Prediction of shear capacity of steel channel sections using machine learning algorithms
This study presents the application of popular machine learning algorithms in prediction of the shear resistance of steel channel sections using experimental and numerical data. Datasets of 108 results of stainless steel lipped channel sections and 238 results of carbon steel LiteSteel sections were...
Saved in:
| Published in: | Thin-walled structures Vol. 175; p. 109152 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.06.2022
|
| Subjects: | |
| ISSN: | 0263-8231, 1879-3223 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This study presents the application of popular machine learning algorithms in prediction of the shear resistance of steel channel sections using experimental and numerical data. Datasets of 108 results of stainless steel lipped channel sections and 238 results of carbon steel LiteSteel sections were gathered to train machine learning models including support vector regression (SVR), multi-layer perceptron (MLP), gradient boosting regressor (GBR), and extreme gradient boosting (XGB). The cross-validation with 10 folds has been conducted in the training process to avoid over-fitting. The optimal hyperparameter combinations for each machine learning model were found during the hyperparameter tuning process and four performance indicators were used to evaluate the performance of the trained models. The comparison results suggest that all four implemented machine learning models reliably predict the shear capacity of both stainless steel lipped channel sections and carbon steel LiteSteel sections while the implemented SVR algorithm is found to be the best performing model. Moreover, it is shown that the implemented machine learning models exceed the prediction accuracy of the available design equations in estimating the shear capacity of steel channel sections.
•Optimal hyperparameter combinations were found for SVR, MLP, GBR and XGB models.•Each machine learning model was evaluated based on four performance indicators.•The implemented SVR algorithm is proved to be the best performing model.•Four implemented models perform better than the available design equations. |
|---|---|
| AbstractList | This study presents the application of popular machine learning algorithms in prediction of the shear resistance of steel channel sections using experimental and numerical data. Datasets of 108 results of stainless steel lipped channel sections and 238 results of carbon steel LiteSteel sections were gathered to train machine learning models including support vector regression (SVR), multi-layer perceptron (MLP), gradient boosting regressor (GBR), and extreme gradient boosting (XGB). The cross-validation with 10 folds has been conducted in the training process to avoid over-fitting. The optimal hyperparameter combinations for each machine learning model were found during the hyperparameter tuning process and four performance indicators were used to evaluate the performance of the trained models. The comparison results suggest that all four implemented machine learning models reliably predict the shear capacity of both stainless steel lipped channel sections and carbon steel LiteSteel sections while the implemented SVR algorithm is found to be the best performing model. Moreover, it is shown that the implemented machine learning models exceed the prediction accuracy of the available design equations in estimating the shear capacity of steel channel sections.
•Optimal hyperparameter combinations were found for SVR, MLP, GBR and XGB models.•Each machine learning model was evaluated based on four performance indicators.•The implemented SVR algorithm is proved to be the best performing model.•Four implemented models perform better than the available design equations. |
| ArticleNumber | 109152 |
| Author | Nguyen, Hoang Perampalam, Gatheeshgar Rajanayagam, Heshachanaa Dissanayake, Madhushan Poologanathan, Keerthan Upasiri, Irindu Suntharalingam, Thadshajini |
| Author_xml | – sequence: 1 givenname: Madhushan surname: Dissanayake fullname: Dissanayake, Madhushan organization: Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom – sequence: 2 givenname: Hoang surname: Nguyen fullname: Nguyen, Hoang organization: Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom – sequence: 3 givenname: Keerthan surname: Poologanathan fullname: Poologanathan, Keerthan organization: Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom – sequence: 4 givenname: Gatheeshgar surname: Perampalam fullname: Perampalam, Gatheeshgar organization: Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom – sequence: 5 givenname: Irindu surname: Upasiri fullname: Upasiri, Irindu email: irinduupasiri@sjp.ac.lk organization: Faculty of Engineering, University of Sri Jayewardenepura, Ratmalana, Sri Lanka – sequence: 6 givenname: Heshachanaa surname: Rajanayagam fullname: Rajanayagam, Heshachanaa organization: Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom – sequence: 7 givenname: Thadshajini surname: Suntharalingam fullname: Suntharalingam, Thadshajini organization: Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom |
| BookMark | eNp9kE1LAzEQhoNUsK3-AG_7B7Zmkt3NBk9S_AJBDwreQpqddFO22ZKsSv-92daTh56GeZln4H1mZOJ7j4RcA10Ahepmsxh-4oJRxtIuoWRnZAq1kDlnjE_IlLKK5zXjcEFmMW4oBQGymJLPt4CNM4PrfdbbLLaoQ2b0Ths37A_JgNhlptXepxnxcBqzr-j8Ottq0zqPWZcoPwa6W_fBDe02XpJzq7uIV39zTj4e7t-XT_nL6-Pz8u4lN0yKIUdmpKFlI3kBopKisqWUldCWFxVaLhHqleWAwtar0rIVZbqWhgPlghXQGD4ncPxrQh9jQKt2wW112CugalSjNiqpUaMadVSTGPGPSW31WGwI2nUnydsjianSt8OgonHoTXIYkhrV9O4E_QvAMIFf |
| CitedBy_id | crossref_primary_10_1016_j_istruc_2025_109241 crossref_primary_10_1016_j_jcsr_2025_109509 crossref_primary_10_1016_j_istruc_2025_108571 crossref_primary_10_1680_jemmr_24_00046 crossref_primary_10_1007_s11665_025_11781_7 crossref_primary_10_2355_isijinternational_ISIJINT_2024_359 crossref_primary_10_3390_ma16020583 crossref_primary_10_1016_j_engappai_2024_107952 crossref_primary_10_1016_j_tws_2024_112668 crossref_primary_10_3390_app13074117 crossref_primary_10_1016_j_jcsr_2024_109085 crossref_primary_10_1016_j_jobe_2023_106508 crossref_primary_10_1016_j_istruc_2022_11_138 crossref_primary_10_1007_s11837_023_05773_y crossref_primary_10_3390_pr12061068 crossref_primary_10_1016_j_tws_2025_113114 crossref_primary_10_1016_j_tws_2024_112382 crossref_primary_10_1007_s13369_023_08132_w crossref_primary_10_1007_s11709_024_1050_x crossref_primary_10_1016_j_desal_2022_116095 crossref_primary_10_1016_j_istruc_2025_109335 crossref_primary_10_1108_IJSI_09_2024_0152 crossref_primary_10_3390_buildings15132307 crossref_primary_10_1007_s00707_022_03446_6 crossref_primary_10_3390_met15040408 crossref_primary_10_1016_j_tws_2024_111984 crossref_primary_10_1016_j_tws_2024_112596 crossref_primary_10_1016_j_marstruc_2025_103789 crossref_primary_10_1007_s43452_022_00541_2 |
| Cites_doi | 10.1016/j.jcsr.2008.04.014 10.1023/A:1022627411411 10.1016/j.advengsoft.2020.102825 10.1016/j.jcsr.2017.08.009 10.1214/aos/1013203451 10.1145/2939672.2939785 10.1016/j.tws.2021.107494 10.1016/j.engstruct.2014.05.022 10.1016/j.tws.2014.01.021 10.1016/j.matdes.2015.08.001 10.1016/j.istruc.2016.11.002 10.1016/j.tws.2014.09.005 10.1016/S0143-974X(00)00016-X 10.1016/S0045-7949(02)00451-0 10.1260/2040-2317.5.3.203 10.1016/S0143-974X(02)00024-X 10.1016/j.engstruct.2010.06.012 10.1016/j.jcsr.2010.04.014 10.1111/0885-9507.00219 10.1016/j.istruc.2021.01.012 10.1002/pse.190 10.1016/j.engstruct.2015.04.027 10.1016/j.jcsr.2016.09.024 10.1016/j.compstruct.2020.113505 10.3389/fnbot.2013.00021 10.1155/2012/145974 10.1016/j.jcsr.2020.106443 10.1023/B:STCO.0000035301.49549.88 10.1016/j.matdes.2020.109199 10.1016/j.tws.2020.107179 10.1061/(ASCE)CF.1943-5509.0001514 10.1016/j.jcsr.2020.106414 10.1016/j.tws.2020.107295 10.1016/j.actamat.2019.08.033 10.1016/j.conbuildmat.2020.120950 10.1061/(ASCE)ST.1943-541X.0000510 10.1016/j.engstruct.2018.05.084 10.1016/j.istruc.2020.12.071 10.1016/j.compstruct.2019.02.048 10.1016/j.advengsoft.2009.07.006 10.1016/j.jcsr.2008.07.011 10.1111/j.1467-8667.1990.tb00377.x 10.1016/j.engstruct.2009.07.027 10.1016/j.istruc.2021.01.049 10.1061/(ASCE)ST.1943-541X.0000391 10.1016/j.tws.2014.08.024 10.1007/s00521-016-2190-2 10.1016/j.tws.2015.05.001 10.1016/j.tws.2013.12.003 10.1016/j.jcsr.2010.11.010 10.1016/j.tws.2017.08.006 10.1061/(ASCE)ST.1943-541X.0001259 10.1016/j.tws.2018.09.032 10.1016/j.engstruct.2020.111221 10.1016/j.jcsr.2019.105873 10.1016/j.jcsr.2011.08.003 10.1016/j.conbuildmat.2018.05.201 10.1016/S1352-2310(97)00447-0 |
| ContentType | Journal Article |
| Copyright | 2022 |
| Copyright_xml | – notice: 2022 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.tws.2022.109152 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-3223 |
| ExternalDocumentID | 10_1016_j_tws_2022_109152 S0263823122001458 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K WH7 WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-e2c9c05d934176976f59967af346ef39e18bf31e7f8b5f2b02a89c31037241dc3 |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792947400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0263-8231 |
| IngestDate | Sat Nov 29 07:23:27 EST 2025 Tue Nov 18 22:19:49 EST 2025 Fri Feb 23 02:40:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Shear capacity Channel sections Design rules Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-e2c9c05d934176976f59967af346ef39e18bf31e7f8b5f2b02a89c31037241dc3 |
| ParticipantIDs | crossref_primary_10_1016_j_tws_2022_109152 crossref_citationtrail_10_1016_j_tws_2022_109152 elsevier_sciencedirect_doi_10_1016_j_tws_2022_109152 |
| PublicationCentury | 2000 |
| PublicationDate | June 2022 2022-06-00 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Thin-walled structures |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Baddoo (b4) 2008; 64 Dissanayake, Poologanathan, Gunalan, Tsavdaridis, Wanniarachchi, Nagaratnam (b61) 2021; 30 Pham, Ngo, Nguyen (b43) 2020; 7 Vu, Truong, Thai (b49) 2021; 259 Flood, Kartam, Tongthong (b28) 1994 Bergstra, Bengio (b76) 2012; 13 Tadesse, Patel, Chaudhary, Nagpal (b32) 2012; 68 Salehi, Burgueño (b24) 2018; 171 Keerthan, Mahendran (b9) 2010; 32 Degtyarev (b74) 2021; 177 Keerthan, Mahendran (b12) 2011; 67 Bui, Nguyen, Chou, Nguyen-Xuan, Ngo (b73) 2018; 180 R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in: IJCAI, Vol. 14, Montreal, Canada, 1995, pp. 1137–1145. Mu, Rahaman, Rios, Odqvist, Hedström (b48) 2021; 197 Szewczak, Rzeszut, Rozylo (b2) 2021; 159 Chatterjee, Sarkar, Hore, Dey, Ashour, Balas (b33) 2017; 28 Vanluchene, Sun (b27) 1990; 5 (b22) 2015 Lu, Chen, Zheng (b29) 2012; 2012 Natekin, Knoll (b69) 2013; 7 (b62) 2006 Hassoun (b66) 1995 Shah, Sulong, El-Shafie (b38) 2018; 133 Cortes, Vapnik (b64) 1995; 20 Keerthan, Mahendran (b13) 2011; 137 Mitra (b25) 2017 Smola, Schölkopf (b65) 2004; 14 Dabiri, Ghafouri, Raftar, Björk (b36) 2017; 138 Goodfellow, Bengio, Courville (b75) 2016 Ishqy, Wanniarachchi, Poologanathan, Gunalan, Gatheeshgar, Suntharalingam, Navaratnam (b6) 2021; 31 Adeli (b26) 2001; 16 Pham, Hancock (b15) 2012; 138 Hadi (b42) 2003; 81 Keerthan, Hughes, Mahendran (b55) 2014; 77 (b56) 2014 Sakr, Sakla (b31) 2009; 31 Dabiri, Ghafouri, Raftar, Björk (b37) 2017; 128 Shen, Wang, Wei, Li, van der Zwaag, Xu (b47) 2019; 179 Pham, Bruneau, Hancock (b16) 2015; 141 Truong, Vu, Thai, Ha (b50) 2020; 147 Cai, Pan, Fu (b46) 2020; 34 Fonseca, Vellasco, de Andrade, Vellasco (b30) 2003; 59 Rossi (b8) 2014; 83 Pham, Hancock (b17) 2015; 86 Gardner, Dorling (b67) 1998; 32 Gardner (b5) 2005; 7 D’Amico, Myers, Sykes, Voss, Cousins-Jenvey, Fawcett, Richardson, Kermani, Pomponi (b52) 2019 Dissanayake, Poologanathan, Gunalan, Tsavdaridis, Wanniarachchi, Nagaratnam (b19) 2021; 158 Friedman (b68) 2001; 29 (b7) 2017 Pham, Hancock (b14) 2010; 66 Cruise, Gardner (b58) 2008; 64 T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785–794. Jakubek (b40) 2017; 19 Keerthan, Mahendran (b10) 2015; 86 McKinney, Ali (b45) 2014; 5 Sonu, Singh (b21) 2017; 119 Probst, Boulesteix, Bischl (b77) 2019; 20 Kim, Vu, Papazafeiropoulos, Kong, Truong (b51) 2020; 37 Dissanayake, Poologanathan, Gunalan, Tsavdaridis, Nagaratnam, Wanniarachchi (b18) 2020; 168 Naderpour, Nagai, Fakharian, Haji (b41) 2019; 215 Chen, Young, Martins, Camotim, Dinis (b3) 2021; 161 Erdem (b44) 2010; 41 Abdollahzadeh, Ghobadi (b34) 2015; 94 Vapnik (b63) 1995 Keerthan, Mahendran (b1) 2015; 99 Keerthan, Mahendran, Hughes (b59) 2014; 75 Chiew, Gupta, Wu (b35) 2001; 57 Sonu, Singh (b20) 2017; 10 Solhmirzaei, Salehi, Kodur, Naser (b53) 2020; 224 Dissanayake, Zhou, Poologanathan, Gunalan, Tsavdaridis, Guss (b60) 2021; 176 Arrayago, Real, Gardner (b57) 2015; 87 Graciano, Kurtoglu, Casanova (b23) 2021; 30 (b11) 2016 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b71) 2011; 12 Nguyen, Vu, Vo, Thai (b54) 2021; 266 Bağcı (b39) 2010; 15 (10.1016/j.tws.2022.109152_b22) 2015 Naderpour (10.1016/j.tws.2022.109152_b41) 2019; 215 Dabiri (10.1016/j.tws.2022.109152_b37) 2017; 128 Mu (10.1016/j.tws.2022.109152_b48) 2021; 197 Vu (10.1016/j.tws.2022.109152_b49) 2021; 259 Smola (10.1016/j.tws.2022.109152_b65) 2004; 14 Chiew (10.1016/j.tws.2022.109152_b35) 2001; 57 Natekin (10.1016/j.tws.2022.109152_b69) 2013; 7 Fonseca (10.1016/j.tws.2022.109152_b30) 2003; 59 Pedregosa (10.1016/j.tws.2022.109152_b71) 2011; 12 (10.1016/j.tws.2022.109152_b7) 2017 Dissanayake (10.1016/j.tws.2022.109152_b60) 2021; 176 Adeli (10.1016/j.tws.2022.109152_b26) 2001; 16 Dabiri (10.1016/j.tws.2022.109152_b36) 2017; 138 Rossi (10.1016/j.tws.2022.109152_b8) 2014; 83 Sakr (10.1016/j.tws.2022.109152_b31) 2009; 31 Kim (10.1016/j.tws.2022.109152_b51) 2020; 37 Keerthan (10.1016/j.tws.2022.109152_b59) 2014; 75 Degtyarev (10.1016/j.tws.2022.109152_b74) 2021; 177 Flood (10.1016/j.tws.2022.109152_b28) 1994 (10.1016/j.tws.2022.109152_b62) 2006 Pham (10.1016/j.tws.2022.109152_b43) 2020; 7 Dissanayake (10.1016/j.tws.2022.109152_b19) 2021; 158 (10.1016/j.tws.2022.109152_b56) 2014 Goodfellow (10.1016/j.tws.2022.109152_b75) 2016 Truong (10.1016/j.tws.2022.109152_b50) 2020; 147 Szewczak (10.1016/j.tws.2022.109152_b2) 2021; 159 Keerthan (10.1016/j.tws.2022.109152_b10) 2015; 86 Gardner (10.1016/j.tws.2022.109152_b67) 1998; 32 McKinney (10.1016/j.tws.2022.109152_b45) 2014; 5 Sonu (10.1016/j.tws.2022.109152_b21) 2017; 119 10.1016/j.tws.2022.109152_b72 10.1016/j.tws.2022.109152_b70 Vapnik (10.1016/j.tws.2022.109152_b63) 1995 Erdem (10.1016/j.tws.2022.109152_b44) 2010; 41 Arrayago (10.1016/j.tws.2022.109152_b57) 2015; 87 Probst (10.1016/j.tws.2022.109152_b77) 2019; 20 Keerthan (10.1016/j.tws.2022.109152_b1) 2015; 99 Hadi (10.1016/j.tws.2022.109152_b42) 2003; 81 Bui (10.1016/j.tws.2022.109152_b73) 2018; 180 Mitra (10.1016/j.tws.2022.109152_b25) 2017 Cruise (10.1016/j.tws.2022.109152_b58) 2008; 64 Chen (10.1016/j.tws.2022.109152_b3) 2021; 161 Shen (10.1016/j.tws.2022.109152_b47) 2019; 179 Pham (10.1016/j.tws.2022.109152_b16) 2015; 141 Shah (10.1016/j.tws.2022.109152_b38) 2018; 133 D’Amico (10.1016/j.tws.2022.109152_b52) 2019 Cortes (10.1016/j.tws.2022.109152_b64) 1995; 20 Salehi (10.1016/j.tws.2022.109152_b24) 2018; 171 Hassoun (10.1016/j.tws.2022.109152_b66) 1995 Abdollahzadeh (10.1016/j.tws.2022.109152_b34) 2015; 94 Bağcı (10.1016/j.tws.2022.109152_b39) 2010; 15 Gardner (10.1016/j.tws.2022.109152_b5) 2005; 7 Graciano (10.1016/j.tws.2022.109152_b23) 2021; 30 Cai (10.1016/j.tws.2022.109152_b46) 2020; 34 Nguyen (10.1016/j.tws.2022.109152_b54) 2021; 266 Pham (10.1016/j.tws.2022.109152_b14) 2010; 66 Dissanayake (10.1016/j.tws.2022.109152_b61) 2021; 30 Ishqy (10.1016/j.tws.2022.109152_b6) 2021; 31 Keerthan (10.1016/j.tws.2022.109152_b12) 2011; 67 Keerthan (10.1016/j.tws.2022.109152_b55) 2014; 77 (10.1016/j.tws.2022.109152_b11) 2016 Dissanayake (10.1016/j.tws.2022.109152_b18) 2020; 168 Baddoo (10.1016/j.tws.2022.109152_b4) 2008; 64 Pham (10.1016/j.tws.2022.109152_b17) 2015; 86 Sonu (10.1016/j.tws.2022.109152_b20) 2017; 10 Vanluchene (10.1016/j.tws.2022.109152_b27) 1990; 5 Solhmirzaei (10.1016/j.tws.2022.109152_b53) 2020; 224 Tadesse (10.1016/j.tws.2022.109152_b32) 2012; 68 Friedman (10.1016/j.tws.2022.109152_b68) 2001; 29 Keerthan (10.1016/j.tws.2022.109152_b13) 2011; 137 Lu (10.1016/j.tws.2022.109152_b29) 2012; 2012 Bergstra (10.1016/j.tws.2022.109152_b76) 2012; 13 Keerthan (10.1016/j.tws.2022.109152_b9) 2010; 32 Pham (10.1016/j.tws.2022.109152_b15) 2012; 138 Chatterjee (10.1016/j.tws.2022.109152_b33) 2017; 28 Jakubek (10.1016/j.tws.2022.109152_b40) 2017; 19 |
| References_xml | – volume: 94 start-page: 512 year: 2015 end-page: 520 ident: b34 article-title: Linked mathematical–informational modeling of perforated steel plate shear walls publication-title: Thin-Walled Struct. – volume: 86 start-page: 47 year: 2015 end-page: 55 ident: b17 article-title: Numerical investigation of longitudinally stiffened web channels predominantly in shear publication-title: Thin-Walled Struct. – volume: 64 start-page: 1310 year: 2008 end-page: 1316 ident: b58 article-title: Strength enhancements induced during cold forming of stainless steel sections publication-title: J. Construct. Steel Res. – volume: 34 year: 2020 ident: b46 article-title: Prediction of the postfire flexural capacity of RC beam using GA-BPNN machine learning publication-title: J. Perform. Constr. Facil. – volume: 68 start-page: 138 year: 2012 end-page: 149 ident: b32 article-title: Neural networks for prediction of deflection in composite bridges publication-title: J. Construct. Steel Res. – volume: 28 start-page: 2005 year: 2017 end-page: 2016 ident: b33 article-title: Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings publication-title: Neural Comput. Appl. – volume: 67 start-page: 1050 year: 2011 end-page: 1063 ident: b12 article-title: New design rules for the shear strength of LiteSteel beams publication-title: J. Construct. Steel Res. – volume: 83 start-page: 182 year: 2014 end-page: 189 ident: b8 article-title: Discussion on the use of stainless steel in constructions in view of sustainability publication-title: Thin-Walled Struct. – volume: 147 year: 2020 ident: b50 article-title: A robust method for safety evaluation of steel trusses using Gradient Tree Boosting algorithm publication-title: Adv. Eng. Softw. – volume: 41 start-page: 270 year: 2010 end-page: 276 ident: b44 article-title: Prediction of the moment capacity of reinforced concrete slabs in fire using artificial neural networks publication-title: Adv. Eng. Softw. – volume: 87 start-page: 540 year: 2015 end-page: 552 ident: b57 article-title: Description of stress–strain curves for stainless steel alloys publication-title: Mater. Des. – volume: 31 start-page: 127 year: 2021 end-page: 144 ident: b6 article-title: Shear behaviour of cold-formed stainless-steel beams with web openings: Numerical studies publication-title: Structures – volume: 10 start-page: 13 year: 2017 end-page: 29 ident: b20 article-title: Shear characteristics of Lean Duplex Stainless Steel (LDSS) rectangular hollow beams publication-title: Structures – year: 2017 ident: b25 article-title: Applications of Machine Learning and Computer Vision for Smart Infrastructure Management in Civil Engineering – volume: 81 start-page: 373 year: 2003 end-page: 381 ident: b42 article-title: Neural networks applications in concrete structures publication-title: Comput. Struct. – volume: 161 year: 2021 ident: b3 article-title: Experimental investigation on cold-formed steel lipped channel beams affected by local-distortional interaction under non-uniform bending publication-title: Thin-Walled Struct. – volume: 64 start-page: 1199 year: 2008 end-page: 1206 ident: b4 article-title: Stainless steel in construction: A review of research, applications, challenges and opportunities publication-title: J. Construct. Steel Res. – year: 1995 ident: b63 article-title: The Nature of Statistical Learning Theory – volume: 168 year: 2020 ident: b18 article-title: Numerical modelling and shear design rules of stainless steel lipped channel sections publication-title: J. Construct. Steel Res. – year: 1995 ident: b66 article-title: Fundamentals of Artificial Neural Networks – volume: 5 start-page: 207 year: 1990 end-page: 215 ident: b27 article-title: Neural networks in structural engineering publication-title: Comput.-Aided Civ. Infrastruct. Eng. – volume: 7 start-page: 45 year: 2005 end-page: 55 ident: b5 article-title: The use of stainless steel in structures publication-title: Prog. Struct. Eng. Mater. – volume: 5 start-page: 203 year: 2014 end-page: 214 ident: b45 article-title: Artificial neural networks for the spalling classification & failure prediction times of high strength concrete columns publication-title: J. Struct. Fire Eng. – volume: 141 year: 2015 ident: b16 article-title: Experimental study of longitudinally stiffened web channels subjected to combined bending and shear publication-title: J. Struct. Eng. – volume: 215 start-page: 69 year: 2019 end-page: 84 ident: b41 article-title: Innovative models for prediction of compressive strength of FRP-confined circular reinforced concrete columns using soft computing methods publication-title: Compos. Struct. – volume: 99 start-page: 603 year: 2015 end-page: 615 ident: b1 article-title: Improved shear design rules of cold-formed steel beams publication-title: Eng. Struct. – volume: 20 start-page: 1 year: 2019 end-page: 32 ident: b77 article-title: Tunability: Importance of hyperparameters of machine learning algorithms publication-title: J. Mach. Learn. Res. – volume: 66 start-page: 1205 year: 2010 end-page: 1217 ident: b14 article-title: Numerical simulation of high strength cold-formed purlins in combined bending and shear publication-title: J. Construct. Steel Res. – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: b68 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Statist. – volume: 138 start-page: 759 year: 2012 end-page: 768 ident: b15 article-title: Direct strength design of cold-formed C-sections for shear and combined actions publication-title: J. Struct. Eng. – volume: 259 year: 2021 ident: b49 article-title: Machine learning-based prediction of CFST columns using gradient tree boosting algorithm publication-title: Compos. Struct. – volume: 86 start-page: 174 year: 2015 end-page: 184 ident: b10 article-title: Experimental investigation and design of lipped channel beams in shear publication-title: Thin-Walled Struct. – volume: 224 year: 2020 ident: b53 article-title: Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams publication-title: Eng. Struct. – year: 2006 ident: b62 article-title: Eurocode 3 – Design of Steel Structures – Part 1–5: Plated Structural Elements – volume: 7 start-page: 95 year: 2020 end-page: 106 ident: b43 article-title: Machine learning for predicting long-term deflections in reinforce concrete flexural structures publication-title: J. Comput. Des. Eng. – volume: 16 start-page: 126 year: 2001 end-page: 142 ident: b26 article-title: Neural networks in civil engineering: 1989–2000 publication-title: Comput.-Aided Civ. Infrastruct. Eng. – volume: 32 start-page: 3235 year: 2010 end-page: 3247 ident: b9 article-title: Experimental studies on the shear behaviour and strength of LiteSteel beams publication-title: Eng. Struct. – volume: 19 start-page: 339 year: 2017 end-page: 349 ident: b40 article-title: Neural network prediction of load capacity for eccentrically loaded reinforced concrete columns publication-title: Comput. Assist. Methods Eng. Sci. – volume: 133 start-page: 206 year: 2018 end-page: 215 ident: b38 article-title: New approach for developing soft computational prediction models for moment and rotation of boltless steel connections publication-title: Thin-Walled Struct. – volume: 138 start-page: 488 year: 2017 end-page: 498 ident: b36 article-title: Utilizing artificial neural networks for stress concentration factor calculation in butt welds publication-title: J. Construct. Steel Res. – volume: 179 start-page: 201 year: 2019 end-page: 214 ident: b47 article-title: Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel publication-title: Acta Mater. – volume: 77 start-page: 129 year: 2014 end-page: 140 ident: b55 article-title: Experimental studies of hollow flange channel beams subject to combined bending and shear actions publication-title: Thin-Walled Struct. – volume: 2012 year: 2012 ident: b29 article-title: Artificial intelligence in civil engineering publication-title: Math. Probl. Eng. – start-page: 1 year: 2019 end-page: 4 ident: b52 article-title: Machine learning for sustainable structures: A call for data publication-title: Structures, Vol. 19 – reference: R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in: IJCAI, Vol. 14, Montreal, Canada, 1995, pp. 1137–1145. – volume: 137 start-page: 1428 year: 2011 end-page: 1439 ident: b13 article-title: Numerical modeling of LiteSteel beams subject to shear publication-title: J. Struct. Eng. – volume: 30 start-page: 1042 year: 2021 end-page: 1055 ident: b61 article-title: Bending-shear interaction of cold-formed stainless steel lipped channel sections publication-title: Structures – volume: 59 start-page: 251 year: 2003 end-page: 267 ident: b30 article-title: A patch load parametric analysis using neural networks publication-title: J. Construct. Steel Res. – volume: 13 year: 2012 ident: b76 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – volume: 180 start-page: 320 year: 2018 end-page: 333 ident: b73 article-title: A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete publication-title: Constr. Build. Mater. – volume: 128 start-page: 567 year: 2017 end-page: 578 ident: b37 article-title: Neural network-based assessment of the stress concentration factor in a T-welded joint publication-title: J. Construct. Steel Res. – volume: 119 start-page: 851 year: 2017 end-page: 867 ident: b21 article-title: Shear behaviour of single perforated lean duplex stainless steel (LDSS) rectangular hollow beams publication-title: Thin-Walled Struct. – volume: 7 start-page: 21 year: 2013 ident: b69 article-title: Gradient boosting machines, a tutorial publication-title: Front. Neurorobot. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b64 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 177 year: 2021 ident: b74 article-title: Neural networks for predicting shear strength of CFS channels with slotted webs publication-title: J. Construct. Steel Res. – volume: 171 start-page: 170 year: 2018 end-page: 189 ident: b24 article-title: Emerging artificial intelligence methods in structural engineering publication-title: Eng. Struct. – volume: 197 year: 2021 ident: b48 article-title: Predicting strain-induced martensite in austenitic steels by combining physical modelling and machine learning publication-title: Mater. Des. – volume: 266 year: 2021 ident: b54 article-title: Efficient machine learning models for prediction of concrete strengths publication-title: Constr. Build. Mater. – volume: 159 year: 2021 ident: b2 article-title: Structural behaviour of steel cold-formed sigma beams strengthened with bonded steel tapes publication-title: Thin-Walled Struct. – volume: 30 start-page: 198 year: 2021 end-page: 205 ident: b23 article-title: Machine learning approach for predicting the patch load resistance of slender austenitic stainless steel girders publication-title: Structures – volume: 15 start-page: 66 year: 2010 end-page: 78 ident: b39 article-title: Neural network model for moment-curvature relationship of reinforced concrete sections publication-title: Math. Comput. Appl. – year: 2015 ident: b22 article-title: Eurocode 3 – Design of Steel Structures – Part 1–4: General Rules – Supplementary Rules for Stainless Steels – volume: 14 start-page: 199 year: 2004 end-page: 222 ident: b65 article-title: A tutorial on support vector regression publication-title: Stat. Comput. – volume: 57 start-page: 97 year: 2001 end-page: 112 ident: b35 article-title: Neural network-based estimation of stress concentration factors for steel multiplanar tubular XT-joints publication-title: J. Construct. Steel Res. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b71 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 176 year: 2021 ident: b60 article-title: Numerical simulation and design of stainless steel hollow flange beams under shear publication-title: J. Construct. Steel Res. – year: 2016 ident: b11 article-title: North American Specification for the Design of Cold-Formed Steel Structural Members – reference: T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785–794. – volume: 32 start-page: 2627 year: 1998 end-page: 2636 ident: b67 article-title: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences publication-title: Atmos. Environ. – year: 2017 ident: b7 article-title: Design Manual for Structural Stainless Steel, Fourth Edition – volume: 31 start-page: 2988 year: 2009 end-page: 2997 ident: b31 article-title: Long-term deflection of cracked composite beams with nonlinear partial shear interaction—a study using neural networks publication-title: Eng. Struct. – volume: 37 start-page: 193 year: 2020 end-page: 209 ident: b51 article-title: Comparison of machine learning algorithms for regression and classification of ultimate load-carrying capacity of steel frames publication-title: Steel Compos. Struct. – start-page: 668 year: 1994 end-page: 675 ident: b28 article-title: The application of artificial neural networks to civil engineering publication-title: Computing in Civil Engineering – volume: 158 year: 2021 ident: b19 article-title: Numerical investigation of cold-formed stainless steel lipped channels with longitudinal stiffeners subjected to shear publication-title: Thin-Walled Struct. – year: 2014 ident: b56 article-title: Analysis User’s Guide 6.14 – volume: 75 start-page: 197 year: 2014 end-page: 212 ident: b59 article-title: Numerical studies and design of hollow flange channel beams subject to combined bending and shear actions publication-title: Eng. Struct. – year: 2016 ident: b75 article-title: Deep Learning, Vol. 1 – volume: 64 start-page: 1310 issue: 11 year: 2008 ident: 10.1016/j.tws.2022.109152_b58 article-title: Strength enhancements induced during cold forming of stainless steel sections publication-title: J. Construct. Steel Res. doi: 10.1016/j.jcsr.2008.04.014 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.tws.2022.109152_b64 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1023/A:1022627411411 – volume: 147 year: 2020 ident: 10.1016/j.tws.2022.109152_b50 article-title: A robust method for safety evaluation of steel trusses using Gradient Tree Boosting algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2020.102825 – year: 2016 ident: 10.1016/j.tws.2022.109152_b11 – volume: 138 start-page: 488 year: 2017 ident: 10.1016/j.tws.2022.109152_b36 article-title: Utilizing artificial neural networks for stress concentration factor calculation in butt welds publication-title: J. Construct. Steel Res. doi: 10.1016/j.jcsr.2017.08.009 – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: 10.1016/j.tws.2022.109152_b68 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Statist. doi: 10.1214/aos/1013203451 – volume: 20 start-page: 1 issue: 53 year: 2019 ident: 10.1016/j.tws.2022.109152_b77 article-title: Tunability: Importance of hyperparameters of machine learning algorithms publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.tws.2022.109152_b70 doi: 10.1145/2939672.2939785 – start-page: 1 year: 2019 ident: 10.1016/j.tws.2022.109152_b52 article-title: Machine learning for sustainable structures: A call for data – volume: 161 year: 2021 ident: 10.1016/j.tws.2022.109152_b3 article-title: Experimental investigation on cold-formed steel lipped channel beams affected by local-distortional interaction under non-uniform bending publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2021.107494 – ident: 10.1016/j.tws.2022.109152_b72 – year: 2016 ident: 10.1016/j.tws.2022.109152_b75 – volume: 75 start-page: 197 year: 2014 ident: 10.1016/j.tws.2022.109152_b59 article-title: Numerical studies and design of hollow flange channel beams subject to combined bending and shear actions publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2014.05.022 – volume: 83 start-page: 182 year: 2014 ident: 10.1016/j.tws.2022.109152_b8 article-title: Discussion on the use of stainless steel in constructions in view of sustainability publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2014.01.021 – volume: 87 start-page: 540 year: 2015 ident: 10.1016/j.tws.2022.109152_b57 article-title: Description of stress–strain curves for stainless steel alloys publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.08.001 – volume: 10 start-page: 13 year: 2017 ident: 10.1016/j.tws.2022.109152_b20 article-title: Shear characteristics of Lean Duplex Stainless Steel (LDSS) rectangular hollow beams publication-title: Structures doi: 10.1016/j.istruc.2016.11.002 – volume: 86 start-page: 47 year: 2015 ident: 10.1016/j.tws.2022.109152_b17 article-title: Numerical investigation of longitudinally stiffened web channels predominantly in shear publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2014.09.005 – volume: 57 start-page: 97 issue: 2 year: 2001 ident: 10.1016/j.tws.2022.109152_b35 article-title: Neural network-based estimation of stress concentration factors for steel multiplanar tubular XT-joints publication-title: J. Construct. Steel Res. doi: 10.1016/S0143-974X(00)00016-X – start-page: 668 year: 1994 ident: 10.1016/j.tws.2022.109152_b28 article-title: The application of artificial neural networks to civil engineering – volume: 81 start-page: 373 issue: 6 year: 2003 ident: 10.1016/j.tws.2022.109152_b42 article-title: Neural networks applications in concrete structures publication-title: Comput. Struct. doi: 10.1016/S0045-7949(02)00451-0 – volume: 5 start-page: 203 issue: 3 year: 2014 ident: 10.1016/j.tws.2022.109152_b45 article-title: Artificial neural networks for the spalling classification & failure prediction times of high strength concrete columns publication-title: J. Struct. Fire Eng. doi: 10.1260/2040-2317.5.3.203 – volume: 13 issue: 2 year: 2012 ident: 10.1016/j.tws.2022.109152_b76 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – volume: 59 start-page: 251 issue: 2 year: 2003 ident: 10.1016/j.tws.2022.109152_b30 article-title: A patch load parametric analysis using neural networks publication-title: J. Construct. Steel Res. doi: 10.1016/S0143-974X(02)00024-X – volume: 32 start-page: 3235 issue: 10 year: 2010 ident: 10.1016/j.tws.2022.109152_b9 article-title: Experimental studies on the shear behaviour and strength of LiteSteel beams publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2010.06.012 – volume: 66 start-page: 1205 issue: 10 year: 2010 ident: 10.1016/j.tws.2022.109152_b14 article-title: Numerical simulation of high strength cold-formed purlins in combined bending and shear publication-title: J. Construct. Steel Res. doi: 10.1016/j.jcsr.2010.04.014 – volume: 7 start-page: 95 issue: 1 year: 2020 ident: 10.1016/j.tws.2022.109152_b43 article-title: Machine learning for predicting long-term deflections in reinforce concrete flexural structures publication-title: J. Comput. Des. Eng. – volume: 16 start-page: 126 issue: 2 year: 2001 ident: 10.1016/j.tws.2022.109152_b26 article-title: Neural networks in civil engineering: 1989–2000 publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/0885-9507.00219 – volume: 30 start-page: 198 year: 2021 ident: 10.1016/j.tws.2022.109152_b23 article-title: Machine learning approach for predicting the patch load resistance of slender austenitic stainless steel girders publication-title: Structures doi: 10.1016/j.istruc.2021.01.012 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.tws.2022.109152_b71 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – year: 2014 ident: 10.1016/j.tws.2022.109152_b56 – volume: 19 start-page: 339 issue: 4 year: 2017 ident: 10.1016/j.tws.2022.109152_b40 article-title: Neural network prediction of load capacity for eccentrically loaded reinforced concrete columns publication-title: Comput. Assist. Methods Eng. Sci. – volume: 7 start-page: 45 issue: 2 year: 2005 ident: 10.1016/j.tws.2022.109152_b5 article-title: The use of stainless steel in structures publication-title: Prog. Struct. Eng. Mater. doi: 10.1002/pse.190 – volume: 99 start-page: 603 year: 2015 ident: 10.1016/j.tws.2022.109152_b1 article-title: Improved shear design rules of cold-formed steel beams publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2015.04.027 – year: 2015 ident: 10.1016/j.tws.2022.109152_b22 – volume: 128 start-page: 567 year: 2017 ident: 10.1016/j.tws.2022.109152_b37 article-title: Neural network-based assessment of the stress concentration factor in a T-welded joint publication-title: J. Construct. Steel Res. doi: 10.1016/j.jcsr.2016.09.024 – volume: 259 year: 2021 ident: 10.1016/j.tws.2022.109152_b49 article-title: Machine learning-based prediction of CFST columns using gradient tree boosting algorithm publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2020.113505 – year: 2006 ident: 10.1016/j.tws.2022.109152_b62 – year: 2017 ident: 10.1016/j.tws.2022.109152_b7 – volume: 7 start-page: 21 year: 2013 ident: 10.1016/j.tws.2022.109152_b69 article-title: Gradient boosting machines, a tutorial publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2013.00021 – volume: 2012 year: 2012 ident: 10.1016/j.tws.2022.109152_b29 article-title: Artificial intelligence in civil engineering publication-title: Math. Probl. Eng. doi: 10.1155/2012/145974 – volume: 177 year: 2021 ident: 10.1016/j.tws.2022.109152_b74 article-title: Neural networks for predicting shear strength of CFS channels with slotted webs publication-title: J. Construct. Steel Res. doi: 10.1016/j.jcsr.2020.106443 – year: 1995 ident: 10.1016/j.tws.2022.109152_b63 – volume: 14 start-page: 199 year: 2004 ident: 10.1016/j.tws.2022.109152_b65 article-title: A tutorial on support vector regression publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 197 year: 2021 ident: 10.1016/j.tws.2022.109152_b48 article-title: Predicting strain-induced martensite in austenitic steels by combining physical modelling and machine learning publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.109199 – volume: 158 year: 2021 ident: 10.1016/j.tws.2022.109152_b19 article-title: Numerical investigation of cold-formed stainless steel lipped channels with longitudinal stiffeners subjected to shear publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2020.107179 – volume: 34 issue: 6 year: 2020 ident: 10.1016/j.tws.2022.109152_b46 article-title: Prediction of the postfire flexural capacity of RC beam using GA-BPNN machine learning publication-title: J. Perform. Constr. Facil. doi: 10.1061/(ASCE)CF.1943-5509.0001514 – volume: 176 year: 2021 ident: 10.1016/j.tws.2022.109152_b60 article-title: Numerical simulation and design of stainless steel hollow flange beams under shear publication-title: J. Construct. Steel Res. doi: 10.1016/j.jcsr.2020.106414 – volume: 159 year: 2021 ident: 10.1016/j.tws.2022.109152_b2 article-title: Structural behaviour of steel cold-formed sigma beams strengthened with bonded steel tapes publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2020.107295 – year: 1995 ident: 10.1016/j.tws.2022.109152_b66 – volume: 179 start-page: 201 year: 2019 ident: 10.1016/j.tws.2022.109152_b47 article-title: Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.08.033 – volume: 266 year: 2021 ident: 10.1016/j.tws.2022.109152_b54 article-title: Efficient machine learning models for prediction of concrete strengths publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.120950 – volume: 15 start-page: 66 issue: 1 year: 2010 ident: 10.1016/j.tws.2022.109152_b39 article-title: Neural network model for moment-curvature relationship of reinforced concrete sections publication-title: Math. Comput. Appl. – volume: 138 start-page: 759 issue: 6 year: 2012 ident: 10.1016/j.tws.2022.109152_b15 article-title: Direct strength design of cold-formed C-sections for shear and combined actions publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0000510 – volume: 171 start-page: 170 year: 2018 ident: 10.1016/j.tws.2022.109152_b24 article-title: Emerging artificial intelligence methods in structural engineering publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2018.05.084 – volume: 30 start-page: 1042 year: 2021 ident: 10.1016/j.tws.2022.109152_b61 article-title: Bending-shear interaction of cold-formed stainless steel lipped channel sections publication-title: Structures doi: 10.1016/j.istruc.2020.12.071 – volume: 215 start-page: 69 year: 2019 ident: 10.1016/j.tws.2022.109152_b41 article-title: Innovative models for prediction of compressive strength of FRP-confined circular reinforced concrete columns using soft computing methods publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.02.048 – volume: 41 start-page: 270 issue: 2 year: 2010 ident: 10.1016/j.tws.2022.109152_b44 article-title: Prediction of the moment capacity of reinforced concrete slabs in fire using artificial neural networks publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2009.07.006 – volume: 64 start-page: 1199 issue: 11 year: 2008 ident: 10.1016/j.tws.2022.109152_b4 article-title: Stainless steel in construction: A review of research, applications, challenges and opportunities publication-title: J. Construct. Steel Res. doi: 10.1016/j.jcsr.2008.07.011 – volume: 5 start-page: 207 issue: 3 year: 1990 ident: 10.1016/j.tws.2022.109152_b27 article-title: Neural networks in structural engineering publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/j.1467-8667.1990.tb00377.x – volume: 31 start-page: 2988 issue: 12 year: 2009 ident: 10.1016/j.tws.2022.109152_b31 article-title: Long-term deflection of cracked composite beams with nonlinear partial shear interaction—a study using neural networks publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2009.07.027 – volume: 31 start-page: 127 year: 2021 ident: 10.1016/j.tws.2022.109152_b6 article-title: Shear behaviour of cold-formed stainless-steel beams with web openings: Numerical studies publication-title: Structures doi: 10.1016/j.istruc.2021.01.049 – volume: 137 start-page: 1428 issue: 12 year: 2011 ident: 10.1016/j.tws.2022.109152_b13 article-title: Numerical modeling of LiteSteel beams subject to shear publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0000391 – volume: 86 start-page: 174 year: 2015 ident: 10.1016/j.tws.2022.109152_b10 article-title: Experimental investigation and design of lipped channel beams in shear publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2014.08.024 – volume: 28 start-page: 2005 issue: 8 year: 2017 ident: 10.1016/j.tws.2022.109152_b33 article-title: Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2190-2 – volume: 94 start-page: 512 year: 2015 ident: 10.1016/j.tws.2022.109152_b34 article-title: Linked mathematical–informational modeling of perforated steel plate shear walls publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2015.05.001 – volume: 77 start-page: 129 year: 2014 ident: 10.1016/j.tws.2022.109152_b55 article-title: Experimental studies of hollow flange channel beams subject to combined bending and shear actions publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2013.12.003 – year: 2017 ident: 10.1016/j.tws.2022.109152_b25 – volume: 67 start-page: 1050 issue: 6 year: 2011 ident: 10.1016/j.tws.2022.109152_b12 article-title: New design rules for the shear strength of LiteSteel beams publication-title: J. Construct. Steel Res. doi: 10.1016/j.jcsr.2010.11.010 – volume: 119 start-page: 851 year: 2017 ident: 10.1016/j.tws.2022.109152_b21 article-title: Shear behaviour of single perforated lean duplex stainless steel (LDSS) rectangular hollow beams publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2017.08.006 – volume: 141 issue: 11 year: 2015 ident: 10.1016/j.tws.2022.109152_b16 article-title: Experimental study of longitudinally stiffened web channels subjected to combined bending and shear publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0001259 – volume: 133 start-page: 206 year: 2018 ident: 10.1016/j.tws.2022.109152_b38 article-title: New approach for developing soft computational prediction models for moment and rotation of boltless steel connections publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2018.09.032 – volume: 224 year: 2020 ident: 10.1016/j.tws.2022.109152_b53 article-title: Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.111221 – volume: 168 year: 2020 ident: 10.1016/j.tws.2022.109152_b18 article-title: Numerical modelling and shear design rules of stainless steel lipped channel sections publication-title: J. Construct. Steel Res. doi: 10.1016/j.jcsr.2019.105873 – volume: 68 start-page: 138 issue: 1 year: 2012 ident: 10.1016/j.tws.2022.109152_b32 article-title: Neural networks for prediction of deflection in composite bridges publication-title: J. Construct. Steel Res. doi: 10.1016/j.jcsr.2011.08.003 – volume: 37 start-page: 193 year: 2020 ident: 10.1016/j.tws.2022.109152_b51 article-title: Comparison of machine learning algorithms for regression and classification of ultimate load-carrying capacity of steel frames publication-title: Steel Compos. Struct. – volume: 180 start-page: 320 year: 2018 ident: 10.1016/j.tws.2022.109152_b73 article-title: A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.05.201 – volume: 32 start-page: 2627 issue: 14 year: 1998 ident: 10.1016/j.tws.2022.109152_b67 article-title: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(97)00447-0 |
| SSID | ssj0017194 |
| Score | 2.4768724 |
| Snippet | This study presents the application of popular machine learning algorithms in prediction of the shear resistance of steel channel sections using experimental... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109152 |
| SubjectTerms | Channel sections Design rules Machine learning Shear capacity |
| Title | Prediction of shear capacity of steel channel sections using machine learning algorithms |
| URI | https://dx.doi.org/10.1016/j.tws.2022.109152 |
| Volume | 175 |
| WOSCitedRecordID | wos000792947400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3223 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017194 issn: 0263-8231 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWGlgUsEE9RCsgLVoxSJU4yjpcVKhQEo1kUNLvIcex5aEiqJNPHR_SfuY7tJC0U0QWbJLJiJ8o9ub62r89B6J2iPJ_4Seb5YSK9iDPqcR4RLyQK4EFjnrQynT--0uk0mc_ZbDS6cnthzja0KJKLC3b6X00NZWBsvXX2DubuGoUCuAajwxHMDsd_Mvys0msvLhCstWL1WECXKGzyBZhVbtoNvwWc6zYVq6jH23bS4GebWymdmMRizDeLslo1S0tqvnbgWhXeuZZhyceGgXZbDSTqwZi84JfcJP584_lyWy97GE4X20vj7Y5LbntO7Z1L7Yi5mc03e4Zk1QzqzWSl6SEthj_p2FXWywWvhlMXMOrtUqyshyOT0NPrkNfcMY0HDlXzlhqK2998vZl2WB8055p2nZCD_t7rvNo3-rsuC9EluK1TaCLVTaSmiXtol9CYgZPcPfx8NP_SLUvRoFXW7N7bLZO3CYM33uPPgc4geDl5jB7ZUQc-NGh5gkayeIoeDrgon6F5jxtcKtziBjvctCUaN9jiBjvc4BY32OIGO9zgHjfP0fePRycfjj0ru-EJwmjjSSKY8OOcQYBDJxCuKk3hQ7kKo4lUIZNBkqkwkFQlWaxI5hOeMKH16iiEg7kIX6CdoizkS4QjRQNFZMQUOAAlw0yrl0VC-YkMApnke8h33ygVlpNeS6Ns0ltts4fed1VODSHL326O3IdPbURpIsUUQHR7tVd3ecY-etBj-zXagZ9OvkH3xVmzqqu3FkG_ALibmuQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+shear+capacity+of+steel+channel+sections+using+machine+learning+algorithms&rft.jtitle=Thin-walled+structures&rft.au=Dissanayake%2C+Madhushan&rft.au=Nguyen%2C+Hoang&rft.au=Poologanathan%2C+Keerthan&rft.au=Perampalam%2C+Gatheeshgar&rft.date=2022-06-01&rft.issn=0263-8231&rft.volume=175&rft.spage=109152&rft_id=info:doi/10.1016%2Fj.tws.2022.109152&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tws_2022_109152 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8231&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8231&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8231&client=summon |