li
  fullname: Li, Kangshun
  organization: College of Physics and Information Engineering, Minnan Normal University, Zhangzhou, China
BookMark eNp9j8tqwzAQRUVJoWnaD-jOP2BXo9iyTVch9AWBbtq10GPUTnDkIKmB_n0d0lUXWV2GyxnuuWazMAZk7A54BRzk_baikCrBxXRDxaG5YHPoWlFK0cOMzfnUlFw0zRW7TmnLOa9bKeesXxWecsCUSqMTukI7vc90wMKR9xgxZNJDgYdx-M40hkIPn2Ok_LW7YZdeDwlv_3LBPp4e39cv5ebt-XW92pRW9G0u0QlrQHrpOgRd17pz0uje2c5ZI7xEvZTCmKZtbF13Fjg3ztVLMe3g4NpuuWBw-mvjmFJEr_aRdjr-KODq6K62anJXR3cFoCb3iWn_MZayPu7PUdNwlnw4kTgpHQijSpYwWHQU0WblRjpD_wJkzHeA
CitedBy_id crossref_primary_10_1007_s11227_023_05390_1
crossref_primary_10_1016_j_swevo_2023_101282
crossref_primary_10_3390_biomimetics9070384
crossref_primary_10_1016_j_jocs_2021_101368
crossref_primary_10_1109_ACCESS_2020_3045423
crossref_primary_10_1155_2022_9752003
crossref_primary_10_1007_s10489_022_03197_w
crossref_primary_10_1016_j_ins_2022_07_148
crossref_primary_10_1016_j_dt_2021_07_008
crossref_primary_10_3390_sym17020223
crossref_primary_10_1016_j_asoc_2022_109653
crossref_primary_10_1016_j_ins_2022_10_111
crossref_primary_10_3390_electronics13010062
crossref_primary_10_1016_j_swevo_2023_101291
crossref_primary_10_1016_j_amc_2023_128135
crossref_primary_10_1016_j_ins_2022_06_029
crossref_primary_10_1155_2022_4481296
crossref_primary_10_20965_jaciii_2024_p1169
crossref_primary_10_3390_diagnostics12102299
crossref_primary_10_1016_j_neucom_2021_03_077
crossref_primary_10_1007_s00500_023_08580_4
crossref_primary_10_1007_s10586_025_05306_z
crossref_primary_10_1016_j_ins_2022_11_056
crossref_primary_10_1007_s40747_025_01883_z
crossref_primary_10_1016_j_eswa_2023_119848
crossref_primary_10_1038_s41598_024_70731_w
crossref_primary_10_3390_math11173681
crossref_primary_10_1016_j_eswa_2025_128158
crossref_primary_10_1016_j_asoc_2023_110209
crossref_primary_10_1016_j_swevo_2023_101403
crossref_primary_10_1016_j_swevo_2023_101447
crossref_primary_10_1016_j_eswa_2024_124245
crossref_primary_10_1016_j_future_2024_04_032
crossref_primary_10_1016_j_ins_2022_08_001
crossref_primary_10_1007_s13042_024_02409_8
crossref_primary_10_33889_IJMEMS_2025_10_4_051
crossref_primary_10_1016_j_eswa_2025_126945
crossref_primary_10_1007_s10489_023_05038_w
crossref_primary_10_1016_j_ins_2022_11_106
crossref_primary_10_1109_ACCESS_2021_3102669
crossref_primary_10_1016_j_knosys_2022_109005
crossref_primary_10_1016_j_ins_2021_07_082
crossref_primary_10_1007_s10489_021_03021_x
crossref_primary_10_1109_ACCESS_2023_3275016
crossref_primary_10_3390_math12121832
crossref_primary_10_1016_j_ins_2024_120382
crossref_primary_10_1007_s10489_025_06609_9
crossref_primary_10_1016_j_knosys_2022_109280
crossref_primary_10_1016_j_ins_2022_07_003
crossref_primary_10_1016_j_swevo_2023_101454
crossref_primary_10_1016_j_scienta_2022_110879
crossref_primary_10_1109_ACCESS_2023_3300229
crossref_primary_10_1007_s10586_023_04173_w
crossref_primary_10_1007_s12293_025_00445_7
crossref_primary_10_1016_j_ins_2022_07_075
crossref_primary_10_1016_j_swevo_2025_102081
crossref_primary_10_1016_j_asoc_2023_110390
crossref_primary_10_1007_s10489_024_05781_8
crossref_primary_10_3390_w17111624
crossref_primary_10_3390_math11153355
crossref_primary_10_1016_j_eswa_2022_116895
crossref_primary_10_1109_TCYB_2021_3101880
crossref_primary_10_1155_2022_3837579
crossref_primary_10_3233_JCM_247326
crossref_primary_10_1016_j_asoc_2025_113137
crossref_primary_10_1016_j_ins_2023_01_120
crossref_primary_10_1109_TSMC_2021_3096220
crossref_primary_10_1016_j_ins_2024_121401
crossref_primary_10_1007_s10586_024_04600_6
crossref_primary_10_1016_j_eswa_2025_128054
crossref_primary_10_3390_sym13112163
crossref_primary_10_1016_j_ins_2022_06_040
crossref_primary_10_1016_j_swevo_2024_101521
Cites_doi 10.1016/j.asoc.2014.01.038
10.1007/s00500-016-2418-1
10.1109/TCYB.2017.2710626
10.1109/TEVC.2013.2297160
10.1109/TEVC.2010.2087271
10.1016/j.asoc.2017.06.002
10.1109/ACCESS.2017.2773825
10.1007/s10489-018-1255-6
10.1016/j.ins.2017.02.055
10.1007/s00500-018-3015-2
10.1016/j.ins.2017.09.053
10.1016/j.ins.2018.11.021
10.1016/j.ins.2016.10.003
10.1016/j.ins.2017.09.002
10.1016/j.swevo.2020.100731
10.1109/TII.2016.2535347
10.1109/TEVC.2009.2014613
10.1016/j.asoc.2018.02.042
10.1007/s00500-017-2777-2
10.1016/j.ins.2018.02.048
10.1109/CEC.2016.7744190
10.1016/j.ins.2012.09.019
10.1016/j.swevo.2011.02.002
10.1109/TCYB.2015.2512942
10.1109/TEVC.2014.2360890
10.1109/TEVC.2013.2281528
10.1016/j.swevo.2016.01.004
10.1109/TCYB.2016.2617301
10.1109/TEVC.2008.927706
10.1109/TEVC.2006.872133
10.1109/CEC.2006.1688555
10.1016/j.ins.2010.10.009
10.1016/j.ins.2015.09.009
10.1109/TSMCC.2012.2212007
10.1023/A:1008202821328
10.1016/j.ins.2011.09.001
10.1109/TCYB.2013.2279211
10.1109/CEC.2006.1688285
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2020.11.015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 141
ExternalDocumentID 10_1016_j_ins_2020_11_015
S0020025520311014
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-ed2cb16f6d8e1a44a8d6ba9dc8dcb2f6ea362bb575c448c100bdd432ada01d783
ISICitedReferencesCount 84
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000605761300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 20:52:13 EST 2025
Sat Nov 29 07:27:06 EST 2025
Fri Feb 23 02:49:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Differential evolution
Breeding offspring strategy
Population sized
Multiple adaptive strategies
Fitness-based
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-ed2cb16f6d8e1a44a8d6ba9dc8dcb2f6ea362bb575c448c100bdd432ada01d783
PageCount 26
ParticipantIDs crossref_primary_10_1016_j_ins_2020_11_015
crossref_citationtrail_10_1016_j_ins_2020_11_015
elsevier_sciencedirect_doi_10_1016_j_ins_2020_11_015
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Brest, Greiner, Bosković (b0015) 2006; 10
Wang, Ren, Li (b0185) 2018; 22
Gämperle, Muller, Koumoutsakos (b0060) 2002
Yu, Shen, Chen (b0210) 2014; 44
Cai, Liao, Wang (b0025) 2018; 433–434
Wu, Shen, Li (b0200) 2018; 423
V.L. Huang, A.K. Qin, P.N. Suganthan, Self-adaptive differential evolution algorithm for constrained real-parameter optimization, in: Proc. of IEEE Congress on Evolutionary Computation, CEC’06, Vancouver, BC, Canada, 2006, pp. 17–24.
Ghosh, Das, Zafar (b0070) 2012; 42
Pan, Wang, Gao (b0120) 2011; 181
Derrac, García, Molina (b0050) 2011; 1
Price, Storn (b0125) 2005
Gui, Xia, Yu (b0075) 2019; 50
Awad, Ali, Liang (b0010) 2016
R. Mendes, I. Rocha, E.C. Ferreira et al., A comparison of algorithms for the optimization of fermentation processes, in: Proc. of IEEE Congress on Evolutionary Computation, CEC’06, Vancouver, BC, Canada, 2006, pp. 2018–2025.
Cui, Li, Zhu (b0035) 2019; 23
Tang, Dong, Liu (b0150) 2015; 19
Wei, Xia, Yu (b0190) 2020; 57
Du, Leung, Tang (b0055) 2017; 47
G.H. Wu, R. Mallipeddi, P.N. Suganthan et al., Differential evolution with multi population based ensemble of mutation strategies, Inf. Sci. 329(C)(2016) 329–345.
Tian, Gao (b0160) 2019; 478
Mohamed, Hadi, Jambi (b0115) 2019; 50
Wang, Cai, Zhang (b0170) 2011; 15
Tian, Li, Yan (b0155) 2019; 49
Zhou, Zhang (b0235) 2017; 47
Ali, Awad, Suganthan (b0005) 2017; 47
Guo, Yang (b0080) 2015; 19
J.J. Liang, B.Y. Qu, P.N. Suganthan, Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization, Nanyang Technological Univ., Singapore, Tech. Rep., 2013.
Das, Mullick, Suganthan (b0045) 2016; 27
Wang, Cai, Zhang (b0175) 2012; 185
Wang, Li, Huang (b0180) 2014; 18
Sarker, Elsayed, Ray (b0135) 2014; 18
G. Sun, Y.Q. Cai, T. Wang et al., Differential evolution with individual-dependent topology adaptation, Inf. Sci. 450(2018), 1–38.
Cai, Sun, Wang (b0020) 2017; 59
Zheng, Zhang, Tang (b0230) 2017; 399
Mezura-Montes, Velázquez-Reyes, Coello (b0105) 2006
Xia, Gui, Zhan (b0205) 2018; 67
D. Zaharie, Control of population diversity and adaption in differential evolution algorithms, in: Proc. of Mendel 2003, Ninth International Conference on Soft Computing, 2003, pp. 41–46.
Das, Suganthan (b0040) 2010
Zhu, Tang, Fang (b0240) 2013; 223
Storn, Price (b0140) 1997; 11
Qin, Huang, Suganthan (b0130) 2009; 13
Z.Z. Liu, Y. Wang, S.X. Yang et al., Differential evolution with a two-stage optimization mechanism for numerical optimization, in: Proc. of IEEE Congress on Evolutionary Computation, CEC’16, Vancouver, BC, Canada, 2016, pp. 3170–3177.
Cui, Li, Zhu (b0030) 2018; 422
Ghosh, Das, Mallipeddi (b0065) 2017
Mohamed, Suganthan (b0110) 2018; 22
Tian, Gao (b0165) 2019; 50
Zhang, Sanderson (b0220) 2009; 13
Zheng, Zhang, Zheng (b0225) 2016; 12
Ali (10.1016/j.ins.2020.11.015_b0005) 2017; 47
Pan (10.1016/j.ins.2020.11.015_b0120) 2011; 181
10.1016/j.ins.2020.11.015_b0095
Ghosh (10.1016/j.ins.2020.11.015_b0065) 2017
10.1016/j.ins.2020.11.015_b0090
Wang (10.1016/j.ins.2020.11.015_b0170) 2011; 15
Mohamed (10.1016/j.ins.2020.11.015_b0115) 2019; 50
Wang (10.1016/j.ins.2020.11.015_b0180) 2014; 18
Xia (10.1016/j.ins.2020.11.015_b0205) 2018; 67
Cui (10.1016/j.ins.2020.11.015_b0030) 2018; 422
Yu (10.1016/j.ins.2020.11.015_b0210) 2014; 44
10.1016/j.ins.2020.11.015_b0195
Wei (10.1016/j.ins.2020.11.015_b0190) 2020; 57
Cai (10.1016/j.ins.2020.11.015_b0025) 2018; 433–434
Zhou (10.1016/j.ins.2020.11.015_b0235) 2017; 47
Du (10.1016/j.ins.2020.11.015_b0055) 2017; 47
Tian (10.1016/j.ins.2020.11.015_b0155) 2019; 49
Wang (10.1016/j.ins.2020.11.015_b0185) 2018; 22
Price (10.1016/j.ins.2020.11.015_b0125) 2005
Qin (10.1016/j.ins.2020.11.015_b0130) 2009; 13
Gui (10.1016/j.ins.2020.11.015_b0075) 2019; 50
Awad (10.1016/j.ins.2020.11.015_b0010) 2016
Sarker (10.1016/j.ins.2020.11.015_b0135) 2014; 18
Mohamed (10.1016/j.ins.2020.11.015_b0110) 2018; 22
Das (10.1016/j.ins.2020.11.015_b0040) 2010
Zhang (10.1016/j.ins.2020.11.015_b0220) 2009; 13
Ghosh (10.1016/j.ins.2020.11.015_b0070) 2012; 42
Cai (10.1016/j.ins.2020.11.015_b0020) 2017; 59
Cui (10.1016/j.ins.2020.11.015_b0035) 2019; 23
Guo (10.1016/j.ins.2020.11.015_b0080) 2015; 19
Zheng (10.1016/j.ins.2020.11.015_b0225) 2016; 12
Derrac (10.1016/j.ins.2020.11.015_b0050) 2011; 1
10.1016/j.ins.2020.11.015_b0100
10.1016/j.ins.2020.11.015_b0145
Brest (10.1016/j.ins.2020.11.015_b0015) 2006; 10
Das (10.1016/j.ins.2020.11.015_b0045) 2016; 27
Zheng (10.1016/j.ins.2020.11.015_b0230) 2017; 399
10.1016/j.ins.2020.11.015_b0085
Wu (10.1016/j.ins.2020.11.015_b0200) 2018; 423
Tian (10.1016/j.ins.2020.11.015_b0165) 2019; 50
Gämperle (10.1016/j.ins.2020.11.015_b0060) 2002
Zhu (10.1016/j.ins.2020.11.015_b0240) 2013; 223
10.1016/j.ins.2020.11.015_b0215
Wang (10.1016/j.ins.2020.11.015_b0175) 2012; 185
Tang (10.1016/j.ins.2020.11.015_b0150) 2015; 19
Mezura-Montes (10.1016/j.ins.2020.11.015_b0105) 2006
Storn (10.1016/j.ins.2020.11.015_b0140) 1997; 11
Tian (10.1016/j.ins.2020.11.015_b0160) 2019; 478
References_xml – volume: 57
  year: 2020
  ident: b0190
  article-title: Multiple adaptive strategies based particle swarm optimization algorithm
  publication-title: Swarm Evol. Comput.
– volume: 19
  start-page: 560
  year: 2015
  end-page: 574
  ident: b0150
  article-title: Differential evolution with an individual-dependent mechanism
  publication-title: IEEE Trans. Evol. Comput.
– reference: Z.Z. Liu, Y. Wang, S.X. Yang et al., Differential evolution with a two-stage optimization mechanism for numerical optimization, in: Proc. of IEEE Congress on Evolutionary Computation, CEC’16, Vancouver, BC, Canada, 2016, pp. 3170–3177.
– volume: 50
  year: 2019
  ident: b0115
  article-title: Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization, Swarm
  publication-title: Evol. Comput.
– volume: 13
  start-page: 398
  year: 2009
  end-page: 417
  ident: b0130
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 10
  start-page: 646
  year: 2006
  end-page: 657
  ident: b0015
  article-title: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 23
  start-page: 3643
  year: 2019
  end-page: 3660
  ident: b0035
  article-title: Differential evolution algorithm with dichotomy-based parameter space compression
  publication-title: Soft Comput.
– volume: 13
  start-page: 945
  year: 2009
  end-page: 958
  ident: b0220
  article-title: JADE: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
– volume: 12
  start-page: 911
  year: 2016
  end-page: 923
  ident: b0225
  article-title: Differential evolution algorithm with two-step subpopulation strategy and its application in microwave circuit designs
  publication-title: IEEE Trans. Ind. Inf.
– reference: D. Zaharie, Control of population diversity and adaption in differential evolution algorithms, in: Proc. of Mendel 2003, Ninth International Conference on Soft Computing, 2003, pp. 41–46.
– volume: 399
  start-page: 13
  year: 2017
  end-page: 29
  ident: b0230
  article-title: Differential evolution powered by collective information
  publication-title: Inf. Sci.
– volume: 47
  start-page: 2768
  year: 2017
  end-page: 2779
  ident: b0005
  article-title: An adaptive multipopulation differential evolution with dynamic population reduction
  publication-title: IEEE Trans. Cybern.
– start-page: 293
  year: 2002
  end-page: 298
  ident: b0060
  article-title: A parameter study for differential evolution
  publication-title: Proc. of Advances Intelligent Systerms Fuzzy Systerms
– volume: 22
  start-page: 3215
  year: 2018
  end-page: 3235
  ident: b0110
  article-title: Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential evolution algorithm with novel mutation
  publication-title: Soft Comput.
– volume: 18
  start-page: 232
  year: 2014
  end-page: 247
  ident: b0180
  article-title: Differential evolution based on covariance matrix learning and bimodal distribution parameter setting
  publication-title: Appl. Soft Comput.
– start-page: 26944
  year: 2017
  end-page: 26964
  ident: b0065
  article-title: A modified differential evolution with distance-based selection for continuous optimization in presence of noise
  publication-title: IEEE Access
– volume: 15
  start-page: 55
  year: 2011
  end-page: 67
  ident: b0170
  article-title: Differential evolution with composite trial vector generation strategies and control parameters
  publication-title: IEEE Trans. Evol. Comput.
– year: 2010
  ident: b0040
  article-title: Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems
– volume: 18
  start-page: 689
  year: 2014
  end-page: 707
  ident: b0135
  article-title: Differential evolution with dynamic parameters selection for optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 42
  start-page: 1613
  year: 2012
  end-page: 1623
  ident: b0070
  article-title: Adaptive-differential-evolution-based design of two-channel quadrature mirror filter banks for sub-band coding and data transmission
  publication-title: IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.
– volume: 181
  start-page: 668
  year: 2011
  end-page: 685
  ident: b0120
  article-title: An effective hybrid discrete differential evolution algorithm for the flow shop scheduling with intermediate buffers
  publication-title: Inf. Sci.
– volume: 223
  start-page: 164
  year: 2013
  end-page: 191
  ident: b0240
  article-title: Adaptive population tuning scheme for differential evolution
  publication-title: Inf. Sci.
– volume: 422
  start-page: 122
  year: 2018
  end-page: 143
  ident: b0030
  article-title: Adaptive multiple-elites-guided composite differential evolution algorithm with a shift mechanism
  publication-title: Inf. Sci.
– volume: 27
  start-page: 1
  year: 2016
  end-page: 30
  ident: b0045
  article-title: Recent advances in differential evolution - an updated survey
  publication-title: Swarm Evol. Comput.
– reference: V.L. Huang, A.K. Qin, P.N. Suganthan, Self-adaptive differential evolution algorithm for constrained real-parameter optimization, in: Proc. of IEEE Congress on Evolutionary Computation, CEC’06, Vancouver, BC, Canada, 2006, pp. 17–24.
– volume: 50
  year: 2019
  ident: b0165
  article-title: An improved differential evolution with information intercrossing and sharing mechanism for numerical optimization, Swarm
  publication-title: Evol. Comput.
– reference: G.H. Wu, R. Mallipeddi, P.N. Suganthan et al., Differential evolution with multi population based ensemble of mutation strategies, Inf. Sci. 329(C)(2016) 329–345.
– year: 2016
  ident: b0010
  article-title: Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization, Nanyang Technological Univ., Singapore
  publication-title: Tech. Rep.
– reference: G. Sun, Y.Q. Cai, T. Wang et al., Differential evolution with individual-dependent topology adaptation, Inf. Sci. 450(2018), 1–38.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b0050
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– volume: 44
  start-page: 1080
  year: 2014
  end-page: 1099
  ident: b0210
  article-title: Differential evolution with two-level parameter adaptation
  publication-title: IEEE Trans. Cybern.
– reference: J.J. Liang, B.Y. Qu, P.N. Suganthan, Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization, Nanyang Technological Univ., Singapore, Tech. Rep., 2013.
– start-page: 485
  year: 2006
  end-page: 492
  ident: b0105
  article-title: A comparative study of differential evolution variants for global optimization
  publication-title: Proc. of the 2006 annual conference on Genetic and Evolutionary Computation GECCO’06, Seattle, Washington, USA
– volume: 433–434
  start-page: 464
  year: 2018
  end-page: 509
  ident: b0025
  article-title: Social learning differential evolution
  publication-title: Inf. Sci.
– volume: 50
  year: 2019
  ident: b0075
  article-title: A multi-role based differential evolution, Swarm
  publication-title: Evol. Comput.
– year: 2005
  ident: b0125
  article-title: Differential evolution: a practical approach to global optimization
– volume: 49
  start-page: 628
  year: 2019
  end-page: 649
  ident: b0155
  article-title: Differential evolution algorithm directed by individual difference information between generations and current individual information
  publication-title: Appl. Intel.
– volume: 22
  start-page: 1313
  year: 2018
  end-page: 1333
  ident: b0185
  article-title: APDDE: self-adaptive parameter dynamics differential evolution algorithm
  publication-title: Soft Comput.
– reference: R. Mendes, I. Rocha, E.C. Ferreira et al., A comparison of algorithms for the optimization of fermentation processes, in: Proc. of IEEE Congress on Evolutionary Computation, CEC’06, Vancouver, BC, Canada, 2006, pp. 2018–2025.
– volume: 67
  start-page: 126
  year: 2018
  end-page: 140
  ident: b0205
  article-title: A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful detecting
  publication-title: Appl. Soft Comput.
– volume: 47
  start-page: 2730
  year: 2017
  end-page: 2741
  ident: b0235
  article-title: Abstract convex underestimation assisted multistage differential evolution
  publication-title: IEEE Trans. Cybern.
– volume: 19
  start-page: 31
  year: 2015
  end-page: 49
  ident: b0080
  article-title: Enhancing differential evolution utilizing eigenvector-based crossover operator
  publication-title: IEEE Trans. Evol. Comput.
– volume: 47
  start-page: 244
  year: 2017
  end-page: 257
  ident: b0055
  article-title: Differential evolution with event-triggered impulsive control
  publication-title: IEEE Trans. Cybern.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0140
  article-title: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– volume: 185
  start-page: 153
  year: 2012
  end-page: 177
  ident: b0175
  article-title: Enhancing the search ability of differential evolution through orthogonal crossover
  publication-title: Inf. Sci.
– volume: 59
  start-page: 659
  year: 2017
  end-page: 706
  ident: b0020
  article-title: Neighborhood-adaptive differential evolution for global numerical optimization
  publication-title: Appl. Soft Comput.
– volume: 478
  start-page: 422
  year: 2019
  end-page: 448
  ident: b0160
  article-title: Differential evolution with neighborhood-based adaptive evolution mechanism for numerical optimization
  publication-title: Inf. Sci.
– volume: 423
  start-page: 172
  year: 2018
  end-page: 186
  ident: b0200
  article-title: Ensemble of differential evolution variants
  publication-title: Inf. Sci.
– ident: 10.1016/j.ins.2020.11.015_b0215
– volume: 18
  start-page: 232
  issue: 1
  year: 2014
  ident: 10.1016/j.ins.2020.11.015_b0180
  article-title: Differential evolution based on covariance matrix learning and bimodal distribution parameter setting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.01.038
– volume: 22
  start-page: 1313
  year: 2018
  ident: 10.1016/j.ins.2020.11.015_b0185
  article-title: APDDE: self-adaptive parameter dynamics differential evolution algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2418-1
– year: 2005
  ident: 10.1016/j.ins.2020.11.015_b0125
– volume: 47
  start-page: 2730
  issue: 9
  year: 2017
  ident: 10.1016/j.ins.2020.11.015_b0235
  article-title: Abstract convex underestimation assisted multistage differential evolution
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2710626
– volume: 19
  start-page: 31
  issue: 1
  year: 2015
  ident: 10.1016/j.ins.2020.11.015_b0080
  article-title: Enhancing differential evolution utilizing eigenvector-based crossover operator
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2297160
– volume: 15
  start-page: 55
  issue: 1
  year: 2011
  ident: 10.1016/j.ins.2020.11.015_b0170
  article-title: Differential evolution with composite trial vector generation strategies and control parameters
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2087271
– volume: 59
  start-page: 659
  year: 2017
  ident: 10.1016/j.ins.2020.11.015_b0020
  article-title: Neighborhood-adaptive differential evolution for global numerical optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.06.002
– start-page: 26944
  year: 2017
  ident: 10.1016/j.ins.2020.11.015_b0065
  article-title: A modified differential evolution with distance-based selection for continuous optimization in presence of noise
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2773825
– volume: 49
  start-page: 628
  year: 2019
  ident: 10.1016/j.ins.2020.11.015_b0155
  article-title: Differential evolution algorithm directed by individual difference information between generations and current individual information
  publication-title: Appl. Intel.
  doi: 10.1007/s10489-018-1255-6
– volume: 399
  start-page: 13
  year: 2017
  ident: 10.1016/j.ins.2020.11.015_b0230
  article-title: Differential evolution powered by collective information
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.02.055
– volume: 23
  start-page: 3643
  year: 2019
  ident: 10.1016/j.ins.2020.11.015_b0035
  article-title: Differential evolution algorithm with dichotomy-based parameter space compression
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3015-2
– volume: 423
  start-page: 172
  year: 2018
  ident: 10.1016/j.ins.2020.11.015_b0200
  article-title: Ensemble of differential evolution variants
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.09.053
– ident: 10.1016/j.ins.2020.11.015_b0090
– start-page: 485
  year: 2006
  ident: 10.1016/j.ins.2020.11.015_b0105
  article-title: A comparative study of differential evolution variants for global optimization
– volume: 478
  start-page: 422
  year: 2019
  ident: 10.1016/j.ins.2020.11.015_b0160
  article-title: Differential evolution with neighborhood-based adaptive evolution mechanism for numerical optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.11.021
– volume: 433–434
  start-page: 464
  year: 2018
  ident: 10.1016/j.ins.2020.11.015_b0025
  article-title: Social learning differential evolution
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.10.003
– volume: 422
  start-page: 122
  year: 2018
  ident: 10.1016/j.ins.2020.11.015_b0030
  article-title: Adaptive multiple-elites-guided composite differential evolution algorithm with a shift mechanism
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.09.002
– volume: 57
  year: 2020
  ident: 10.1016/j.ins.2020.11.015_b0190
  article-title: Multiple adaptive strategies based particle swarm optimization algorithm
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100731
– volume: 12
  start-page: 911
  issue: 3
  year: 2016
  ident: 10.1016/j.ins.2020.11.015_b0225
  article-title: Differential evolution algorithm with two-step subpopulation strategy and its application in microwave circuit designs
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2016.2535347
– volume: 13
  start-page: 945
  issue: 5
  year: 2009
  ident: 10.1016/j.ins.2020.11.015_b0220
  article-title: JADE: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2014613
– volume: 67
  start-page: 126
  year: 2018
  ident: 10.1016/j.ins.2020.11.015_b0205
  article-title: A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful detecting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.02.042
– volume: 22
  start-page: 3215
  issue: 10
  year: 2018
  ident: 10.1016/j.ins.2020.11.015_b0110
  article-title: Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential evolution algorithm with novel mutation
  publication-title: Soft Comput.
  doi: 10.1007/s00500-017-2777-2
– ident: 10.1016/j.ins.2020.11.015_b0145
  doi: 10.1016/j.ins.2018.02.048
– ident: 10.1016/j.ins.2020.11.015_b0095
  doi: 10.1109/CEC.2016.7744190
– volume: 223
  start-page: 164
  year: 2013
  ident: 10.1016/j.ins.2020.11.015_b0240
  article-title: Adaptive population tuning scheme for differential evolution
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.09.019
– year: 2016
  ident: 10.1016/j.ins.2020.11.015_b0010
  article-title: Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization, Nanyang Technological Univ., Singapore
  publication-title: Tech. Rep.
– year: 2010
  ident: 10.1016/j.ins.2020.11.015_b0040
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.ins.2020.11.015_b0050
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 47
  start-page: 244
  issue: 1
  year: 2017
  ident: 10.1016/j.ins.2020.11.015_b0055
  article-title: Differential evolution with event-triggered impulsive control
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2512942
– volume: 19
  start-page: 560
  issue: 4
  year: 2015
  ident: 10.1016/j.ins.2020.11.015_b0150
  article-title: Differential evolution with an individual-dependent mechanism
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2360890
– volume: 50
  year: 2019
  ident: 10.1016/j.ins.2020.11.015_b0075
  article-title: A multi-role based differential evolution, Swarm
  publication-title: Evol. Comput.
– volume: 18
  start-page: 689
  issue: 5
  year: 2014
  ident: 10.1016/j.ins.2020.11.015_b0135
  article-title: Differential evolution with dynamic parameters selection for optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281528
– volume: 27
  start-page: 1
  year: 2016
  ident: 10.1016/j.ins.2020.11.015_b0045
  article-title: Recent advances in differential evolution - an updated survey
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2016.01.004
– volume: 47
  start-page: 2768
  issue: 9
  year: 2017
  ident: 10.1016/j.ins.2020.11.015_b0005
  article-title: An adaptive multipopulation differential evolution with dynamic population reduction
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2617301
– volume: 13
  start-page: 398
  issue: 2
  year: 2009
  ident: 10.1016/j.ins.2020.11.015_b0130
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.927706
– volume: 10
  start-page: 646
  issue: 6
  year: 2006
  ident: 10.1016/j.ins.2020.11.015_b0015
  article-title: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.872133
– start-page: 293
  year: 2002
  ident: 10.1016/j.ins.2020.11.015_b0060
  article-title: A parameter study for differential evolution
– ident: 10.1016/j.ins.2020.11.015_b0100
  doi: 10.1109/CEC.2006.1688555
– volume: 181
  start-page: 668
  issue: 3
  year: 2011
  ident: 10.1016/j.ins.2020.11.015_b0120
  article-title: An effective hybrid discrete differential evolution algorithm for the flow shop scheduling with intermediate buffers
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.10.009
– ident: 10.1016/j.ins.2020.11.015_b0195
  doi: 10.1016/j.ins.2015.09.009
– volume: 42
  start-page: 1613
  issue: 6
  year: 2012
  ident: 10.1016/j.ins.2020.11.015_b0070
  article-title: Adaptive-differential-evolution-based design of two-channel quadrature mirror filter banks for sub-band coding and data transmission
  publication-title: IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.
  doi: 10.1109/TSMCC.2012.2212007
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.ins.2020.11.015_b0140
  article-title: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– volume: 50
  year: 2019
  ident: 10.1016/j.ins.2020.11.015_b0115
  article-title: Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization, Swarm
  publication-title: Evol. Comput.
– volume: 185
  start-page: 153
  issue: 1
  year: 2012
  ident: 10.1016/j.ins.2020.11.015_b0175
  article-title: Enhancing the search ability of differential evolution through orthogonal crossover
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.09.001
– volume: 44
  start-page: 1080
  issue: 7
  year: 2014
  ident: 10.1016/j.ins.2020.11.015_b0210
  article-title: Differential evolution with two-level parameter adaptation
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2279211
– volume: 50
  year: 2019
  ident: 10.1016/j.ins.2020.11.015_b0165
  article-title: An improved differential evolution with information intercrossing and sharing mechanism for numerical optimization, Swarm
  publication-title: Evol. Comput.
– ident: 10.1016/j.ins.2020.11.015_b0085
  doi: 10.1109/CEC.2006.1688285
SSID ssj0004766
Score 2.6179893
Snippet The performance of differential evolution (DE) mainly depends on its breeding offspring strategy (i.e., trial vector generation strategies and associated...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 116
SubjectTerms Breeding offspring strategy
Differential evolution
Fitness-based
Multiple adaptive strategies
Population sized
Title A fitness-based adaptive differential evolution algorithm
URI https://dx.doi.org/10.1016/j.ins.2020.11.015
Volume 549
WOSCitedRecordID wos000605761300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0IItB3pAUEC0tMgHxIGVUezNwz6uqvISqjgUKZwiv1K2WrKrbbbt53cc29mUAgIkLlHk2HE0M5mX54HQyyypWW5cxrKZGJLyVBD4ixRJMmVzwSWI1C5R-FNxfMzLUnwO8fPnXTuBomn41ZVY_ldUwxgg26XO_gW6-5fCANwD0uEKaIfrHyF-Oq5nrWNgxEkoM5ZGLrv4oNgLpXVOcnsRPmIs56eL1az99n2op4YspW5CEJK98l36-NpybS83eWTv1rNg4p_e8kV_hcH5YvOgXHfr49Tgc2CDoCvvCIvJMDdiNZ3mSZyJ4kWL56e8YCRnviFXZLiZL1IaWCal-UD6Ul8G6xZj9z6GM7BGXI115lj9m4RmGynWxxa64-fOUmLAr1wn4rtoixWZ4CO0Nf1wVH7cpM0W_ig7fnc89O7C_37Y6Odqy0AVOXmIHgQbAk897h-hO7bZQduDypI76CDko-BXeIBKHDj5YySm-AaV4EgleEgluKcS3FPJE_Tl7dHJ4XsSumgQzUTREmuYVjSvc8MtlWkqucmVFEZzoxWrcytBh1EK1HYNprqmSaKMSScM9k2oKfjkKRo1i8Y-QzhnxoAuw6lOZQoSW3HZmRSmVopSKXZREoFU6VBi3nU6mVcxlvCsArhWDq5gelYA1130ul-y9PVVfjc5jZCvAu17xa8CMvn1sr1_W_Yc3fe078K09tGoXa3tAbqnL9rZ-epFIKZr4-iJpA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fitness-based+adaptive+differential+evolution+algorithm&rft.jtitle=Information+sciences&rft.au=Xia%2C+Xuewen&rft.au=Gui%2C+Ling&rft.au=Zhang%2C+Yinglong&rft.au=Xu%2C+Xing&rft.date=2021-03-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=549&rft.spage=116&rft.epage=141&rft_id=info:doi/10.1016%2Fj.ins.2020.11.015&rft.externalDocID=S0020025520311014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon