Fine-grained highway autonomous vehicle lane-changing trajectory prediction based on a heuristic attention-aided encoder-decoder model

•A novel lane-changing trajectory segmentation and sampling algorithm is proposed.•Heuristic attention-aided encoder-decoder network is developed.•Both vehicle motion state and trajectory in the process of lane-changing are predicted.•Proposed trajectory prediction model can make a fine-grained desc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Transportation research. Part C, Emerging technologies Ročník 140; s. 103706
Hlavní autoři: Wei, Cheng, Hui, Fei, Yang, Zijiang, Jia, Shuo, Khattak, Asad J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.07.2022
Témata:
ISSN:0968-090X, 1879-2359
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A novel lane-changing trajectory segmentation and sampling algorithm is proposed.•Heuristic attention-aided encoder-decoder network is developed.•Both vehicle motion state and trajectory in the process of lane-changing are predicted.•Proposed trajectory prediction model can make a fine-grained description of lane-changing. Accurate prediction of lane-changing (LC) trajectories can improve traffic efficiency and reduce the probability of accidents, as well as provide driving strategies for intelligent connected vehicles (ICVs) and connected autonomous vehicles (CAVs). Aiming at solving the problems of low prediction accuracy, difficulty in long-term prediction, and an inability of a fine-grained level description of conventional models, a prediction model based on an attention-aided encoder-decoder structure and deep neural network (DNN) is proposed. This study analyzes the LC process and proposes an LC segmentation and sampling method for dividing LC into four stages. The optimal attention-aided encoder-decoder model is tested by trajectory data in the four LC stages and then a heuristic network model is designed. In addition, the proposed heuristic network is connected with the DNN for predicting vehicle kinematics data while predicting the vehicle trajectory. Finally, the heuristic network and DNN are tested in cascade to form a joint cascade prediction model that can perform a fine-grained LC description based on the prediction results. The experimental results show that the proposed cascade prediction model has high accuracy and long-term prediction capability of a vehicle’s trajectory, velocity, acceleration, and steering angle and is also capable of fine-grained LC description. The proposed prediction model can provide a useful theoretical basis for further research on ICVs and CAVs.
AbstractList •A novel lane-changing trajectory segmentation and sampling algorithm is proposed.•Heuristic attention-aided encoder-decoder network is developed.•Both vehicle motion state and trajectory in the process of lane-changing are predicted.•Proposed trajectory prediction model can make a fine-grained description of lane-changing. Accurate prediction of lane-changing (LC) trajectories can improve traffic efficiency and reduce the probability of accidents, as well as provide driving strategies for intelligent connected vehicles (ICVs) and connected autonomous vehicles (CAVs). Aiming at solving the problems of low prediction accuracy, difficulty in long-term prediction, and an inability of a fine-grained level description of conventional models, a prediction model based on an attention-aided encoder-decoder structure and deep neural network (DNN) is proposed. This study analyzes the LC process and proposes an LC segmentation and sampling method for dividing LC into four stages. The optimal attention-aided encoder-decoder model is tested by trajectory data in the four LC stages and then a heuristic network model is designed. In addition, the proposed heuristic network is connected with the DNN for predicting vehicle kinematics data while predicting the vehicle trajectory. Finally, the heuristic network and DNN are tested in cascade to form a joint cascade prediction model that can perform a fine-grained LC description based on the prediction results. The experimental results show that the proposed cascade prediction model has high accuracy and long-term prediction capability of a vehicle’s trajectory, velocity, acceleration, and steering angle and is also capable of fine-grained LC description. The proposed prediction model can provide a useful theoretical basis for further research on ICVs and CAVs.
ArticleNumber 103706
Author Jia, Shuo
Wei, Cheng
Hui, Fei
Yang, Zijiang
Khattak, Asad J.
Author_xml – sequence: 1
  givenname: Cheng
  surname: Wei
  fullname: Wei, Cheng
  organization: School of Information Engineering, Chang'an University, Xi’an, Shaanxi 710064, China
– sequence: 2
  givenname: Fei
  surname: Hui
  fullname: Hui, Fei
  email: feihui@chd.edu.cn
  organization: School of Information Engineering, Chang'an University, Xi’an, Shaanxi 710064, China
– sequence: 3
  givenname: Zijiang
  surname: Yang
  fullname: Yang, Zijiang
  organization: Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
– sequence: 4
  givenname: Shuo
  surname: Jia
  fullname: Jia, Shuo
  organization: School of Information Engineering, Chang'an University, Xi’an, Shaanxi 710064, China
– sequence: 5
  givenname: Asad J.
  surname: Khattak
  fullname: Khattak, Asad J.
  organization: School of Information Engineering, Chang'an University, Xi’an, Shaanxi 710064, China
BookMark eNp9kM1OAjEUhRuDiYg-gLu-wGA7w7RMXBkiakLiRhN3zZ32wpQMLWkLhhfwuS3iygWbnt6fc5PzXZOB8w4JueNszBkX9-txCnpcsrLMdSWZuCBDPpVNUVZ1MyBD1ohpwRr2eUWuY1wzxnhTyyH5nluHxSpAFkM7u-q-4EBhl7zzG7-LdI-d1T3SHvKe7sCtrFvRFGCNOvlwoNuAxupkvaMtxHwkf4B2uAs2JqsppITuOC7AmjxGp73BUBj8VbrJb39DLpfQR7z90xH5mD-9z16Kxdvz6-xxUeiykanApmUT3Za8nZi6nUihBV9qCcKItuKVEAZlbrAaa61RIDABFbR11fAJoGyrEeGnuzr4GAMu1TbYDYSD4kwdQaq1yiDVEaQ6gcwe-c-jbYJjokzB9medDycn5kh7i0FFbXP-DCxkesp4e8b9A1gvlDE
CitedBy_id crossref_primary_10_3389_fmedt_2023_1157919
crossref_primary_10_3390_app122010445
crossref_primary_10_1080_13658816_2023_2279977
crossref_primary_10_1109_TVT_2024_3395637
crossref_primary_10_1109_MITS_2022_3224218
crossref_primary_10_1016_j_trc_2024_104703
crossref_primary_10_1109_ACCESS_2024_3359756
crossref_primary_10_1049_itr2_70017
crossref_primary_10_1016_j_physa_2023_128628
crossref_primary_10_1007_s10586_025_05605_5
crossref_primary_10_1016_j_ijtst_2024_07_004
crossref_primary_10_3390_math11020402
crossref_primary_10_1016_j_trc_2024_104497
crossref_primary_10_1016_j_ins_2025_122179
crossref_primary_10_1080_21680566_2022_2154717
crossref_primary_10_1007_s12597_023_00640_5
crossref_primary_10_1016_j_eswa_2023_120336
crossref_primary_10_1080_19439962_2024_2329121
crossref_primary_10_1109_TITS_2023_3344718
crossref_primary_10_1016_j_physa_2023_128471
crossref_primary_10_1007_s11227_025_07739_0
crossref_primary_10_1016_j_physa_2025_130923
Cites_doi 10.1109/ICPICS47731.2019.8942520
10.3390/electronics10040420
10.1016/j.trc.2015.11.007
10.1109/ITSC.2018.8569552
10.1109/TVT.2021.3073407
10.1109/CICN.2010.59
10.1016/S0968-090X(02)00026-8
10.1109/AIM.2016.7576883
10.1109/ACCESS.2020.2964294
10.1016/j.trc.2020.102615
10.1109/IDAACS.2019.8924448
10.1109/IVS.2013.6629506
10.1016/j.trb.2007.10.004
10.1177/0361198121999382
10.1016/0191-2615(86)90012-3
10.1109/TVT.2021.3079263
10.1109/ACCESS.2019.2900416
10.1016/j.neunet.2014.09.003
10.1109/TAC.2004.825632
10.1016/j.trc.2017.10.013
10.3390/s21238152
10.1109/CICN.2011.156
10.1016/j.trc.2015.11.012
10.1016/j.trc.2019.07.002
10.1109/ACCESS.2020.3011550
10.1109/ROBOT.1989.100153
10.1155/2021/6676092
10.1109/ACCESS.2019.2940853
10.1109/TITS.2020.3009762
10.1016/j.trc.2016.02.009
10.1109/CICN.2011.120
10.3141/1999-10
10.1016/j.trc.2004.12.003
10.1007/s00138-019-01040-w
10.1016/j.physa.2022.126869
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.trc.2022.103706
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2359
ExternalDocumentID 10_1016_j_trc_2022_103706
S0968090X22001449
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABLJU
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSO
SSS
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-e9b04cb21b4d5b476c61fc7a6d6b31366de71fc05e5cce6ea06a3ab53914ae7b3
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000802044600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0968-090X
IngestDate Sat Nov 29 07:06:29 EST 2025
Tue Nov 18 22:08:14 EST 2025
Fri Feb 23 02:38:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lane changing
Attention-aided encoder-decoder structure
Highway trajectory prediction
Heuristic network
Fine-grained description
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-e9b04cb21b4d5b476c61fc7a6d6b31366de71fc05e5cce6ea06a3ab53914ae7b3
ParticipantIDs crossref_primary_10_1016_j_trc_2022_103706
crossref_citationtrail_10_1016_j_trc_2022_103706
elsevier_sciencedirect_doi_10_1016_j_trc_2022_103706
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Transportation research. Part C, Emerging technologies
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mozaffari, Al-Jarrah, Dianati, Jennings, Mouzakitis (b0125) 2020
Dou, Y., Yan, F., Feng, D., 2016. Lane changing prediction at highway lane drops using support vector machine and artificial neural network classifiers. In: 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, pp. 901–906.
Balal, Cheu, Sarkodie-Gyan (b0005) 2016; 67
Choi, Yim, Baek, Lee (b0015) 2021; 10
Laval, Leclercq (b0100) 2008; 42
Schmidhuber (b0135) 2015; 61
Tomar, R.S., Verma, S., Tomar, G.S., 2011, October. Neural network based lane change trajectory predictions for collision prevention. In: 2011 International Conference on Computational Intelligence and Communication Networks, IEEE, pp. 559–564.
Zhao, Rilett, Haque (b0215) 2021; 2675
Wang, Zhao, Zhang, Cheng, Yang (b0180) 2022; 23
Wang, Zhao, Yu, Huang, Liang, Wang (b0175) 2020; 2020
Tomar, R.S., Verma, S., Tomar, G.S., 2010, November. Prediction of lane change trajectories through neural network. In: 2010 International Conference on Computational Intelligence and Communication Networks, IEEE, pp. 249–253.
Hui, F., Wei, C., ShangGuan, W., Ando, R., Fang, S., 2022. Deep encoder-decoder-NN: A deep learning-based autonomous vehicle trajectory prediction and correction model. Physica A: Statistical Mechanics and its Applications, 126869.
Liu, Liang, Xu (b0115) 2019; 7
Xia, Qu, Sun, Li (b0190) 2021; 70
Gu, Han, Yu (b0060) 2020; 8
Tang, Wang, Zhang, Mei, Li (b0155) 2020; 8
Zhou, Wang, Yu, Wu (b0220) 2017; 85
Goodfellow, Bengio, Courville (b0050) 2016
Liu, Wang, Li, Cheng, Chen (b0120) 2019; 7
Li, Zhao, Xu, Wang, Chen, Dai (b0110) 2021; 70
Li, Wang, Xu, Wang (b0105) 2016; 69
Song, Li (b0150) 2021
Gu, X., Yu, J., Han, Y., Han, M., Wei, L., 2019 July. Vehicle lane change decision model based on random forest. In: 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), IEEE, pp. 115–120.
Benterki, A., Boukhnifer, M., Judalet, V., Choubeila, M., 2019, September. Prediction of surrounding vehicles lane change intention using machine learning. In: 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Vol. 2. IEEE, pp. 839–843.
Glorot, X., Bengio, Y., 2010, March. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistic. JMLR Workshop and Conference Proceedings, pp. 249–256.
Krajewski, R., Bock, J., Kloeker, L., Eckstein, L., 2018, November. The highd dataset: A drone dataset of naturalistic vehicle trajectories on german highways for validation of highly automated driving systems. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), IEEE, pp. 2118–2125.
Tomar, R. S., Verma, S., Tomar, G.S., 2011, October. SVM based trajectory predictions of lane changing vehicles. In: 2011 International Conference on Computational Intelligence and Communication Networks, IEEE, pp. 716–721.
Chovan, J. D., Tijerina, L., Alexander, G., Hendricks, D. L., 1994. Examination of lane change crashes and potential IVHS countermeasures. Final Report (No. HS-808 071).
Shokrolah Shirazi, Morris (b0145) 2019; 30
Choudhury, Ben-Akiva (b0020) 2013; 9
Xing, Lv, Wang, Cao, Velenis (b0200) 2020; 115
Gipps (b0040) 1986; 20
Shamir (b0140) 2004; 49
.
Xie, Fang, Jia, He (b0195) 2019; 106
Keyvan-Ekbatani, Mehdi, Knoop, et al., 2016. Categorization of the lane change decision process on freeways. Transport. Res.: Part C, 69,515–526.
Wei, C., Hui, F., Khattak, A.J., 2021. Driver behavior prediction based on deep learning. Journal of advanced transportation, 2021.
Fu, Zhang, Song, Yang, Wang (b0035) 2021
Hidas (b0070) 2005; 13
Hidas (b0065) 2002; 10
Nelson, W., 1989, May. Continuous-curvature paths for autonomous vehicles. In: Proceedings, 1989 International Conference on Robotics and Automation, IEEE, pp. 1260–1264.
Yao, W., Zhao, H., Bonnifait, P., Zha, H., 2013, June. Lane change trajectory prediction by using recorded human driving data. In: 2013 IEEE Intelligent Vehicles Symposium (IV), IEEE, pp. 430–436.
Kesting, Treiber, Helbing (b0085) 2007; 1999
Yu, Lee, Kim, Hwang (b0210) 2021; 21
10.1016/j.trc.2022.103706_b0045
Tang (10.1016/j.trc.2022.103706_b0155) 2020; 8
10.1016/j.trc.2022.103706_b0025
10.1016/j.trc.2022.103706_b0185
Fu (10.1016/j.trc.2022.103706_b0035) 2021
Hidas (10.1016/j.trc.2022.103706_b0065) 2002; 10
10.1016/j.trc.2022.103706_b0165
Kesting (10.1016/j.trc.2022.103706_b0085) 2007; 1999
Hidas (10.1016/j.trc.2022.103706_b0070) 2005; 13
Xie (10.1016/j.trc.2022.103706_b0195) 2019; 106
10.1016/j.trc.2022.103706_b0205
Mozaffari (10.1016/j.trc.2022.103706_b0125) 2020
Schmidhuber (10.1016/j.trc.2022.103706_b0135) 2015; 61
Liu (10.1016/j.trc.2022.103706_b0115) 2019; 7
Wang (10.1016/j.trc.2022.103706_b0180) 2022; 23
Laval (10.1016/j.trc.2022.103706_b0100) 2008; 42
10.1016/j.trc.2022.103706_b0160
Yu (10.1016/j.trc.2022.103706_b0210) 2021; 21
Shokrolah Shirazi (10.1016/j.trc.2022.103706_b0145) 2019; 30
10.1016/j.trc.2022.103706_b0080
Song (10.1016/j.trc.2022.103706_b0150) 2021
Choi (10.1016/j.trc.2022.103706_b0015) 2021; 10
Choudhury (10.1016/j.trc.2022.103706_b0020) 2013; 9
Gu (10.1016/j.trc.2022.103706_b0060) 2020; 8
Zhou (10.1016/j.trc.2022.103706_b0220) 2017; 85
10.1016/j.trc.2022.103706_b0030
10.1016/j.trc.2022.103706_b0075
10.1016/j.trc.2022.103706_b0130
Wang (10.1016/j.trc.2022.103706_b0175) 2020; 2020
10.1016/j.trc.2022.103706_b0010
10.1016/j.trc.2022.103706_b0055
Xing (10.1016/j.trc.2022.103706_b0200) 2020; 115
Shamir (10.1016/j.trc.2022.103706_b0140) 2004; 49
Xia (10.1016/j.trc.2022.103706_b0190) 2021; 70
Zhao (10.1016/j.trc.2022.103706_b0215) 2021; 2675
Li (10.1016/j.trc.2022.103706_b0110) 2021; 70
Li (10.1016/j.trc.2022.103706_b0105) 2016; 69
Balal (10.1016/j.trc.2022.103706_b0005) 2016; 67
Goodfellow (10.1016/j.trc.2022.103706_b0050) 2016
Gipps (10.1016/j.trc.2022.103706_b0040) 1986; 20
10.1016/j.trc.2022.103706_b0170
10.1016/j.trc.2022.103706_b0095
Liu (10.1016/j.trc.2022.103706_b0120) 2019; 7
10.1016/j.trc.2022.103706_b0090
References_xml – volume: 2020
  start-page: 1
  year: 2020
  end-page: 20
  ident: b0175
  article-title: Vehicle Trajectory Prediction by Knowledge-Driven LSTM Network in Urban Environments
  publication-title: J. Adv. Transport.
– volume: 13
  start-page: 37
  year: 2005
  end-page: 62
  ident: b0070
  article-title: Modelling vehicle interactions in microscopic simulation of merging and weaving
  publication-title: Transport. Res. Part C: Emerg. Technol.
– volume: 49
  start-page: 607
  year: 2004
  end-page: 610
  ident: b0140
  article-title: How should an autonomous vehicle overtake a slower moving vehicle: Design and analysis of an optimal trajectory
  publication-title: IEEE Trans. Autom. Control
– volume: 115
  start-page: 102615
  year: 2020
  ident: b0200
  article-title: An ensemble deep learning approach for driver lane change intention inference
  publication-title: Transport. Res. Part C: Emerg. Technol.
– reference: Dou, Y., Yan, F., Feng, D., 2016. Lane changing prediction at highway lane drops using support vector machine and artificial neural network classifiers. In: 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, pp. 901–906.
– volume: 20
  start-page: 403
  year: 1986
  end-page: 414
  ident: b0040
  article-title: A model for the structure of lane-changing decisions
  publication-title: Transport. Res. Part B: Methodol.
– reference: Tomar, R.S., Verma, S., Tomar, G.S., 2010, November. Prediction of lane change trajectories through neural network. In: 2010 International Conference on Computational Intelligence and Communication Networks, IEEE, pp. 249–253.
– volume: 70
  start-page: 5499
  year: 2021
  end-page: 5510
  ident: b0110
  article-title: Lane-Change Intention Inference based on RNN for Autonomous Driving on Highways
  publication-title: IEEE Trans. Veh. Technol.
– volume: 1999
  start-page: 86
  year: 2007
  end-page: 94
  ident: b0085
  article-title: General lane-changing model MOBIL for car-following models
  publication-title: Transp. Res. Rec.
– reference: Nelson, W., 1989, May. Continuous-curvature paths for autonomous vehicles. In: Proceedings, 1989 International Conference on Robotics and Automation, IEEE, pp. 1260–1264.
– volume: 10
  start-page: 351
  year: 2002
  end-page: 371
  ident: b0065
  article-title: Modelling lane changing and merging in microscopic traffic simulation
  publication-title: Transport. Res. Part C: Emerg. Technol.
– volume: 30
  start-page: 1097
  year: 2019
  end-page: 1109
  ident: b0145
  article-title: Trajectory prediction of vehicles turning at intersections using deep neural networks
  publication-title: Mach. Vis. Appl.
– volume: 8
  start-page: 136898
  year: 2020
  end-page: 136905
  ident: b0155
  article-title: Driver lane change intention recognition of intelligent vehicle based on long short-term memory network
  publication-title: IEEE Access
– reference: Krajewski, R., Bock, J., Kloeker, L., Eckstein, L., 2018, November. The highd dataset: A drone dataset of naturalistic vehicle trajectories on german highways for validation of highly automated driving systems. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), IEEE, pp. 2118–2125.
– reference: Tomar, R.S., Verma, S., Tomar, G.S., 2011, October. Neural network based lane change trajectory predictions for collision prevention. In: 2011 International Conference on Computational Intelligence and Communication Networks, IEEE, pp. 559–564.
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: b0135
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Networks
– volume: 8
  start-page: 9846
  year: 2020
  end-page: 9863
  ident: b0060
  article-title: A novel lane-changing decision model for autonomous vehicles based on deep autoencoder network and XGBoost
  publication-title: IEEE Access
– volume: 7
  start-page: 26543
  year: 2019
  end-page: 26550
  ident: b0120
  article-title: A novel lane change decision-making model of autonomous vehicle based on support vector machine
  publication-title: IEEE Access
– volume: 21
  start-page: 8152
  year: 2021
  ident: b0210
  article-title: Vehicle trajectory prediction with lane stream attention-based LSTMs and road geometry linearization
  publication-title: Sensors
– volume: 85
  start-page: 609
  year: 2017
  end-page: 627
  ident: b0220
  article-title: A lane-change trajectory model from drivers’ vision view
  publication-title: Transport. Res. Part C: Emerg. Technol.
– volume: 7
  start-page: 133749
  year: 2019
  end-page: 133759
  ident: b0115
  article-title: A deep learning method for lane changing situation assessment and decision making
  publication-title: IEEE Access
– volume: 70
  start-page: 4178
  year: 2021
  end-page: 4189
  ident: b0190
  article-title: A human-like model to understand surrounding vehicles' lane changing intentions for autonomous driving
  publication-title: IEEE Trans. Veh. Technol.
– reference: Benterki, A., Boukhnifer, M., Judalet, V., Choubeila, M., 2019, September. Prediction of surrounding vehicles lane change intention using machine learning. In: 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Vol. 2. IEEE, pp. 839–843.
– reference: Chovan, J. D., Tijerina, L., Alexander, G., Hendricks, D. L., 1994. Examination of lane change crashes and potential IVHS countermeasures. Final Report (No. HS-808 071).
– reference: Glorot, X., Bengio, Y., 2010, March. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistic. JMLR Workshop and Conference Proceedings, pp. 249–256.
– volume: 106
  start-page: 41
  year: 2019
  end-page: 60
  ident: b0195
  article-title: A data-driven lane-changing model based on deep learning
  publication-title: Transport. Res. Part C Emerg. Technol.
– volume: 67
  start-page: 47
  year: 2016
  end-page: 61
  ident: b0005
  article-title: A binary decision model for discretionary lane changing move based on fuzzy inference system
  publication-title: Transport. Res. Part C: Emerg. Technol.
– volume: 42
  start-page: 511
  year: 2008
  end-page: 522
  ident: b0100
  article-title: Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model
  publication-title: Transport. Res. Part B: Methodol.
– reference: Gu, X., Yu, J., Han, Y., Han, M., Wei, L., 2019 July. Vehicle lane change decision model based on random forest. In: 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), IEEE, pp. 115–120.
– reference: Keyvan-Ekbatani, Mehdi, Knoop, et al., 2016. Categorization of the lane change decision process on freeways. Transport. Res.: Part C, 69,515–526.
– year: 2020
  ident: b0125
  article-title: Deep learning-based vehicle behavior prediction for autonomous driving applications: A review
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: Hui, F., Wei, C., ShangGuan, W., Ando, R., Fang, S., 2022. Deep encoder-decoder-NN: A deep learning-based autonomous vehicle trajectory prediction and correction model. Physica A: Statistical Mechanics and its Applications, 126869.
– volume: 9
  start-page: 546
  year: 2013
  end-page: 566
  ident: b0020
  article-title: Modelling driving decisions: a latent plan approach
  publication-title: Transport. A: Transp. Sci.
– reference: .
– reference: Yao, W., Zhao, H., Bonnifait, P., Zha, H., 2013, June. Lane change trajectory prediction by using recorded human driving data. In: 2013 IEEE Intelligent Vehicles Symposium (IV), IEEE, pp. 430–436.
– year: 2021
  ident: b0150
  article-title: Surrounding Vehicles' Lane Change Maneuver Prediction and Detection for Intelligent Vehicles: A Comprehensive Review
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: Tomar, R. S., Verma, S., Tomar, G.S., 2011, October. SVM based trajectory predictions of lane changing vehicles. In: 2011 International Conference on Computational Intelligence and Communication Networks, IEEE, pp. 716–721.
– year: 2021
  ident: b0035
  article-title: Trajectory Prediction-Based Local Spatio-Temporal Navigation Map for Autonomous Driving in Dynamic Highway Environments
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 10
  start-page: 420
  year: 2021
  ident: b0015
  article-title: Machine learning-based vehicle trajectory prediction using v2v communications and on-board sensors
  publication-title: Electronics
– volume: 69
  start-page: 497
  year: 2016
  end-page: 514
  ident: b0105
  article-title: Lane changing intention recognition based on speech recognition models
  publication-title: Transport. Res. Part C: Emerg. Technol.
– volume: 23
  start-page: 236
  year: 2022
  end-page: 248
  ident: b0180
  article-title: Multi-vehicle collaborative learning for trajectory prediction with spatio-temporal tensor fusion
  publication-title: IEEE Trans. Intell. Transp. Syst.
– year: 2016
  ident: b0050
  article-title: Deep Learning
– reference: Wei, C., Hui, F., Khattak, A.J., 2021. Driver behavior prediction based on deep learning. Journal of advanced transportation, 2021.
– volume: 2675
  start-page: 550
  year: 2021
  end-page: 561
  ident: b0215
  article-title: Hidden Markov model of lane-changing-based car-following behavior on freeways using naturalistic driving data
  publication-title: Transp. Res. Rec.
– ident: 10.1016/j.trc.2022.103706_b0055
  doi: 10.1109/ICPICS47731.2019.8942520
– volume: 9
  start-page: 546
  issue: 6
  year: 2013
  ident: 10.1016/j.trc.2022.103706_b0020
  article-title: Modelling driving decisions: a latent plan approach
  publication-title: Transport. A: Transp. Sci.
– volume: 10
  start-page: 420
  issue: 4
  year: 2021
  ident: 10.1016/j.trc.2022.103706_b0015
  article-title: Machine learning-based vehicle trajectory prediction using v2v communications and on-board sensors
  publication-title: Electronics
  doi: 10.3390/electronics10040420
– volume: 69
  start-page: 497
  year: 2016
  ident: 10.1016/j.trc.2022.103706_b0105
  article-title: Lane changing intention recognition based on speech recognition models
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2015.11.007
– ident: 10.1016/j.trc.2022.103706_b0095
  doi: 10.1109/ITSC.2018.8569552
– year: 2020
  ident: 10.1016/j.trc.2022.103706_b0125
  article-title: Deep learning-based vehicle behavior prediction for autonomous driving applications: A review
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 70
  start-page: 4178
  issue: 5
  year: 2021
  ident: 10.1016/j.trc.2022.103706_b0190
  article-title: A human-like model to understand surrounding vehicles' lane changing intentions for autonomous driving
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3073407
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.trc.2022.103706_b0175
  article-title: Vehicle Trajectory Prediction by Knowledge-Driven LSTM Network in Urban Environments
  publication-title: J. Adv. Transport.
– ident: 10.1016/j.trc.2022.103706_b0160
  doi: 10.1109/CICN.2010.59
– year: 2021
  ident: 10.1016/j.trc.2022.103706_b0150
  article-title: Surrounding Vehicles' Lane Change Maneuver Prediction and Detection for Intelligent Vehicles: A Comprehensive Review
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 10
  start-page: 351
  issue: 5-6
  year: 2002
  ident: 10.1016/j.trc.2022.103706_b0065
  article-title: Modelling lane changing and merging in microscopic traffic simulation
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/S0968-090X(02)00026-8
– ident: 10.1016/j.trc.2022.103706_b0030
  doi: 10.1109/AIM.2016.7576883
– volume: 8
  start-page: 9846
  year: 2020
  ident: 10.1016/j.trc.2022.103706_b0060
  article-title: A novel lane-changing decision model for autonomous vehicles based on deep autoencoder network and XGBoost
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2964294
– volume: 115
  start-page: 102615
  year: 2020
  ident: 10.1016/j.trc.2022.103706_b0200
  article-title: An ensemble deep learning approach for driver lane change intention inference
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2020.102615
– ident: 10.1016/j.trc.2022.103706_b0010
  doi: 10.1109/IDAACS.2019.8924448
– ident: 10.1016/j.trc.2022.103706_b0205
  doi: 10.1109/IVS.2013.6629506
– volume: 42
  start-page: 511
  issue: 6
  year: 2008
  ident: 10.1016/j.trc.2022.103706_b0100
  article-title: Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model
  publication-title: Transport. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2007.10.004
– volume: 2675
  start-page: 550
  issue: 8
  year: 2021
  ident: 10.1016/j.trc.2022.103706_b0215
  article-title: Hidden Markov model of lane-changing-based car-following behavior on freeways using naturalistic driving data
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198121999382
– volume: 20
  start-page: 403
  issue: 5
  year: 1986
  ident: 10.1016/j.trc.2022.103706_b0040
  article-title: A model for the structure of lane-changing decisions
  publication-title: Transport. Res. Part B: Methodol.
  doi: 10.1016/0191-2615(86)90012-3
– volume: 70
  start-page: 5499
  issue: 6
  year: 2021
  ident: 10.1016/j.trc.2022.103706_b0110
  article-title: Lane-Change Intention Inference based on RNN for Autonomous Driving on Highways
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3079263
– volume: 7
  start-page: 26543
  year: 2019
  ident: 10.1016/j.trc.2022.103706_b0120
  article-title: A novel lane change decision-making model of autonomous vehicle based on support vector machine
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2900416
– ident: 10.1016/j.trc.2022.103706_b0075
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.trc.2022.103706_b0135
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.09.003
– ident: 10.1016/j.trc.2022.103706_b0025
– volume: 49
  start-page: 607
  issue: 4
  year: 2004
  ident: 10.1016/j.trc.2022.103706_b0140
  article-title: How should an autonomous vehicle overtake a slower moving vehicle: Design and analysis of an optimal trajectory
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2004.825632
– volume: 85
  start-page: 609
  year: 2017
  ident: 10.1016/j.trc.2022.103706_b0220
  article-title: A lane-change trajectory model from drivers’ vision view
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2017.10.013
– volume: 21
  start-page: 8152
  issue: 23
  year: 2021
  ident: 10.1016/j.trc.2022.103706_b0210
  article-title: Vehicle trajectory prediction with lane stream attention-based LSTMs and road geometry linearization
  publication-title: Sensors
  doi: 10.3390/s21238152
– ident: 10.1016/j.trc.2022.103706_b0165
  doi: 10.1109/CICN.2011.156
– ident: 10.1016/j.trc.2022.103706_b0090
  doi: 10.1016/j.trc.2015.11.012
– volume: 106
  start-page: 41
  year: 2019
  ident: 10.1016/j.trc.2022.103706_b0195
  article-title: A data-driven lane-changing model based on deep learning
  publication-title: Transport. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2019.07.002
– year: 2021
  ident: 10.1016/j.trc.2022.103706_b0035
  article-title: Trajectory Prediction-Based Local Spatio-Temporal Navigation Map for Autonomous Driving in Dynamic Highway Environments
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 8
  start-page: 136898
  year: 2020
  ident: 10.1016/j.trc.2022.103706_b0155
  article-title: Driver lane change intention recognition of intelligent vehicle based on long short-term memory network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011550
– ident: 10.1016/j.trc.2022.103706_b0130
  doi: 10.1109/ROBOT.1989.100153
– ident: 10.1016/j.trc.2022.103706_b0185
  doi: 10.1155/2021/6676092
– volume: 7
  start-page: 133749
  year: 2019
  ident: 10.1016/j.trc.2022.103706_b0115
  article-title: A deep learning method for lane changing situation assessment and decision making
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2940853
– volume: 23
  start-page: 236
  issue: 1
  year: 2022
  ident: 10.1016/j.trc.2022.103706_b0180
  article-title: Multi-vehicle collaborative learning for trajectory prediction with spatio-temporal tensor fusion
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3009762
– ident: 10.1016/j.trc.2022.103706_b0045
– volume: 67
  start-page: 47
  year: 2016
  ident: 10.1016/j.trc.2022.103706_b0005
  article-title: A binary decision model for discretionary lane changing move based on fuzzy inference system
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2016.02.009
– ident: 10.1016/j.trc.2022.103706_b0170
  doi: 10.1109/CICN.2011.120
– year: 2016
  ident: 10.1016/j.trc.2022.103706_b0050
– volume: 1999
  start-page: 86
  issue: 1
  year: 2007
  ident: 10.1016/j.trc.2022.103706_b0085
  article-title: General lane-changing model MOBIL for car-following models
  publication-title: Transp. Res. Rec.
  doi: 10.3141/1999-10
– volume: 13
  start-page: 37
  issue: 1
  year: 2005
  ident: 10.1016/j.trc.2022.103706_b0070
  article-title: Modelling vehicle interactions in microscopic simulation of merging and weaving
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2004.12.003
– volume: 30
  start-page: 1097
  issue: 6
  year: 2019
  ident: 10.1016/j.trc.2022.103706_b0145
  article-title: Trajectory prediction of vehicles turning at intersections using deep neural networks
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-019-01040-w
– ident: 10.1016/j.trc.2022.103706_b0080
  doi: 10.1016/j.physa.2022.126869
SSID ssj0001957
Score 2.4921002
Snippet •A novel lane-changing trajectory segmentation and sampling algorithm is proposed.•Heuristic attention-aided encoder-decoder network is developed.•Both vehicle...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103706
SubjectTerms Attention-aided encoder-decoder structure
Fine-grained description
Heuristic network
Highway trajectory prediction
Lane changing
Title Fine-grained highway autonomous vehicle lane-changing trajectory prediction based on a heuristic attention-aided encoder-decoder model
URI https://dx.doi.org/10.1016/j.trc.2022.103706
Volume 140
WOSCitedRecordID wos000802044600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001957
  issn: 0968-090X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhgQ8IBggxk1-4IkqVeI4Tvw4TatgQhMSAypeoviyNdWUTVlabX-AX8QP5PiSSwtD7IGXNLIc1-r5an8-Oec7CL012ZtprGmgAA8B5VQFQvIMjioC2IagTNn6KV8_pkdH2WzGP41GP9tcmNVZWlXZ1RW_-K-mhjYwtkmdvYW5u0GhAe7B6HAFs8P1nww_Bd4YnJrKD8AlrRpxcT0ulo3JXjDxris9N48YT6UObN6vLxWxsA78ayMboEpXQdzsccq8TyiAUS6dqPPYKHLaGMnAyEuqsZHCVLoOlLafrrjOkPR2AuoObF5faD4B-lo34327HJssUDuP1tU_CG78pksXGaD9NmthaNumuuzWLe_5_l4uAPJdx0MXDfx5vjwfejhIHw3buSqZCdEIZ2urtlN58uuuyXa0ygW_bwnOO7GYNLVRrCRk0vddl9_e2Ba7YMU2Dm6RwxC5GSJ3Q9xB2yRNOKyl23sfDmaHHQOIuFOYbefdvk23cYUb8_gzHxpwnONH6KE_nOA9B6rHaKSrHXSvzV2_3EEPBvKVT9CPIdSwhxruoYY91PAa1HAPNdxDDVuoYbgpcAc1vAE1vAE1bKH2FH2ZHhzvvw98XY9AEp42geYipFKQSFCVCJoyyaITmRZMMRFHMWNKp9AQJjqRUjNdhKyIC5HEPKKFTkX8DG1V55V-jjCN4USeJIQWglAlT2BELRlRnGRKx2G2i8L2182lF703tVfO8hutuovedY9cOMWXv3WmrclyT1kdFc0Bfjc_9uI23_ES3e__Fa_QVlMv9Wt0V66a8rJ-47H3C90IvQg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine-grained+highway+autonomous+vehicle+lane-changing+trajectory+prediction+based+on+a+heuristic+attention-aided+encoder-decoder+model&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Wei%2C+Cheng&rft.au=Hui%2C+Fei&rft.au=Yang%2C+Zijiang&rft.au=Jia%2C+Shuo&rft.date=2022-07-01&rft.issn=0968-090X&rft.volume=140&rft.spage=103706&rft_id=info:doi/10.1016%2Fj.trc.2022.103706&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_trc_2022_103706
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon