A modified variational iteration method for the analysis of viscoelastic beams

•An algorithm based on VIM and Laplace transformation is created for the dynamic study of viscoelastic beams.•It is avoided the definition of initial approximation in the using of VIM, which is a difficult step for nonlinear problems.•There are no errors, which usually accompany the methods based on...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematical modelling Vol. 40; no. 17-18; pp. 7988 - 7995
Main Author: Martin, Olga
Format: Journal Article
Language:English
Published: Elsevier Inc 01.09.2016
Subjects:
ISSN:0307-904X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •An algorithm based on VIM and Laplace transformation is created for the dynamic study of viscoelastic beams.•It is avoided the definition of initial approximation in the using of VIM, which is a difficult step for nonlinear problems.•There are no errors, which usually accompany the methods based on the discretization of time interval. Based on a constitutive law in a hereditary integral form, a mathematical model for dynamic analysis of the isotropic linear viscoelastic beams is presented. To solve the governing equation for these structures subjected to a distributed load is created an accuracy and computational efficiency algorithm that uses Galerkin's method and a modified form of the variational iteration method (VIM) for time-domain equations. Numerical results for both quasi-static and dynamic analysis are presented and these will be accompanied by the graphical representations.
AbstractList •An algorithm based on VIM and Laplace transformation is created for the dynamic study of viscoelastic beams.•It is avoided the definition of initial approximation in the using of VIM, which is a difficult step for nonlinear problems.•There are no errors, which usually accompany the methods based on the discretization of time interval. Based on a constitutive law in a hereditary integral form, a mathematical model for dynamic analysis of the isotropic linear viscoelastic beams is presented. To solve the governing equation for these structures subjected to a distributed load is created an accuracy and computational efficiency algorithm that uses Galerkin's method and a modified form of the variational iteration method (VIM) for time-domain equations. Numerical results for both quasi-static and dynamic analysis are presented and these will be accompanied by the graphical representations.
Author Martin, Olga
Author_xml – sequence: 1
  givenname: Olga
  surname: Martin
  fullname: Martin, Olga
  email: omartin_ro@yahoo.com
  organization: Applied Sciences Faculty, Polytechnic University of Bucharest, Romania
BookMark eNp9kL9uwjAQhz1QqUD7AN38AqTnxMGJOiHUfxJqF4ZulmOfhVESI9tC4u1roFMHpvudTt_p7puRyehHJOSJQcGALZ_3hToMRZljAbwAxiZkChWIRQv8557MYtwDQJ27Kfla0cEbZx0aelTBqeT8qHrqEoZLpgOmnTfU-kDTDqnK01N0kXpLjy5qj72KyWnaoRriA7mzqo_4-FfnZPv2ul1_LDbf75_r1Wahy1akBVZWtFqxSnSiQcu5hhoa3mnVQr3k0DZtI6A1yEtdghXcKIu6yXDdcWuqORHXtTr4GANaqV26nJuCcr1kIM8m5F5mE_JsQgKX2UQm2T_yENygwukm83JlMH90dBhk1A5HjcYF1Eka727Qv6Gfe_k
CitedBy_id crossref_primary_10_1007_s40430_017_0854_1
crossref_primary_10_1016_j_apm_2016_11_033
crossref_primary_10_1080_17455030_2023_2226224
crossref_primary_10_1016_j_chaos_2020_110255
crossref_primary_10_1080_27684830_2025_2476871
crossref_primary_10_1016_j_jksus_2020_101259
crossref_primary_10_1016_j_camwa_2021_08_014
crossref_primary_10_1007_s40324_018_0163_3
crossref_primary_10_1016_j_compstruct_2020_113110
crossref_primary_10_1016_j_cam_2018_06_024
crossref_primary_10_1016_j_apm_2018_12_022
crossref_primary_10_1155_2021_3920937
crossref_primary_10_3390_sym10090409
crossref_primary_10_1007_s13344_021_0049_5
crossref_primary_10_1007_s00366_020_01141_5
crossref_primary_10_1016_j_chaos_2019_07_035
crossref_primary_10_1088_1402_4896_ad593f
crossref_primary_10_1155_2021_8663213
crossref_primary_10_1016_j_chaos_2019_109585
crossref_primary_10_1140_epjp_i2017_11438_4
Cites_doi 10.1002/cnm.1262
10.1016/S0045-7949(98)00321-6
10.1016/0377-0427(95)00059-3
10.1590/S1679-78252011000200002
10.1016/0022-460X(83)90943-4
10.1006/jsvi.1996.0128
10.1016/j.ijsolstr.2004.09.026
10.1061/(ASCE)0899-1561(1999)11:1(76)
10.1016/S0045-7825(98)00039-5
10.1016/S0263-8223(98)00025-7
10.1016/0045-7825(91)90252-2
10.1016/j.physleta.2007.02.049
10.1115/1.3423362
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.apm.2016.04.011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 7995
ExternalDocumentID 10_1016_j_apm_2016_04_011
S0307904X16302128
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-e3f79ca137b78ef44c05084bca9056409898709de42c20f74dafec8c295b4fd3
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000381541100038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0307-904X
IngestDate Tue Nov 18 22:35:12 EST 2025
Sat Nov 29 07:20:19 EST 2025
Fri Feb 23 02:30:53 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 17-18
Keywords Variational iteration method
Viscoelastic beam
Galerkin method
Correspondence principle
Laplace transform
Euler–Bernoulli beam theory
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-e3f79ca137b78ef44c05084bca9056409898709de42c20f74dafec8c295b4fd3
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_apm_2016_04_011
crossref_primary_10_1016_j_apm_2016_04_011
elsevier_sciencedirect_doi_10_1016_j_apm_2016_04_011
PublicationCentury 2000
PublicationDate September 2016
2016-09-00
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationTitle Applied mathematical modelling
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Crawford (bib0006) 1998
Martin (bib0015) 2009
Theodore, Arakeri, Ghosal (bib0023) 1996; 191
Reddy (bib0020) 2008
Pissarenko, G., Yakovlev, A., Matveev, V., Aide-mémoire de résistance des matériaux, Editions de Moscou, Russia, 1979.
Payette, Reddy (bib0018) 2010; 26
Chen, Chan (bib0003) 2000; 74
He (bib0009) 2000; 114
Chazal, Pitti (bib0005) 2011; 49
Christensen (bib0004) 1982
Yang, Lianis (bib0025) 1974; 41
Shaw, Warby, Whiteman (bib0022) 1997
He (bib0010) 2004; 156
Janovsky, Shaw, Warby, Whiteman (bib0011) 1995; 63
Cristescu (bib0007) 1967
Barari, Kalijib, Ghadimic, Domairry (bib0002) 2011; 8
Van Krevelen (bib0012) 1990
Argyris, Doltsini, Silva (bib0001) 1991; 88
Zhang N.-H., Cheng C.-J. (bib0024) 1998; 165
Wang, He (bib0026) 2007; 367
Lee, Oh (bib0014) 2005; 42
Kennedy (bib0013) 1998; 41
Flugge (bib0008) 1975
Sarma, Varadan (bib0021) 1983; 86
Park, Kim (bib0017) 1999; 11
Martin (bib0016) 2014; 5
Cristescu (10.1016/j.apm.2016.04.011_bib0007) 1967
Reddy (10.1016/j.apm.2016.04.011_bib0020) 2008
Zhang N.-H. (10.1016/j.apm.2016.04.011_bib0024) 1998; 165
Barari (10.1016/j.apm.2016.04.011_bib0002) 2011; 8
He (10.1016/j.apm.2016.04.011_bib0009) 2000; 114
Theodore (10.1016/j.apm.2016.04.011_bib0023) 1996; 191
Sarma (10.1016/j.apm.2016.04.011_bib0021) 1983; 86
He (10.1016/j.apm.2016.04.011_bib0010) 2004; 156
Kennedy (10.1016/j.apm.2016.04.011_bib0013) 1998; 41
Van Krevelen (10.1016/j.apm.2016.04.011_bib0012) 1990
Crawford (10.1016/j.apm.2016.04.011_bib0006) 1998
Yang (10.1016/j.apm.2016.04.011_bib0025) 1974; 41
10.1016/j.apm.2016.04.011_bib0019
Payette (10.1016/j.apm.2016.04.011_bib0018) 2010; 26
Chen (10.1016/j.apm.2016.04.011_bib0003) 2000; 74
Argyris (10.1016/j.apm.2016.04.011_bib0001) 1991; 88
Christensen (10.1016/j.apm.2016.04.011_bib0004) 1982
Martin (10.1016/j.apm.2016.04.011_bib0016) 2014; 5
Shaw (10.1016/j.apm.2016.04.011_bib0022) 1997
Lee (10.1016/j.apm.2016.04.011_bib0014) 2005; 42
Wang (10.1016/j.apm.2016.04.011_bib0026) 2007; 367
Janovsky (10.1016/j.apm.2016.04.011_bib0011) 1995; 63
Park (10.1016/j.apm.2016.04.011_bib0017) 1999; 11
Flugge (10.1016/j.apm.2016.04.011_bib0008) 1975
Martin (10.1016/j.apm.2016.04.011_bib0015) 2009
Chazal (10.1016/j.apm.2016.04.011_bib0005) 2011; 49
References_xml – reference: Pissarenko, G., Yakovlev, A., Matveev, V., Aide-mémoire de résistance des matériaux, Editions de Moscou, Russia, 1979.
– volume: 156
  start-page: 527
  year: 2004
  end-page: 539
  ident: bib0010
  article-title: Comparison of homotopy perturbation method and homotopy analysis method
  publication-title: Appl. Math. Comput.
– volume: 26
  start-page: 1736
  year: 2010
  end-page: 1755
  ident: bib0018
  article-title: Nonlinear quasi-static finite element formulations for viscoelastic Euler–Bernoulli and Timoshenko beams
  publication-title: Int. J. Numer. Methods Biomed. Eng.
– year: 1967
  ident: bib0007
  article-title: Dynamic Plasticity
– volume: 42
  start-page: 2381
  year: 2005
  end-page: 2398
  ident: bib0014
  article-title: Dynamic of an axially moving viscoelastic beam subject to axial tension
  publication-title: Int. J. Solids Struct.
– volume: 86
  start-page: 61
  year: 1983
  end-page: 70
  ident: bib0021
  article-title: Lagrange-type formulation for finite element analysis of nonlinear beam vibrations
  publication-title: J. Sound Vib.
– volume: 49
  start-page: 1029
  year: 2011
  end-page: 1048
  ident: bib0005
  article-title: Integral approach for time dependent material using finite element method
  publication-title: J. Theor. Appl. Mech.
– year: 1998
  ident: bib0006
  article-title: Plastics Engineering
– year: 2008
  ident: bib0020
  article-title: An Introduction to Continuum Mechanics with Applications
– volume: 367
  start-page: 188
  year: 2007
  end-page: 191
  ident: bib0026
  article-title: Variational iteration method for solving integro-differential equations
  publication-title: Phys. Lett. A
– volume: 41
  start-page: 635
  year: 1974
  end-page: 657
  ident: bib0025
  article-title: Large displacement analysis of viscoelastic beams and frames by the finite-element method
  publication-title: J. Appl. Mech.
– volume: 8
  start-page: 139
  year: 2011
  end-page: 148
  ident: bib0002
  article-title: Non-linear vibration of Euler–Bernoulli beams
  publication-title: Lat. Am. J. Solids Struct.
– volume: 88
  start-page: 135
  year: 1991
  end-page: 163
  ident: bib0001
  article-title: Constitutive modelling and computation of non-linear viscoelastic solids. Part I: Rheological models and numerical integration techniques
  publication-title: Comput. Meth. Appl. Mech. Eng
– year: 1997
  ident: bib0022
  article-title: A comparison of hereditary integral and internal variable approaches to numerical linear solid viscoelasticity
  publication-title: Proceedings of the Thirteenth Polish Conference on Computer Methods in Mechanics
– volume: 41
  start-page: 265
  year: 1998
  end-page: 272
  ident: bib0013
  article-title: Nonlinear viscoelastic analysis of composite plates and shells
  publication-title: Composit. Struct.
– volume: 191
  start-page: 363
  year: 1996
  end-page: 376
  ident: bib0023
  article-title: The modeling of axially translating flexible beams
  publication-title: J. Sound Vib.
– volume: 63
  start-page: 91
  year: 1995
  end-page: 107
  ident: bib0011
  article-title: Numerical methods for treating problems of viscoelastic isotropic solid deformation
  publication-title: J. Comput. Appl. Math.
– volume: 74
  start-page: 51
  year: 2000
  end-page: 64
  ident: bib0003
  article-title: Integral finite element method for dynamical analysis of elastic-viscoelastic composite structures
  publication-title: Comput. Struct.
– year: 1975
  ident: bib0008
  article-title: Viscoelasticity
– volume: 165
  start-page: 307
  year: 1998
  end-page: 319
  ident: bib0024
  article-title: Nonlinear mathematical model of viscoelastic thin plates with its Applications
  publication-title: Comput. Methods Appl. Mech. Eng.
– start-page: 1011
  year: 2009
  end-page: 1024
  ident: bib0015
  article-title: Propagation of elastic-plastic waves in bars
  publication-title: Proceedings of the 2009 European Computing Conference, Lecture Notes in Electrical Engineering, vol. 28
– year: 1990
  ident: bib0012
  article-title: Properties of Polymers
– volume: 5
  start-page: 329
  year: 2014
  end-page: 341
  ident: bib0016
  article-title: Quasi-static and dynamic analysis for viscoelastic beams with the constitutive equation in a hereditary integral form
  publication-title: Ann. Univ. Buchar. (Math. Ser.)
– volume: 114
  start-page: 115
  year: 2000
  end-page: 123
  ident: bib0009
  article-title: Variational iteration method for autonomous ordinary differential systems
  publication-title: Appl. Math. Comput.
– volume: 11
  start-page: 76
  year: 1999
  end-page: 82
  ident: bib0017
  article-title: Interconversion between relaxation modulus and creep compliance for viscoelastic solids
  publication-title: J. Mater. Civil Eng.
– year: 1982
  ident: bib0004
  article-title: Theory of Viscoelasticity
– volume: 26
  start-page: 1736
  year: 2010
  ident: 10.1016/j.apm.2016.04.011_bib0018
  article-title: Nonlinear quasi-static finite element formulations for viscoelastic Euler–Bernoulli and Timoshenko beams
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.1262
– volume: 74
  start-page: 51
  year: 2000
  ident: 10.1016/j.apm.2016.04.011_bib0003
  article-title: Integral finite element method for dynamical analysis of elastic-viscoelastic composite structures
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(98)00321-6
– volume: 63
  start-page: 91
  year: 1995
  ident: 10.1016/j.apm.2016.04.011_bib0011
  article-title: Numerical methods for treating problems of viscoelastic isotropic solid deformation
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(95)00059-3
– volume: 49
  start-page: 1029
  year: 2011
  ident: 10.1016/j.apm.2016.04.011_bib0005
  article-title: Integral approach for time dependent material using finite element method
  publication-title: J. Theor. Appl. Mech.
– volume: 8
  start-page: 139
  year: 2011
  ident: 10.1016/j.apm.2016.04.011_bib0002
  article-title: Non-linear vibration of Euler–Bernoulli beams
  publication-title: Lat. Am. J. Solids Struct.
  doi: 10.1590/S1679-78252011000200002
– volume: 5
  start-page: 329
  issue: LXIII
  year: 2014
  ident: 10.1016/j.apm.2016.04.011_bib0016
  article-title: Quasi-static and dynamic analysis for viscoelastic beams with the constitutive equation in a hereditary integral form
  publication-title: Ann. Univ. Buchar. (Math. Ser.)
– year: 1998
  ident: 10.1016/j.apm.2016.04.011_bib0006
– volume: 114
  start-page: 115
  year: 2000
  ident: 10.1016/j.apm.2016.04.011_bib0009
  article-title: Variational iteration method for autonomous ordinary differential systems
  publication-title: Appl. Math. Comput.
– volume: 86
  start-page: 61
  year: 1983
  ident: 10.1016/j.apm.2016.04.011_bib0021
  article-title: Lagrange-type formulation for finite element analysis of nonlinear beam vibrations
  publication-title: J. Sound Vib.
  doi: 10.1016/0022-460X(83)90943-4
– volume: 191
  start-page: 363
  year: 1996
  ident: 10.1016/j.apm.2016.04.011_bib0023
  article-title: The modeling of axially translating flexible beams
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1996.0128
– volume: 42
  start-page: 2381
  year: 2005
  ident: 10.1016/j.apm.2016.04.011_bib0014
  article-title: Dynamic of an axially moving viscoelastic beam subject to axial tension
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2004.09.026
– start-page: 1011
  year: 2009
  ident: 10.1016/j.apm.2016.04.011_bib0015
  article-title: Propagation of elastic-plastic waves in bars
– volume: 11
  start-page: 76
  year: 1999
  ident: 10.1016/j.apm.2016.04.011_bib0017
  article-title: Interconversion between relaxation modulus and creep compliance for viscoelastic solids
  publication-title: J. Mater. Civil Eng.
  doi: 10.1061/(ASCE)0899-1561(1999)11:1(76)
– year: 1990
  ident: 10.1016/j.apm.2016.04.011_bib0012
– year: 1982
  ident: 10.1016/j.apm.2016.04.011_bib0004
– volume: 156
  start-page: 527
  year: 2004
  ident: 10.1016/j.apm.2016.04.011_bib0010
  article-title: Comparison of homotopy perturbation method and homotopy analysis method
  publication-title: Appl. Math. Comput.
– volume: 165
  start-page: 307
  year: 1998
  ident: 10.1016/j.apm.2016.04.011_bib0024
  article-title: Nonlinear mathematical model of viscoelastic thin plates with its Applications
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(98)00039-5
– year: 1967
  ident: 10.1016/j.apm.2016.04.011_bib0007
– volume: 41
  start-page: 265
  year: 1998
  ident: 10.1016/j.apm.2016.04.011_bib0013
  article-title: Nonlinear viscoelastic analysis of composite plates and shells
  publication-title: Composit. Struct.
  doi: 10.1016/S0263-8223(98)00025-7
– year: 1975
  ident: 10.1016/j.apm.2016.04.011_bib0008
– year: 2008
  ident: 10.1016/j.apm.2016.04.011_bib0020
– year: 1997
  ident: 10.1016/j.apm.2016.04.011_bib0022
  article-title: A comparison of hereditary integral and internal variable approaches to numerical linear solid viscoelasticity
– volume: 88
  start-page: 135
  year: 1991
  ident: 10.1016/j.apm.2016.04.011_bib0001
  article-title: Constitutive modelling and computation of non-linear viscoelastic solids. Part I: Rheological models and numerical integration techniques
  publication-title: Comput. Meth. Appl. Mech. Eng
  doi: 10.1016/0045-7825(91)90252-2
– ident: 10.1016/j.apm.2016.04.011_bib0019
– volume: 367
  start-page: 188
  year: 2007
  ident: 10.1016/j.apm.2016.04.011_bib0026
  article-title: Variational iteration method for solving integro-differential equations
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2007.02.049
– volume: 41
  start-page: 635
  year: 1974
  ident: 10.1016/j.apm.2016.04.011_bib0025
  article-title: Large displacement analysis of viscoelastic beams and frames by the finite-element method
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3423362
SSID ssj0005904
Score 2.298172
Snippet •An algorithm based on VIM and Laplace transformation is created for the dynamic study of viscoelastic beams.•It is avoided the definition of initial...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 7988
SubjectTerms Correspondence principle
Euler–Bernoulli beam theory
Galerkin method
Laplace transform
Variational iteration method
Viscoelastic beam
Title A modified variational iteration method for the analysis of viscoelastic beams
URI https://dx.doi.org/10.1016/j.apm.2016.04.011
Volume 40
WOSCitedRecordID wos000381541100038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0307-904X
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 20180131
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005904
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZQlwMcEE-xvOQDJ6QgJ3Fi-1ihRYBE4dBDb5Ht2qirklbbbrU_n5n4sdnVLmIPXKIoip3Enz3z2Rl_Q8h7iaJrRvii9Q4mKJY1BapAFU3rgfGDizWODckmxGwmFwv1M2bb3A3pBETfy4sLtf2vUMM1ABu3zt4B7lwpXIBzAB2OADsc_wn4KWa3WXmklgeYCKfFviCfjGCHpNE5vlCPZEkOq53dOCDUKONqnI5S5kmlNjLW31nqFbeeYCqddXKAV4QJfqx_6fGqQtnmsKm8m4oJQC1ETyZLGYSVUo8QRbScwfSh8NnIjaLQ3I0mOqwWnH7UWxQCKNtBaTYa3Cty2NfcVA4eTHFppx1U0WEVHeMdww3eR5VolJyQo-nXk8W3y1AfxXgSxMRvSn-3hzi_a-9xMz8ZcY75Y_IoThboNID8hNxz_VPy8Htu_t0zMpvSBDcdwU0z3DTATQFuCuVogptuPB3DTQe4n5P555P5py9FzJFR2EqJfeFqL5TVZS2MkM5zHG1McmM1DLkWJu9SgUVWS8crWzEv-FJ7ZyUUbgz3y_oFmfSb3r0ktNZaA9kUtamBpdbelJ43pVEVeMO6kuyYsNQwnY368ZjGZN3dCsgx-ZCLbIN4yt9u5qm1u8j-AqvroOfcXuzVXZ7xmjy47OxvyGR_du7ekvv2sF_tzt7FbvMHW3l5mA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+variational+iteration+method+for+the+analysis+of+viscoelastic+beams&rft.jtitle=Applied+mathematical+modelling&rft.au=Martin%2C+Olga&rft.date=2016-09-01&rft.issn=0307-904X&rft.volume=40&rft.issue=17-18&rft.spage=7988&rft.epage=7995&rft_id=info:doi/10.1016%2Fj.apm.2016.04.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2016_04_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon