A modified variational iteration method for the analysis of viscoelastic beams
•An algorithm based on VIM and Laplace transformation is created for the dynamic study of viscoelastic beams.•It is avoided the definition of initial approximation in the using of VIM, which is a difficult step for nonlinear problems.•There are no errors, which usually accompany the methods based on...
Saved in:
| Published in: | Applied mathematical modelling Vol. 40; no. 17-18; pp. 7988 - 7995 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.09.2016
|
| Subjects: | |
| ISSN: | 0307-904X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •An algorithm based on VIM and Laplace transformation is created for the dynamic study of viscoelastic beams.•It is avoided the definition of initial approximation in the using of VIM, which is a difficult step for nonlinear problems.•There are no errors, which usually accompany the methods based on the discretization of time interval.
Based on a constitutive law in a hereditary integral form, a mathematical model for dynamic analysis of the isotropic linear viscoelastic beams is presented. To solve the governing equation for these structures subjected to a distributed load is created an accuracy and computational efficiency algorithm that uses Galerkin's method and a modified form of the variational iteration method (VIM) for time-domain equations.
Numerical results for both quasi-static and dynamic analysis are presented and these will be accompanied by the graphical representations. |
|---|---|
| AbstractList | •An algorithm based on VIM and Laplace transformation is created for the dynamic study of viscoelastic beams.•It is avoided the definition of initial approximation in the using of VIM, which is a difficult step for nonlinear problems.•There are no errors, which usually accompany the methods based on the discretization of time interval.
Based on a constitutive law in a hereditary integral form, a mathematical model for dynamic analysis of the isotropic linear viscoelastic beams is presented. To solve the governing equation for these structures subjected to a distributed load is created an accuracy and computational efficiency algorithm that uses Galerkin's method and a modified form of the variational iteration method (VIM) for time-domain equations.
Numerical results for both quasi-static and dynamic analysis are presented and these will be accompanied by the graphical representations. |
| Author | Martin, Olga |
| Author_xml | – sequence: 1 givenname: Olga surname: Martin fullname: Martin, Olga email: omartin_ro@yahoo.com organization: Applied Sciences Faculty, Polytechnic University of Bucharest, Romania |
| BookMark | eNp9kL9uwjAQhz1QqUD7AN38AqTnxMGJOiHUfxJqF4ZulmOfhVESI9tC4u1roFMHpvudTt_p7puRyehHJOSJQcGALZ_3hToMRZljAbwAxiZkChWIRQv8557MYtwDQJ27Kfla0cEbZx0aelTBqeT8qHrqEoZLpgOmnTfU-kDTDqnK01N0kXpLjy5qj72KyWnaoRriA7mzqo_4-FfnZPv2ul1_LDbf75_r1Wahy1akBVZWtFqxSnSiQcu5hhoa3mnVQr3k0DZtI6A1yEtdghXcKIu6yXDdcWuqORHXtTr4GANaqV26nJuCcr1kIM8m5F5mE_JsQgKX2UQm2T_yENygwukm83JlMH90dBhk1A5HjcYF1Eka727Qv6Gfe_k |
| CitedBy_id | crossref_primary_10_1007_s40430_017_0854_1 crossref_primary_10_1016_j_apm_2016_11_033 crossref_primary_10_1080_17455030_2023_2226224 crossref_primary_10_1016_j_chaos_2020_110255 crossref_primary_10_1080_27684830_2025_2476871 crossref_primary_10_1016_j_jksus_2020_101259 crossref_primary_10_1016_j_camwa_2021_08_014 crossref_primary_10_1007_s40324_018_0163_3 crossref_primary_10_1016_j_compstruct_2020_113110 crossref_primary_10_1016_j_cam_2018_06_024 crossref_primary_10_1016_j_apm_2018_12_022 crossref_primary_10_1155_2021_3920937 crossref_primary_10_3390_sym10090409 crossref_primary_10_1007_s13344_021_0049_5 crossref_primary_10_1007_s00366_020_01141_5 crossref_primary_10_1016_j_chaos_2019_07_035 crossref_primary_10_1088_1402_4896_ad593f crossref_primary_10_1155_2021_8663213 crossref_primary_10_1016_j_chaos_2019_109585 crossref_primary_10_1140_epjp_i2017_11438_4 |
| Cites_doi | 10.1002/cnm.1262 10.1016/S0045-7949(98)00321-6 10.1016/0377-0427(95)00059-3 10.1590/S1679-78252011000200002 10.1016/0022-460X(83)90943-4 10.1006/jsvi.1996.0128 10.1016/j.ijsolstr.2004.09.026 10.1061/(ASCE)0899-1561(1999)11:1(76) 10.1016/S0045-7825(98)00039-5 10.1016/S0263-8223(98)00025-7 10.1016/0045-7825(91)90252-2 10.1016/j.physleta.2007.02.049 10.1115/1.3423362 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.apm.2016.04.011 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EndPage | 7995 |
| ExternalDocumentID | 10_1016_j_apm_2016_04_011 S0307904X16302128 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSW SSZ T5K TN5 WH7 WUQ XJT XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-e3f79ca137b78ef44c05084bca9056409898709de42c20f74dafec8c295b4fd3 |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000381541100038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0307-904X |
| IngestDate | Tue Nov 18 22:35:12 EST 2025 Sat Nov 29 07:20:19 EST 2025 Fri Feb 23 02:30:53 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17-18 |
| Keywords | Variational iteration method Viscoelastic beam Galerkin method Correspondence principle Laplace transform Euler–Bernoulli beam theory |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-e3f79ca137b78ef44c05084bca9056409898709de42c20f74dafec8c295b4fd3 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_apm_2016_04_011 crossref_primary_10_1016_j_apm_2016_04_011 elsevier_sciencedirect_doi_10_1016_j_apm_2016_04_011 |
| PublicationCentury | 2000 |
| PublicationDate | September 2016 2016-09-00 |
| PublicationDateYYYYMMDD | 2016-09-01 |
| PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied mathematical modelling |
| PublicationYear | 2016 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Crawford (bib0006) 1998 Martin (bib0015) 2009 Theodore, Arakeri, Ghosal (bib0023) 1996; 191 Reddy (bib0020) 2008 Pissarenko, G., Yakovlev, A., Matveev, V., Aide-mémoire de résistance des matériaux, Editions de Moscou, Russia, 1979. Payette, Reddy (bib0018) 2010; 26 Chen, Chan (bib0003) 2000; 74 He (bib0009) 2000; 114 Chazal, Pitti (bib0005) 2011; 49 Christensen (bib0004) 1982 Yang, Lianis (bib0025) 1974; 41 Shaw, Warby, Whiteman (bib0022) 1997 He (bib0010) 2004; 156 Janovsky, Shaw, Warby, Whiteman (bib0011) 1995; 63 Cristescu (bib0007) 1967 Barari, Kalijib, Ghadimic, Domairry (bib0002) 2011; 8 Van Krevelen (bib0012) 1990 Argyris, Doltsini, Silva (bib0001) 1991; 88 Zhang N.-H., Cheng C.-J. (bib0024) 1998; 165 Wang, He (bib0026) 2007; 367 Lee, Oh (bib0014) 2005; 42 Kennedy (bib0013) 1998; 41 Flugge (bib0008) 1975 Sarma, Varadan (bib0021) 1983; 86 Park, Kim (bib0017) 1999; 11 Martin (bib0016) 2014; 5 Cristescu (10.1016/j.apm.2016.04.011_bib0007) 1967 Reddy (10.1016/j.apm.2016.04.011_bib0020) 2008 Zhang N.-H. (10.1016/j.apm.2016.04.011_bib0024) 1998; 165 Barari (10.1016/j.apm.2016.04.011_bib0002) 2011; 8 He (10.1016/j.apm.2016.04.011_bib0009) 2000; 114 Theodore (10.1016/j.apm.2016.04.011_bib0023) 1996; 191 Sarma (10.1016/j.apm.2016.04.011_bib0021) 1983; 86 He (10.1016/j.apm.2016.04.011_bib0010) 2004; 156 Kennedy (10.1016/j.apm.2016.04.011_bib0013) 1998; 41 Van Krevelen (10.1016/j.apm.2016.04.011_bib0012) 1990 Crawford (10.1016/j.apm.2016.04.011_bib0006) 1998 Yang (10.1016/j.apm.2016.04.011_bib0025) 1974; 41 10.1016/j.apm.2016.04.011_bib0019 Payette (10.1016/j.apm.2016.04.011_bib0018) 2010; 26 Chen (10.1016/j.apm.2016.04.011_bib0003) 2000; 74 Argyris (10.1016/j.apm.2016.04.011_bib0001) 1991; 88 Christensen (10.1016/j.apm.2016.04.011_bib0004) 1982 Martin (10.1016/j.apm.2016.04.011_bib0016) 2014; 5 Shaw (10.1016/j.apm.2016.04.011_bib0022) 1997 Lee (10.1016/j.apm.2016.04.011_bib0014) 2005; 42 Wang (10.1016/j.apm.2016.04.011_bib0026) 2007; 367 Janovsky (10.1016/j.apm.2016.04.011_bib0011) 1995; 63 Park (10.1016/j.apm.2016.04.011_bib0017) 1999; 11 Flugge (10.1016/j.apm.2016.04.011_bib0008) 1975 Martin (10.1016/j.apm.2016.04.011_bib0015) 2009 Chazal (10.1016/j.apm.2016.04.011_bib0005) 2011; 49 |
| References_xml | – reference: Pissarenko, G., Yakovlev, A., Matveev, V., Aide-mémoire de résistance des matériaux, Editions de Moscou, Russia, 1979. – volume: 156 start-page: 527 year: 2004 end-page: 539 ident: bib0010 article-title: Comparison of homotopy perturbation method and homotopy analysis method publication-title: Appl. Math. Comput. – volume: 26 start-page: 1736 year: 2010 end-page: 1755 ident: bib0018 article-title: Nonlinear quasi-static finite element formulations for viscoelastic Euler–Bernoulli and Timoshenko beams publication-title: Int. J. Numer. Methods Biomed. Eng. – year: 1967 ident: bib0007 article-title: Dynamic Plasticity – volume: 42 start-page: 2381 year: 2005 end-page: 2398 ident: bib0014 article-title: Dynamic of an axially moving viscoelastic beam subject to axial tension publication-title: Int. J. Solids Struct. – volume: 86 start-page: 61 year: 1983 end-page: 70 ident: bib0021 article-title: Lagrange-type formulation for finite element analysis of nonlinear beam vibrations publication-title: J. Sound Vib. – volume: 49 start-page: 1029 year: 2011 end-page: 1048 ident: bib0005 article-title: Integral approach for time dependent material using finite element method publication-title: J. Theor. Appl. Mech. – year: 1998 ident: bib0006 article-title: Plastics Engineering – year: 2008 ident: bib0020 article-title: An Introduction to Continuum Mechanics with Applications – volume: 367 start-page: 188 year: 2007 end-page: 191 ident: bib0026 article-title: Variational iteration method for solving integro-differential equations publication-title: Phys. Lett. A – volume: 41 start-page: 635 year: 1974 end-page: 657 ident: bib0025 article-title: Large displacement analysis of viscoelastic beams and frames by the finite-element method publication-title: J. Appl. Mech. – volume: 8 start-page: 139 year: 2011 end-page: 148 ident: bib0002 article-title: Non-linear vibration of Euler–Bernoulli beams publication-title: Lat. Am. J. Solids Struct. – volume: 88 start-page: 135 year: 1991 end-page: 163 ident: bib0001 article-title: Constitutive modelling and computation of non-linear viscoelastic solids. Part I: Rheological models and numerical integration techniques publication-title: Comput. Meth. Appl. Mech. Eng – year: 1997 ident: bib0022 article-title: A comparison of hereditary integral and internal variable approaches to numerical linear solid viscoelasticity publication-title: Proceedings of the Thirteenth Polish Conference on Computer Methods in Mechanics – volume: 41 start-page: 265 year: 1998 end-page: 272 ident: bib0013 article-title: Nonlinear viscoelastic analysis of composite plates and shells publication-title: Composit. Struct. – volume: 191 start-page: 363 year: 1996 end-page: 376 ident: bib0023 article-title: The modeling of axially translating flexible beams publication-title: J. Sound Vib. – volume: 63 start-page: 91 year: 1995 end-page: 107 ident: bib0011 article-title: Numerical methods for treating problems of viscoelastic isotropic solid deformation publication-title: J. Comput. Appl. Math. – volume: 74 start-page: 51 year: 2000 end-page: 64 ident: bib0003 article-title: Integral finite element method for dynamical analysis of elastic-viscoelastic composite structures publication-title: Comput. Struct. – year: 1975 ident: bib0008 article-title: Viscoelasticity – volume: 165 start-page: 307 year: 1998 end-page: 319 ident: bib0024 article-title: Nonlinear mathematical model of viscoelastic thin plates with its Applications publication-title: Comput. Methods Appl. Mech. Eng. – start-page: 1011 year: 2009 end-page: 1024 ident: bib0015 article-title: Propagation of elastic-plastic waves in bars publication-title: Proceedings of the 2009 European Computing Conference, Lecture Notes in Electrical Engineering, vol. 28 – year: 1990 ident: bib0012 article-title: Properties of Polymers – volume: 5 start-page: 329 year: 2014 end-page: 341 ident: bib0016 article-title: Quasi-static and dynamic analysis for viscoelastic beams with the constitutive equation in a hereditary integral form publication-title: Ann. Univ. Buchar. (Math. Ser.) – volume: 114 start-page: 115 year: 2000 end-page: 123 ident: bib0009 article-title: Variational iteration method for autonomous ordinary differential systems publication-title: Appl. Math. Comput. – volume: 11 start-page: 76 year: 1999 end-page: 82 ident: bib0017 article-title: Interconversion between relaxation modulus and creep compliance for viscoelastic solids publication-title: J. Mater. Civil Eng. – year: 1982 ident: bib0004 article-title: Theory of Viscoelasticity – volume: 26 start-page: 1736 year: 2010 ident: 10.1016/j.apm.2016.04.011_bib0018 article-title: Nonlinear quasi-static finite element formulations for viscoelastic Euler–Bernoulli and Timoshenko beams publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.1262 – volume: 74 start-page: 51 year: 2000 ident: 10.1016/j.apm.2016.04.011_bib0003 article-title: Integral finite element method for dynamical analysis of elastic-viscoelastic composite structures publication-title: Comput. Struct. doi: 10.1016/S0045-7949(98)00321-6 – volume: 63 start-page: 91 year: 1995 ident: 10.1016/j.apm.2016.04.011_bib0011 article-title: Numerical methods for treating problems of viscoelastic isotropic solid deformation publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(95)00059-3 – volume: 49 start-page: 1029 year: 2011 ident: 10.1016/j.apm.2016.04.011_bib0005 article-title: Integral approach for time dependent material using finite element method publication-title: J. Theor. Appl. Mech. – volume: 8 start-page: 139 year: 2011 ident: 10.1016/j.apm.2016.04.011_bib0002 article-title: Non-linear vibration of Euler–Bernoulli beams publication-title: Lat. Am. J. Solids Struct. doi: 10.1590/S1679-78252011000200002 – volume: 5 start-page: 329 issue: LXIII year: 2014 ident: 10.1016/j.apm.2016.04.011_bib0016 article-title: Quasi-static and dynamic analysis for viscoelastic beams with the constitutive equation in a hereditary integral form publication-title: Ann. Univ. Buchar. (Math. Ser.) – year: 1998 ident: 10.1016/j.apm.2016.04.011_bib0006 – volume: 114 start-page: 115 year: 2000 ident: 10.1016/j.apm.2016.04.011_bib0009 article-title: Variational iteration method for autonomous ordinary differential systems publication-title: Appl. Math. Comput. – volume: 86 start-page: 61 year: 1983 ident: 10.1016/j.apm.2016.04.011_bib0021 article-title: Lagrange-type formulation for finite element analysis of nonlinear beam vibrations publication-title: J. Sound Vib. doi: 10.1016/0022-460X(83)90943-4 – volume: 191 start-page: 363 year: 1996 ident: 10.1016/j.apm.2016.04.011_bib0023 article-title: The modeling of axially translating flexible beams publication-title: J. Sound Vib. doi: 10.1006/jsvi.1996.0128 – volume: 42 start-page: 2381 year: 2005 ident: 10.1016/j.apm.2016.04.011_bib0014 article-title: Dynamic of an axially moving viscoelastic beam subject to axial tension publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2004.09.026 – start-page: 1011 year: 2009 ident: 10.1016/j.apm.2016.04.011_bib0015 article-title: Propagation of elastic-plastic waves in bars – volume: 11 start-page: 76 year: 1999 ident: 10.1016/j.apm.2016.04.011_bib0017 article-title: Interconversion between relaxation modulus and creep compliance for viscoelastic solids publication-title: J. Mater. Civil Eng. doi: 10.1061/(ASCE)0899-1561(1999)11:1(76) – year: 1990 ident: 10.1016/j.apm.2016.04.011_bib0012 – year: 1982 ident: 10.1016/j.apm.2016.04.011_bib0004 – volume: 156 start-page: 527 year: 2004 ident: 10.1016/j.apm.2016.04.011_bib0010 article-title: Comparison of homotopy perturbation method and homotopy analysis method publication-title: Appl. Math. Comput. – volume: 165 start-page: 307 year: 1998 ident: 10.1016/j.apm.2016.04.011_bib0024 article-title: Nonlinear mathematical model of viscoelastic thin plates with its Applications publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(98)00039-5 – year: 1967 ident: 10.1016/j.apm.2016.04.011_bib0007 – volume: 41 start-page: 265 year: 1998 ident: 10.1016/j.apm.2016.04.011_bib0013 article-title: Nonlinear viscoelastic analysis of composite plates and shells publication-title: Composit. Struct. doi: 10.1016/S0263-8223(98)00025-7 – year: 1975 ident: 10.1016/j.apm.2016.04.011_bib0008 – year: 2008 ident: 10.1016/j.apm.2016.04.011_bib0020 – year: 1997 ident: 10.1016/j.apm.2016.04.011_bib0022 article-title: A comparison of hereditary integral and internal variable approaches to numerical linear solid viscoelasticity – volume: 88 start-page: 135 year: 1991 ident: 10.1016/j.apm.2016.04.011_bib0001 article-title: Constitutive modelling and computation of non-linear viscoelastic solids. Part I: Rheological models and numerical integration techniques publication-title: Comput. Meth. Appl. Mech. Eng doi: 10.1016/0045-7825(91)90252-2 – ident: 10.1016/j.apm.2016.04.011_bib0019 – volume: 367 start-page: 188 year: 2007 ident: 10.1016/j.apm.2016.04.011_bib0026 article-title: Variational iteration method for solving integro-differential equations publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2007.02.049 – volume: 41 start-page: 635 year: 1974 ident: 10.1016/j.apm.2016.04.011_bib0025 article-title: Large displacement analysis of viscoelastic beams and frames by the finite-element method publication-title: J. Appl. Mech. doi: 10.1115/1.3423362 |
| SSID | ssj0005904 |
| Score | 2.298172 |
| Snippet | •An algorithm based on VIM and Laplace transformation is created for the dynamic study of viscoelastic beams.•It is avoided the definition of initial... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 7988 |
| SubjectTerms | Correspondence principle Euler–Bernoulli beam theory Galerkin method Laplace transform Variational iteration method Viscoelastic beam |
| Title | A modified variational iteration method for the analysis of viscoelastic beams |
| URI | https://dx.doi.org/10.1016/j.apm.2016.04.011 |
| Volume | 40 |
| WOSCitedRecordID | wos000381541100038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0307-904X databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 20180131 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005904 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZQlwMcEE-xvOQDJ6QgJ3Fi-1ihRYBE4dBDb5Ht2qirklbbbrU_n5n4sdnVLmIPXKIoip3Enz3z2Rl_Q8h7iaJrRvii9Q4mKJY1BapAFU3rgfGDizWODckmxGwmFwv1M2bb3A3pBETfy4sLtf2vUMM1ABu3zt4B7lwpXIBzAB2OADsc_wn4KWa3WXmklgeYCKfFviCfjGCHpNE5vlCPZEkOq53dOCDUKONqnI5S5kmlNjLW31nqFbeeYCqddXKAV4QJfqx_6fGqQtnmsKm8m4oJQC1ETyZLGYSVUo8QRbScwfSh8NnIjaLQ3I0mOqwWnH7UWxQCKNtBaTYa3Cty2NfcVA4eTHFppx1U0WEVHeMdww3eR5VolJyQo-nXk8W3y1AfxXgSxMRvSn-3hzi_a-9xMz8ZcY75Y_IoThboNID8hNxz_VPy8Htu_t0zMpvSBDcdwU0z3DTATQFuCuVogptuPB3DTQe4n5P555P5py9FzJFR2EqJfeFqL5TVZS2MkM5zHG1McmM1DLkWJu9SgUVWS8crWzEv-FJ7ZyUUbgz3y_oFmfSb3r0ktNZaA9kUtamBpdbelJ43pVEVeMO6kuyYsNQwnY368ZjGZN3dCsgx-ZCLbIN4yt9u5qm1u8j-AqvroOfcXuzVXZ7xmjy47OxvyGR_du7ekvv2sF_tzt7FbvMHW3l5mA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+variational+iteration+method+for+the+analysis+of+viscoelastic+beams&rft.jtitle=Applied+mathematical+modelling&rft.au=Martin%2C+Olga&rft.date=2016-09-01&rft.issn=0307-904X&rft.volume=40&rft.issue=17-18&rft.spage=7988&rft.epage=7995&rft_id=info:doi/10.1016%2Fj.apm.2016.04.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2016_04_011 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |