Prediction of shear capacity of steel channel sections using machine learning algorithms

This study presents the application of popular machine learning algorithms in prediction of the shear resistance of steel channel sections using experimental and numerical data. Datasets of 108 results of stainless steel lipped channel sections and 238 results of carbon steel LiteSteel sections were...

Full description

Saved in:
Bibliographic Details
Published in:Thin-walled structures Vol. 175; p. 109152
Main Authors: Dissanayake, Madhushan, Nguyen, Hoang, Poologanathan, Keerthan, Perampalam, Gatheeshgar, Upasiri, Irindu, Rajanayagam, Heshachanaa, Suntharalingam, Thadshajini
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.06.2022
Subjects:
ISSN:0263-8231, 1879-3223
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study presents the application of popular machine learning algorithms in prediction of the shear resistance of steel channel sections using experimental and numerical data. Datasets of 108 results of stainless steel lipped channel sections and 238 results of carbon steel LiteSteel sections were gathered to train machine learning models including support vector regression (SVR), multi-layer perceptron (MLP), gradient boosting regressor (GBR), and extreme gradient boosting (XGB). The cross-validation with 10 folds has been conducted in the training process to avoid over-fitting. The optimal hyperparameter combinations for each machine learning model were found during the hyperparameter tuning process and four performance indicators were used to evaluate the performance of the trained models. The comparison results suggest that all four implemented machine learning models reliably predict the shear capacity of both stainless steel lipped channel sections and carbon steel LiteSteel sections while the implemented SVR algorithm is found to be the best performing model. Moreover, it is shown that the implemented machine learning models exceed the prediction accuracy of the available design equations in estimating the shear capacity of steel channel sections. •Optimal hyperparameter combinations were found for SVR, MLP, GBR and XGB models.•Each machine learning model was evaluated based on four performance indicators.•The implemented SVR algorithm is proved to be the best performing model.•Four implemented models perform better than the available design equations.
AbstractList This study presents the application of popular machine learning algorithms in prediction of the shear resistance of steel channel sections using experimental and numerical data. Datasets of 108 results of stainless steel lipped channel sections and 238 results of carbon steel LiteSteel sections were gathered to train machine learning models including support vector regression (SVR), multi-layer perceptron (MLP), gradient boosting regressor (GBR), and extreme gradient boosting (XGB). The cross-validation with 10 folds has been conducted in the training process to avoid over-fitting. The optimal hyperparameter combinations for each machine learning model were found during the hyperparameter tuning process and four performance indicators were used to evaluate the performance of the trained models. The comparison results suggest that all four implemented machine learning models reliably predict the shear capacity of both stainless steel lipped channel sections and carbon steel LiteSteel sections while the implemented SVR algorithm is found to be the best performing model. Moreover, it is shown that the implemented machine learning models exceed the prediction accuracy of the available design equations in estimating the shear capacity of steel channel sections. •Optimal hyperparameter combinations were found for SVR, MLP, GBR and XGB models.•Each machine learning model was evaluated based on four performance indicators.•The implemented SVR algorithm is proved to be the best performing model.•Four implemented models perform better than the available design equations.
ArticleNumber 109152
Author Nguyen, Hoang
Perampalam, Gatheeshgar
Rajanayagam, Heshachanaa
Dissanayake, Madhushan
Poologanathan, Keerthan
Upasiri, Irindu
Suntharalingam, Thadshajini
Author_xml – sequence: 1
  givenname: Madhushan
  surname: Dissanayake
  fullname: Dissanayake, Madhushan
  organization: Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
– sequence: 2
  givenname: Hoang
  surname: Nguyen
  fullname: Nguyen, Hoang
  organization: Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
– sequence: 3
  givenname: Keerthan
  surname: Poologanathan
  fullname: Poologanathan, Keerthan
  organization: Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
– sequence: 4
  givenname: Gatheeshgar
  surname: Perampalam
  fullname: Perampalam, Gatheeshgar
  organization: Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
– sequence: 5
  givenname: Irindu
  surname: Upasiri
  fullname: Upasiri, Irindu
  email: irinduupasiri@sjp.ac.lk
  organization: Faculty of Engineering, University of Sri Jayewardenepura, Ratmalana, Sri Lanka
– sequence: 6
  givenname: Heshachanaa
  surname: Rajanayagam
  fullname: Rajanayagam, Heshachanaa
  organization: Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
– sequence: 7
  givenname: Thadshajini
  surname: Suntharalingam
  fullname: Suntharalingam, Thadshajini
  organization: Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
BookMark eNp9kE1LAzEQhoNUsK3-AG_7B7Zmkt3NBk9S_AJBDwreQpqddFO22ZKsSv-92daTh56GeZln4H1mZOJ7j4RcA10Ahepmsxh-4oJRxtIuoWRnZAq1kDlnjE_IlLKK5zXjcEFmMW4oBQGymJLPt4CNM4PrfdbbLLaoQ2b0Ths37A_JgNhlptXepxnxcBqzr-j8Ottq0zqPWZcoPwa6W_fBDe02XpJzq7uIV39zTj4e7t-XT_nL6-Pz8u4lN0yKIUdmpKFlI3kBopKisqWUldCWFxVaLhHqleWAwtar0rIVZbqWhgPlghXQGD4ncPxrQh9jQKt2wW112CugalSjNiqpUaMadVSTGPGPSW31WGwI2nUnydsjianSt8OgonHoTXIYkhrV9O4E_QvAMIFf
CitedBy_id crossref_primary_10_1016_j_istruc_2025_109241
crossref_primary_10_1016_j_jcsr_2025_109509
crossref_primary_10_1016_j_istruc_2025_108571
crossref_primary_10_1680_jemmr_24_00046
crossref_primary_10_1007_s11665_025_11781_7
crossref_primary_10_2355_isijinternational_ISIJINT_2024_359
crossref_primary_10_3390_ma16020583
crossref_primary_10_1016_j_engappai_2024_107952
crossref_primary_10_1016_j_tws_2024_112668
crossref_primary_10_3390_app13074117
crossref_primary_10_1016_j_jcsr_2024_109085
crossref_primary_10_1016_j_jobe_2023_106508
crossref_primary_10_1016_j_istruc_2022_11_138
crossref_primary_10_1007_s11837_023_05773_y
crossref_primary_10_3390_pr12061068
crossref_primary_10_1016_j_tws_2025_113114
crossref_primary_10_1016_j_tws_2024_112382
crossref_primary_10_1007_s13369_023_08132_w
crossref_primary_10_1007_s11709_024_1050_x
crossref_primary_10_1016_j_desal_2022_116095
crossref_primary_10_1016_j_istruc_2025_109335
crossref_primary_10_1108_IJSI_09_2024_0152
crossref_primary_10_3390_buildings15132307
crossref_primary_10_1007_s00707_022_03446_6
crossref_primary_10_3390_met15040408
crossref_primary_10_1016_j_tws_2024_111984
crossref_primary_10_1016_j_tws_2024_112596
crossref_primary_10_1016_j_marstruc_2025_103789
crossref_primary_10_1007_s43452_022_00541_2
Cites_doi 10.1016/j.jcsr.2008.04.014
10.1023/A:1022627411411
10.1016/j.advengsoft.2020.102825
10.1016/j.jcsr.2017.08.009
10.1214/aos/1013203451
10.1145/2939672.2939785
10.1016/j.tws.2021.107494
10.1016/j.engstruct.2014.05.022
10.1016/j.tws.2014.01.021
10.1016/j.matdes.2015.08.001
10.1016/j.istruc.2016.11.002
10.1016/j.tws.2014.09.005
10.1016/S0143-974X(00)00016-X
10.1016/S0045-7949(02)00451-0
10.1260/2040-2317.5.3.203
10.1016/S0143-974X(02)00024-X
10.1016/j.engstruct.2010.06.012
10.1016/j.jcsr.2010.04.014
10.1111/0885-9507.00219
10.1016/j.istruc.2021.01.012
10.1002/pse.190
10.1016/j.engstruct.2015.04.027
10.1016/j.jcsr.2016.09.024
10.1016/j.compstruct.2020.113505
10.3389/fnbot.2013.00021
10.1155/2012/145974
10.1016/j.jcsr.2020.106443
10.1023/B:STCO.0000035301.49549.88
10.1016/j.matdes.2020.109199
10.1016/j.tws.2020.107179
10.1061/(ASCE)CF.1943-5509.0001514
10.1016/j.jcsr.2020.106414
10.1016/j.tws.2020.107295
10.1016/j.actamat.2019.08.033
10.1016/j.conbuildmat.2020.120950
10.1061/(ASCE)ST.1943-541X.0000510
10.1016/j.engstruct.2018.05.084
10.1016/j.istruc.2020.12.071
10.1016/j.compstruct.2019.02.048
10.1016/j.advengsoft.2009.07.006
10.1016/j.jcsr.2008.07.011
10.1111/j.1467-8667.1990.tb00377.x
10.1016/j.engstruct.2009.07.027
10.1016/j.istruc.2021.01.049
10.1061/(ASCE)ST.1943-541X.0000391
10.1016/j.tws.2014.08.024
10.1007/s00521-016-2190-2
10.1016/j.tws.2015.05.001
10.1016/j.tws.2013.12.003
10.1016/j.jcsr.2010.11.010
10.1016/j.tws.2017.08.006
10.1061/(ASCE)ST.1943-541X.0001259
10.1016/j.tws.2018.09.032
10.1016/j.engstruct.2020.111221
10.1016/j.jcsr.2019.105873
10.1016/j.jcsr.2011.08.003
10.1016/j.conbuildmat.2018.05.201
10.1016/S1352-2310(97)00447-0
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.tws.2022.109152
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3223
ExternalDocumentID 10_1016_j_tws_2022_109152
S0263823122001458
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
WH7
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-e2c9c05d934176976f59967af346ef39e18bf31e7f8b5f2b02a89c31037241dc3
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792947400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-8231
IngestDate Sat Nov 29 07:23:27 EST 2025
Tue Nov 18 22:19:49 EST 2025
Fri Feb 23 02:40:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Shear capacity
Channel sections
Design rules
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-e2c9c05d934176976f59967af346ef39e18bf31e7f8b5f2b02a89c31037241dc3
ParticipantIDs crossref_primary_10_1016_j_tws_2022_109152
crossref_citationtrail_10_1016_j_tws_2022_109152
elsevier_sciencedirect_doi_10_1016_j_tws_2022_109152
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle Thin-walled structures
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Baddoo (b4) 2008; 64
Dissanayake, Poologanathan, Gunalan, Tsavdaridis, Wanniarachchi, Nagaratnam (b61) 2021; 30
Pham, Ngo, Nguyen (b43) 2020; 7
Vu, Truong, Thai (b49) 2021; 259
Flood, Kartam, Tongthong (b28) 1994
Bergstra, Bengio (b76) 2012; 13
Tadesse, Patel, Chaudhary, Nagpal (b32) 2012; 68
Salehi, Burgueño (b24) 2018; 171
Keerthan, Mahendran (b9) 2010; 32
Degtyarev (b74) 2021; 177
Keerthan, Mahendran (b12) 2011; 67
Bui, Nguyen, Chou, Nguyen-Xuan, Ngo (b73) 2018; 180
R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in: IJCAI, Vol. 14, Montreal, Canada, 1995, pp. 1137–1145.
Mu, Rahaman, Rios, Odqvist, Hedström (b48) 2021; 197
Szewczak, Rzeszut, Rozylo (b2) 2021; 159
Chatterjee, Sarkar, Hore, Dey, Ashour, Balas (b33) 2017; 28
Vanluchene, Sun (b27) 1990; 5
(b22) 2015
Lu, Chen, Zheng (b29) 2012; 2012
Natekin, Knoll (b69) 2013; 7
(b62) 2006
Hassoun (b66) 1995
Shah, Sulong, El-Shafie (b38) 2018; 133
Cortes, Vapnik (b64) 1995; 20
Keerthan, Mahendran (b13) 2011; 137
Mitra (b25) 2017
Smola, Schölkopf (b65) 2004; 14
Dabiri, Ghafouri, Raftar, Björk (b36) 2017; 138
Goodfellow, Bengio, Courville (b75) 2016
Ishqy, Wanniarachchi, Poologanathan, Gunalan, Gatheeshgar, Suntharalingam, Navaratnam (b6) 2021; 31
Adeli (b26) 2001; 16
Pham, Hancock (b15) 2012; 138
Hadi (b42) 2003; 81
Keerthan, Hughes, Mahendran (b55) 2014; 77
(b56) 2014
Sakr, Sakla (b31) 2009; 31
Dabiri, Ghafouri, Raftar, Björk (b37) 2017; 128
Shen, Wang, Wei, Li, van der Zwaag, Xu (b47) 2019; 179
Pham, Bruneau, Hancock (b16) 2015; 141
Truong, Vu, Thai, Ha (b50) 2020; 147
Cai, Pan, Fu (b46) 2020; 34
Fonseca, Vellasco, de Andrade, Vellasco (b30) 2003; 59
Rossi (b8) 2014; 83
Pham, Hancock (b17) 2015; 86
Gardner, Dorling (b67) 1998; 32
Gardner (b5) 2005; 7
D’Amico, Myers, Sykes, Voss, Cousins-Jenvey, Fawcett, Richardson, Kermani, Pomponi (b52) 2019
Dissanayake, Poologanathan, Gunalan, Tsavdaridis, Wanniarachchi, Nagaratnam (b19) 2021; 158
Friedman (b68) 2001; 29
(b7) 2017
Pham, Hancock (b14) 2010; 66
Cruise, Gardner (b58) 2008; 64
T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785–794.
Jakubek (b40) 2017; 19
Keerthan, Mahendran (b10) 2015; 86
McKinney, Ali (b45) 2014; 5
Sonu, Singh (b21) 2017; 119
Probst, Boulesteix, Bischl (b77) 2019; 20
Kim, Vu, Papazafeiropoulos, Kong, Truong (b51) 2020; 37
Dissanayake, Poologanathan, Gunalan, Tsavdaridis, Nagaratnam, Wanniarachchi (b18) 2020; 168
Naderpour, Nagai, Fakharian, Haji (b41) 2019; 215
Chen, Young, Martins, Camotim, Dinis (b3) 2021; 161
Erdem (b44) 2010; 41
Abdollahzadeh, Ghobadi (b34) 2015; 94
Vapnik (b63) 1995
Keerthan, Mahendran (b1) 2015; 99
Keerthan, Mahendran, Hughes (b59) 2014; 75
Chiew, Gupta, Wu (b35) 2001; 57
Sonu, Singh (b20) 2017; 10
Solhmirzaei, Salehi, Kodur, Naser (b53) 2020; 224
Dissanayake, Zhou, Poologanathan, Gunalan, Tsavdaridis, Guss (b60) 2021; 176
Arrayago, Real, Gardner (b57) 2015; 87
Graciano, Kurtoglu, Casanova (b23) 2021; 30
(b11) 2016
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b71) 2011; 12
Nguyen, Vu, Vo, Thai (b54) 2021; 266
Bağcı (b39) 2010; 15
(10.1016/j.tws.2022.109152_b22) 2015
Naderpour (10.1016/j.tws.2022.109152_b41) 2019; 215
Dabiri (10.1016/j.tws.2022.109152_b37) 2017; 128
Mu (10.1016/j.tws.2022.109152_b48) 2021; 197
Vu (10.1016/j.tws.2022.109152_b49) 2021; 259
Smola (10.1016/j.tws.2022.109152_b65) 2004; 14
Chiew (10.1016/j.tws.2022.109152_b35) 2001; 57
Natekin (10.1016/j.tws.2022.109152_b69) 2013; 7
Fonseca (10.1016/j.tws.2022.109152_b30) 2003; 59
Pedregosa (10.1016/j.tws.2022.109152_b71) 2011; 12
(10.1016/j.tws.2022.109152_b7) 2017
Dissanayake (10.1016/j.tws.2022.109152_b60) 2021; 176
Adeli (10.1016/j.tws.2022.109152_b26) 2001; 16
Dabiri (10.1016/j.tws.2022.109152_b36) 2017; 138
Rossi (10.1016/j.tws.2022.109152_b8) 2014; 83
Sakr (10.1016/j.tws.2022.109152_b31) 2009; 31
Kim (10.1016/j.tws.2022.109152_b51) 2020; 37
Keerthan (10.1016/j.tws.2022.109152_b59) 2014; 75
Degtyarev (10.1016/j.tws.2022.109152_b74) 2021; 177
Flood (10.1016/j.tws.2022.109152_b28) 1994
(10.1016/j.tws.2022.109152_b62) 2006
Pham (10.1016/j.tws.2022.109152_b43) 2020; 7
Dissanayake (10.1016/j.tws.2022.109152_b19) 2021; 158
(10.1016/j.tws.2022.109152_b56) 2014
Goodfellow (10.1016/j.tws.2022.109152_b75) 2016
Truong (10.1016/j.tws.2022.109152_b50) 2020; 147
Szewczak (10.1016/j.tws.2022.109152_b2) 2021; 159
Keerthan (10.1016/j.tws.2022.109152_b10) 2015; 86
Gardner (10.1016/j.tws.2022.109152_b67) 1998; 32
McKinney (10.1016/j.tws.2022.109152_b45) 2014; 5
Sonu (10.1016/j.tws.2022.109152_b21) 2017; 119
10.1016/j.tws.2022.109152_b72
10.1016/j.tws.2022.109152_b70
Vapnik (10.1016/j.tws.2022.109152_b63) 1995
Erdem (10.1016/j.tws.2022.109152_b44) 2010; 41
Arrayago (10.1016/j.tws.2022.109152_b57) 2015; 87
Probst (10.1016/j.tws.2022.109152_b77) 2019; 20
Keerthan (10.1016/j.tws.2022.109152_b1) 2015; 99
Hadi (10.1016/j.tws.2022.109152_b42) 2003; 81
Bui (10.1016/j.tws.2022.109152_b73) 2018; 180
Mitra (10.1016/j.tws.2022.109152_b25) 2017
Cruise (10.1016/j.tws.2022.109152_b58) 2008; 64
Chen (10.1016/j.tws.2022.109152_b3) 2021; 161
Shen (10.1016/j.tws.2022.109152_b47) 2019; 179
Pham (10.1016/j.tws.2022.109152_b16) 2015; 141
Shah (10.1016/j.tws.2022.109152_b38) 2018; 133
D’Amico (10.1016/j.tws.2022.109152_b52) 2019
Cortes (10.1016/j.tws.2022.109152_b64) 1995; 20
Salehi (10.1016/j.tws.2022.109152_b24) 2018; 171
Hassoun (10.1016/j.tws.2022.109152_b66) 1995
Abdollahzadeh (10.1016/j.tws.2022.109152_b34) 2015; 94
Bağcı (10.1016/j.tws.2022.109152_b39) 2010; 15
Gardner (10.1016/j.tws.2022.109152_b5) 2005; 7
Graciano (10.1016/j.tws.2022.109152_b23) 2021; 30
Cai (10.1016/j.tws.2022.109152_b46) 2020; 34
Nguyen (10.1016/j.tws.2022.109152_b54) 2021; 266
Pham (10.1016/j.tws.2022.109152_b14) 2010; 66
Dissanayake (10.1016/j.tws.2022.109152_b61) 2021; 30
Ishqy (10.1016/j.tws.2022.109152_b6) 2021; 31
Keerthan (10.1016/j.tws.2022.109152_b12) 2011; 67
Keerthan (10.1016/j.tws.2022.109152_b55) 2014; 77
(10.1016/j.tws.2022.109152_b11) 2016
Dissanayake (10.1016/j.tws.2022.109152_b18) 2020; 168
Baddoo (10.1016/j.tws.2022.109152_b4) 2008; 64
Pham (10.1016/j.tws.2022.109152_b17) 2015; 86
Sonu (10.1016/j.tws.2022.109152_b20) 2017; 10
Vanluchene (10.1016/j.tws.2022.109152_b27) 1990; 5
Solhmirzaei (10.1016/j.tws.2022.109152_b53) 2020; 224
Tadesse (10.1016/j.tws.2022.109152_b32) 2012; 68
Friedman (10.1016/j.tws.2022.109152_b68) 2001; 29
Keerthan (10.1016/j.tws.2022.109152_b13) 2011; 137
Lu (10.1016/j.tws.2022.109152_b29) 2012; 2012
Bergstra (10.1016/j.tws.2022.109152_b76) 2012; 13
Keerthan (10.1016/j.tws.2022.109152_b9) 2010; 32
Pham (10.1016/j.tws.2022.109152_b15) 2012; 138
Chatterjee (10.1016/j.tws.2022.109152_b33) 2017; 28
Jakubek (10.1016/j.tws.2022.109152_b40) 2017; 19
References_xml – volume: 94
  start-page: 512
  year: 2015
  end-page: 520
  ident: b34
  article-title: Linked mathematical–informational modeling of perforated steel plate shear walls
  publication-title: Thin-Walled Struct.
– volume: 86
  start-page: 47
  year: 2015
  end-page: 55
  ident: b17
  article-title: Numerical investigation of longitudinally stiffened web channels predominantly in shear
  publication-title: Thin-Walled Struct.
– volume: 64
  start-page: 1310
  year: 2008
  end-page: 1316
  ident: b58
  article-title: Strength enhancements induced during cold forming of stainless steel sections
  publication-title: J. Construct. Steel Res.
– volume: 34
  year: 2020
  ident: b46
  article-title: Prediction of the postfire flexural capacity of RC beam using GA-BPNN machine learning
  publication-title: J. Perform. Constr. Facil.
– volume: 68
  start-page: 138
  year: 2012
  end-page: 149
  ident: b32
  article-title: Neural networks for prediction of deflection in composite bridges
  publication-title: J. Construct. Steel Res.
– volume: 28
  start-page: 2005
  year: 2017
  end-page: 2016
  ident: b33
  article-title: Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings
  publication-title: Neural Comput. Appl.
– volume: 67
  start-page: 1050
  year: 2011
  end-page: 1063
  ident: b12
  article-title: New design rules for the shear strength of LiteSteel beams
  publication-title: J. Construct. Steel Res.
– volume: 83
  start-page: 182
  year: 2014
  end-page: 189
  ident: b8
  article-title: Discussion on the use of stainless steel in constructions in view of sustainability
  publication-title: Thin-Walled Struct.
– volume: 147
  year: 2020
  ident: b50
  article-title: A robust method for safety evaluation of steel trusses using Gradient Tree Boosting algorithm
  publication-title: Adv. Eng. Softw.
– volume: 41
  start-page: 270
  year: 2010
  end-page: 276
  ident: b44
  article-title: Prediction of the moment capacity of reinforced concrete slabs in fire using artificial neural networks
  publication-title: Adv. Eng. Softw.
– volume: 87
  start-page: 540
  year: 2015
  end-page: 552
  ident: b57
  article-title: Description of stress–strain curves for stainless steel alloys
  publication-title: Mater. Des.
– volume: 31
  start-page: 127
  year: 2021
  end-page: 144
  ident: b6
  article-title: Shear behaviour of cold-formed stainless-steel beams with web openings: Numerical studies
  publication-title: Structures
– volume: 10
  start-page: 13
  year: 2017
  end-page: 29
  ident: b20
  article-title: Shear characteristics of Lean Duplex Stainless Steel (LDSS) rectangular hollow beams
  publication-title: Structures
– year: 2017
  ident: b25
  article-title: Applications of Machine Learning and Computer Vision for Smart Infrastructure Management in Civil Engineering
– volume: 81
  start-page: 373
  year: 2003
  end-page: 381
  ident: b42
  article-title: Neural networks applications in concrete structures
  publication-title: Comput. Struct.
– volume: 161
  year: 2021
  ident: b3
  article-title: Experimental investigation on cold-formed steel lipped channel beams affected by local-distortional interaction under non-uniform bending
  publication-title: Thin-Walled Struct.
– volume: 64
  start-page: 1199
  year: 2008
  end-page: 1206
  ident: b4
  article-title: Stainless steel in construction: A review of research, applications, challenges and opportunities
  publication-title: J. Construct. Steel Res.
– year: 1995
  ident: b63
  article-title: The Nature of Statistical Learning Theory
– volume: 168
  year: 2020
  ident: b18
  article-title: Numerical modelling and shear design rules of stainless steel lipped channel sections
  publication-title: J. Construct. Steel Res.
– year: 1995
  ident: b66
  article-title: Fundamentals of Artificial Neural Networks
– volume: 5
  start-page: 207
  year: 1990
  end-page: 215
  ident: b27
  article-title: Neural networks in structural engineering
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
– volume: 7
  start-page: 45
  year: 2005
  end-page: 55
  ident: b5
  article-title: The use of stainless steel in structures
  publication-title: Prog. Struct. Eng. Mater.
– volume: 5
  start-page: 203
  year: 2014
  end-page: 214
  ident: b45
  article-title: Artificial neural networks for the spalling classification & failure prediction times of high strength concrete columns
  publication-title: J. Struct. Fire Eng.
– volume: 141
  year: 2015
  ident: b16
  article-title: Experimental study of longitudinally stiffened web channels subjected to combined bending and shear
  publication-title: J. Struct. Eng.
– volume: 215
  start-page: 69
  year: 2019
  end-page: 84
  ident: b41
  article-title: Innovative models for prediction of compressive strength of FRP-confined circular reinforced concrete columns using soft computing methods
  publication-title: Compos. Struct.
– volume: 99
  start-page: 603
  year: 2015
  end-page: 615
  ident: b1
  article-title: Improved shear design rules of cold-formed steel beams
  publication-title: Eng. Struct.
– volume: 20
  start-page: 1
  year: 2019
  end-page: 32
  ident: b77
  article-title: Tunability: Importance of hyperparameters of machine learning algorithms
  publication-title: J. Mach. Learn. Res.
– volume: 66
  start-page: 1205
  year: 2010
  end-page: 1217
  ident: b14
  article-title: Numerical simulation of high strength cold-formed purlins in combined bending and shear
  publication-title: J. Construct. Steel Res.
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: b68
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Statist.
– volume: 138
  start-page: 759
  year: 2012
  end-page: 768
  ident: b15
  article-title: Direct strength design of cold-formed C-sections for shear and combined actions
  publication-title: J. Struct. Eng.
– volume: 259
  year: 2021
  ident: b49
  article-title: Machine learning-based prediction of CFST columns using gradient tree boosting algorithm
  publication-title: Compos. Struct.
– volume: 86
  start-page: 174
  year: 2015
  end-page: 184
  ident: b10
  article-title: Experimental investigation and design of lipped channel beams in shear
  publication-title: Thin-Walled Struct.
– volume: 224
  year: 2020
  ident: b53
  article-title: Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams
  publication-title: Eng. Struct.
– year: 2006
  ident: b62
  article-title: Eurocode 3 – Design of Steel Structures – Part 1–5: Plated Structural Elements
– volume: 7
  start-page: 95
  year: 2020
  end-page: 106
  ident: b43
  article-title: Machine learning for predicting long-term deflections in reinforce concrete flexural structures
  publication-title: J. Comput. Des. Eng.
– volume: 16
  start-page: 126
  year: 2001
  end-page: 142
  ident: b26
  article-title: Neural networks in civil engineering: 1989–2000
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
– volume: 32
  start-page: 3235
  year: 2010
  end-page: 3247
  ident: b9
  article-title: Experimental studies on the shear behaviour and strength of LiteSteel beams
  publication-title: Eng. Struct.
– volume: 19
  start-page: 339
  year: 2017
  end-page: 349
  ident: b40
  article-title: Neural network prediction of load capacity for eccentrically loaded reinforced concrete columns
  publication-title: Comput. Assist. Methods Eng. Sci.
– volume: 133
  start-page: 206
  year: 2018
  end-page: 215
  ident: b38
  article-title: New approach for developing soft computational prediction models for moment and rotation of boltless steel connections
  publication-title: Thin-Walled Struct.
– volume: 138
  start-page: 488
  year: 2017
  end-page: 498
  ident: b36
  article-title: Utilizing artificial neural networks for stress concentration factor calculation in butt welds
  publication-title: J. Construct. Steel Res.
– volume: 179
  start-page: 201
  year: 2019
  end-page: 214
  ident: b47
  article-title: Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel
  publication-title: Acta Mater.
– volume: 77
  start-page: 129
  year: 2014
  end-page: 140
  ident: b55
  article-title: Experimental studies of hollow flange channel beams subject to combined bending and shear actions
  publication-title: Thin-Walled Struct.
– volume: 2012
  year: 2012
  ident: b29
  article-title: Artificial intelligence in civil engineering
  publication-title: Math. Probl. Eng.
– start-page: 1
  year: 2019
  end-page: 4
  ident: b52
  article-title: Machine learning for sustainable structures: A call for data
  publication-title: Structures, Vol. 19
– reference: R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in: IJCAI, Vol. 14, Montreal, Canada, 1995, pp. 1137–1145.
– volume: 137
  start-page: 1428
  year: 2011
  end-page: 1439
  ident: b13
  article-title: Numerical modeling of LiteSteel beams subject to shear
  publication-title: J. Struct. Eng.
– volume: 30
  start-page: 1042
  year: 2021
  end-page: 1055
  ident: b61
  article-title: Bending-shear interaction of cold-formed stainless steel lipped channel sections
  publication-title: Structures
– volume: 59
  start-page: 251
  year: 2003
  end-page: 267
  ident: b30
  article-title: A patch load parametric analysis using neural networks
  publication-title: J. Construct. Steel Res.
– volume: 13
  year: 2012
  ident: b76
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 180
  start-page: 320
  year: 2018
  end-page: 333
  ident: b73
  article-title: A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete
  publication-title: Constr. Build. Mater.
– volume: 128
  start-page: 567
  year: 2017
  end-page: 578
  ident: b37
  article-title: Neural network-based assessment of the stress concentration factor in a T-welded joint
  publication-title: J. Construct. Steel Res.
– volume: 119
  start-page: 851
  year: 2017
  end-page: 867
  ident: b21
  article-title: Shear behaviour of single perforated lean duplex stainless steel (LDSS) rectangular hollow beams
  publication-title: Thin-Walled Struct.
– volume: 7
  start-page: 21
  year: 2013
  ident: b69
  article-title: Gradient boosting machines, a tutorial
  publication-title: Front. Neurorobot.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b64
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 177
  year: 2021
  ident: b74
  article-title: Neural networks for predicting shear strength of CFS channels with slotted webs
  publication-title: J. Construct. Steel Res.
– volume: 171
  start-page: 170
  year: 2018
  end-page: 189
  ident: b24
  article-title: Emerging artificial intelligence methods in structural engineering
  publication-title: Eng. Struct.
– volume: 197
  year: 2021
  ident: b48
  article-title: Predicting strain-induced martensite in austenitic steels by combining physical modelling and machine learning
  publication-title: Mater. Des.
– volume: 266
  year: 2021
  ident: b54
  article-title: Efficient machine learning models for prediction of concrete strengths
  publication-title: Constr. Build. Mater.
– volume: 159
  year: 2021
  ident: b2
  article-title: Structural behaviour of steel cold-formed sigma beams strengthened with bonded steel tapes
  publication-title: Thin-Walled Struct.
– volume: 30
  start-page: 198
  year: 2021
  end-page: 205
  ident: b23
  article-title: Machine learning approach for predicting the patch load resistance of slender austenitic stainless steel girders
  publication-title: Structures
– volume: 15
  start-page: 66
  year: 2010
  end-page: 78
  ident: b39
  article-title: Neural network model for moment-curvature relationship of reinforced concrete sections
  publication-title: Math. Comput. Appl.
– year: 2015
  ident: b22
  article-title: Eurocode 3 – Design of Steel Structures – Part 1–4: General Rules – Supplementary Rules for Stainless Steels
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: b65
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
– volume: 57
  start-page: 97
  year: 2001
  end-page: 112
  ident: b35
  article-title: Neural network-based estimation of stress concentration factors for steel multiplanar tubular XT-joints
  publication-title: J. Construct. Steel Res.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b71
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 176
  year: 2021
  ident: b60
  article-title: Numerical simulation and design of stainless steel hollow flange beams under shear
  publication-title: J. Construct. Steel Res.
– year: 2016
  ident: b11
  article-title: North American Specification for the Design of Cold-Formed Steel Structural Members
– reference: T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785–794.
– volume: 32
  start-page: 2627
  year: 1998
  end-page: 2636
  ident: b67
  article-title: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences
  publication-title: Atmos. Environ.
– year: 2017
  ident: b7
  article-title: Design Manual for Structural Stainless Steel, Fourth Edition
– volume: 31
  start-page: 2988
  year: 2009
  end-page: 2997
  ident: b31
  article-title: Long-term deflection of cracked composite beams with nonlinear partial shear interaction—a study using neural networks
  publication-title: Eng. Struct.
– volume: 37
  start-page: 193
  year: 2020
  end-page: 209
  ident: b51
  article-title: Comparison of machine learning algorithms for regression and classification of ultimate load-carrying capacity of steel frames
  publication-title: Steel Compos. Struct.
– start-page: 668
  year: 1994
  end-page: 675
  ident: b28
  article-title: The application of artificial neural networks to civil engineering
  publication-title: Computing in Civil Engineering
– volume: 158
  year: 2021
  ident: b19
  article-title: Numerical investigation of cold-formed stainless steel lipped channels with longitudinal stiffeners subjected to shear
  publication-title: Thin-Walled Struct.
– year: 2014
  ident: b56
  article-title: Analysis User’s Guide 6.14
– volume: 75
  start-page: 197
  year: 2014
  end-page: 212
  ident: b59
  article-title: Numerical studies and design of hollow flange channel beams subject to combined bending and shear actions
  publication-title: Eng. Struct.
– year: 2016
  ident: b75
  article-title: Deep Learning, Vol. 1
– volume: 64
  start-page: 1310
  issue: 11
  year: 2008
  ident: 10.1016/j.tws.2022.109152_b58
  article-title: Strength enhancements induced during cold forming of stainless steel sections
  publication-title: J. Construct. Steel Res.
  doi: 10.1016/j.jcsr.2008.04.014
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.tws.2022.109152_b64
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– volume: 147
  year: 2020
  ident: 10.1016/j.tws.2022.109152_b50
  article-title: A robust method for safety evaluation of steel trusses using Gradient Tree Boosting algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2020.102825
– year: 2016
  ident: 10.1016/j.tws.2022.109152_b11
– volume: 138
  start-page: 488
  year: 2017
  ident: 10.1016/j.tws.2022.109152_b36
  article-title: Utilizing artificial neural networks for stress concentration factor calculation in butt welds
  publication-title: J. Construct. Steel Res.
  doi: 10.1016/j.jcsr.2017.08.009
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 10.1016/j.tws.2022.109152_b68
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1013203451
– volume: 20
  start-page: 1
  issue: 53
  year: 2019
  ident: 10.1016/j.tws.2022.109152_b77
  article-title: Tunability: Importance of hyperparameters of machine learning algorithms
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.tws.2022.109152_b70
  doi: 10.1145/2939672.2939785
– start-page: 1
  year: 2019
  ident: 10.1016/j.tws.2022.109152_b52
  article-title: Machine learning for sustainable structures: A call for data
– volume: 161
  year: 2021
  ident: 10.1016/j.tws.2022.109152_b3
  article-title: Experimental investigation on cold-formed steel lipped channel beams affected by local-distortional interaction under non-uniform bending
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2021.107494
– ident: 10.1016/j.tws.2022.109152_b72
– year: 2016
  ident: 10.1016/j.tws.2022.109152_b75
– volume: 75
  start-page: 197
  year: 2014
  ident: 10.1016/j.tws.2022.109152_b59
  article-title: Numerical studies and design of hollow flange channel beams subject to combined bending and shear actions
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2014.05.022
– volume: 83
  start-page: 182
  year: 2014
  ident: 10.1016/j.tws.2022.109152_b8
  article-title: Discussion on the use of stainless steel in constructions in view of sustainability
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2014.01.021
– volume: 87
  start-page: 540
  year: 2015
  ident: 10.1016/j.tws.2022.109152_b57
  article-title: Description of stress–strain curves for stainless steel alloys
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.08.001
– volume: 10
  start-page: 13
  year: 2017
  ident: 10.1016/j.tws.2022.109152_b20
  article-title: Shear characteristics of Lean Duplex Stainless Steel (LDSS) rectangular hollow beams
  publication-title: Structures
  doi: 10.1016/j.istruc.2016.11.002
– volume: 86
  start-page: 47
  year: 2015
  ident: 10.1016/j.tws.2022.109152_b17
  article-title: Numerical investigation of longitudinally stiffened web channels predominantly in shear
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2014.09.005
– volume: 57
  start-page: 97
  issue: 2
  year: 2001
  ident: 10.1016/j.tws.2022.109152_b35
  article-title: Neural network-based estimation of stress concentration factors for steel multiplanar tubular XT-joints
  publication-title: J. Construct. Steel Res.
  doi: 10.1016/S0143-974X(00)00016-X
– start-page: 668
  year: 1994
  ident: 10.1016/j.tws.2022.109152_b28
  article-title: The application of artificial neural networks to civil engineering
– volume: 81
  start-page: 373
  issue: 6
  year: 2003
  ident: 10.1016/j.tws.2022.109152_b42
  article-title: Neural networks applications in concrete structures
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(02)00451-0
– volume: 5
  start-page: 203
  issue: 3
  year: 2014
  ident: 10.1016/j.tws.2022.109152_b45
  article-title: Artificial neural networks for the spalling classification & failure prediction times of high strength concrete columns
  publication-title: J. Struct. Fire Eng.
  doi: 10.1260/2040-2317.5.3.203
– volume: 13
  issue: 2
  year: 2012
  ident: 10.1016/j.tws.2022.109152_b76
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 59
  start-page: 251
  issue: 2
  year: 2003
  ident: 10.1016/j.tws.2022.109152_b30
  article-title: A patch load parametric analysis using neural networks
  publication-title: J. Construct. Steel Res.
  doi: 10.1016/S0143-974X(02)00024-X
– volume: 32
  start-page: 3235
  issue: 10
  year: 2010
  ident: 10.1016/j.tws.2022.109152_b9
  article-title: Experimental studies on the shear behaviour and strength of LiteSteel beams
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2010.06.012
– volume: 66
  start-page: 1205
  issue: 10
  year: 2010
  ident: 10.1016/j.tws.2022.109152_b14
  article-title: Numerical simulation of high strength cold-formed purlins in combined bending and shear
  publication-title: J. Construct. Steel Res.
  doi: 10.1016/j.jcsr.2010.04.014
– volume: 7
  start-page: 95
  issue: 1
  year: 2020
  ident: 10.1016/j.tws.2022.109152_b43
  article-title: Machine learning for predicting long-term deflections in reinforce concrete flexural structures
  publication-title: J. Comput. Des. Eng.
– volume: 16
  start-page: 126
  issue: 2
  year: 2001
  ident: 10.1016/j.tws.2022.109152_b26
  article-title: Neural networks in civil engineering: 1989–2000
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/0885-9507.00219
– volume: 30
  start-page: 198
  year: 2021
  ident: 10.1016/j.tws.2022.109152_b23
  article-title: Machine learning approach for predicting the patch load resistance of slender austenitic stainless steel girders
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.01.012
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.tws.2022.109152_b71
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– year: 2014
  ident: 10.1016/j.tws.2022.109152_b56
– volume: 19
  start-page: 339
  issue: 4
  year: 2017
  ident: 10.1016/j.tws.2022.109152_b40
  article-title: Neural network prediction of load capacity for eccentrically loaded reinforced concrete columns
  publication-title: Comput. Assist. Methods Eng. Sci.
– volume: 7
  start-page: 45
  issue: 2
  year: 2005
  ident: 10.1016/j.tws.2022.109152_b5
  article-title: The use of stainless steel in structures
  publication-title: Prog. Struct. Eng. Mater.
  doi: 10.1002/pse.190
– volume: 99
  start-page: 603
  year: 2015
  ident: 10.1016/j.tws.2022.109152_b1
  article-title: Improved shear design rules of cold-formed steel beams
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2015.04.027
– year: 2015
  ident: 10.1016/j.tws.2022.109152_b22
– volume: 128
  start-page: 567
  year: 2017
  ident: 10.1016/j.tws.2022.109152_b37
  article-title: Neural network-based assessment of the stress concentration factor in a T-welded joint
  publication-title: J. Construct. Steel Res.
  doi: 10.1016/j.jcsr.2016.09.024
– volume: 259
  year: 2021
  ident: 10.1016/j.tws.2022.109152_b49
  article-title: Machine learning-based prediction of CFST columns using gradient tree boosting algorithm
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2020.113505
– year: 2006
  ident: 10.1016/j.tws.2022.109152_b62
– year: 2017
  ident: 10.1016/j.tws.2022.109152_b7
– volume: 7
  start-page: 21
  year: 2013
  ident: 10.1016/j.tws.2022.109152_b69
  article-title: Gradient boosting machines, a tutorial
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2013.00021
– volume: 2012
  year: 2012
  ident: 10.1016/j.tws.2022.109152_b29
  article-title: Artificial intelligence in civil engineering
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2012/145974
– volume: 177
  year: 2021
  ident: 10.1016/j.tws.2022.109152_b74
  article-title: Neural networks for predicting shear strength of CFS channels with slotted webs
  publication-title: J. Construct. Steel Res.
  doi: 10.1016/j.jcsr.2020.106443
– year: 1995
  ident: 10.1016/j.tws.2022.109152_b63
– volume: 14
  start-page: 199
  year: 2004
  ident: 10.1016/j.tws.2022.109152_b65
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 197
  year: 2021
  ident: 10.1016/j.tws.2022.109152_b48
  article-title: Predicting strain-induced martensite in austenitic steels by combining physical modelling and machine learning
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109199
– volume: 158
  year: 2021
  ident: 10.1016/j.tws.2022.109152_b19
  article-title: Numerical investigation of cold-formed stainless steel lipped channels with longitudinal stiffeners subjected to shear
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2020.107179
– volume: 34
  issue: 6
  year: 2020
  ident: 10.1016/j.tws.2022.109152_b46
  article-title: Prediction of the postfire flexural capacity of RC beam using GA-BPNN machine learning
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0001514
– volume: 176
  year: 2021
  ident: 10.1016/j.tws.2022.109152_b60
  article-title: Numerical simulation and design of stainless steel hollow flange beams under shear
  publication-title: J. Construct. Steel Res.
  doi: 10.1016/j.jcsr.2020.106414
– volume: 159
  year: 2021
  ident: 10.1016/j.tws.2022.109152_b2
  article-title: Structural behaviour of steel cold-formed sigma beams strengthened with bonded steel tapes
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2020.107295
– year: 1995
  ident: 10.1016/j.tws.2022.109152_b66
– volume: 179
  start-page: 201
  year: 2019
  ident: 10.1016/j.tws.2022.109152_b47
  article-title: Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.08.033
– volume: 266
  year: 2021
  ident: 10.1016/j.tws.2022.109152_b54
  article-title: Efficient machine learning models for prediction of concrete strengths
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.120950
– volume: 15
  start-page: 66
  issue: 1
  year: 2010
  ident: 10.1016/j.tws.2022.109152_b39
  article-title: Neural network model for moment-curvature relationship of reinforced concrete sections
  publication-title: Math. Comput. Appl.
– volume: 138
  start-page: 759
  issue: 6
  year: 2012
  ident: 10.1016/j.tws.2022.109152_b15
  article-title: Direct strength design of cold-formed C-sections for shear and combined actions
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0000510
– volume: 171
  start-page: 170
  year: 2018
  ident: 10.1016/j.tws.2022.109152_b24
  article-title: Emerging artificial intelligence methods in structural engineering
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2018.05.084
– volume: 30
  start-page: 1042
  year: 2021
  ident: 10.1016/j.tws.2022.109152_b61
  article-title: Bending-shear interaction of cold-formed stainless steel lipped channel sections
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.12.071
– volume: 215
  start-page: 69
  year: 2019
  ident: 10.1016/j.tws.2022.109152_b41
  article-title: Innovative models for prediction of compressive strength of FRP-confined circular reinforced concrete columns using soft computing methods
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2019.02.048
– volume: 41
  start-page: 270
  issue: 2
  year: 2010
  ident: 10.1016/j.tws.2022.109152_b44
  article-title: Prediction of the moment capacity of reinforced concrete slabs in fire using artificial neural networks
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2009.07.006
– volume: 64
  start-page: 1199
  issue: 11
  year: 2008
  ident: 10.1016/j.tws.2022.109152_b4
  article-title: Stainless steel in construction: A review of research, applications, challenges and opportunities
  publication-title: J. Construct. Steel Res.
  doi: 10.1016/j.jcsr.2008.07.011
– volume: 5
  start-page: 207
  issue: 3
  year: 1990
  ident: 10.1016/j.tws.2022.109152_b27
  article-title: Neural networks in structural engineering
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/j.1467-8667.1990.tb00377.x
– volume: 31
  start-page: 2988
  issue: 12
  year: 2009
  ident: 10.1016/j.tws.2022.109152_b31
  article-title: Long-term deflection of cracked composite beams with nonlinear partial shear interaction—a study using neural networks
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2009.07.027
– volume: 31
  start-page: 127
  year: 2021
  ident: 10.1016/j.tws.2022.109152_b6
  article-title: Shear behaviour of cold-formed stainless-steel beams with web openings: Numerical studies
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.01.049
– volume: 137
  start-page: 1428
  issue: 12
  year: 2011
  ident: 10.1016/j.tws.2022.109152_b13
  article-title: Numerical modeling of LiteSteel beams subject to shear
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0000391
– volume: 86
  start-page: 174
  year: 2015
  ident: 10.1016/j.tws.2022.109152_b10
  article-title: Experimental investigation and design of lipped channel beams in shear
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2014.08.024
– volume: 28
  start-page: 2005
  issue: 8
  year: 2017
  ident: 10.1016/j.tws.2022.109152_b33
  article-title: Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2190-2
– volume: 94
  start-page: 512
  year: 2015
  ident: 10.1016/j.tws.2022.109152_b34
  article-title: Linked mathematical–informational modeling of perforated steel plate shear walls
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2015.05.001
– volume: 77
  start-page: 129
  year: 2014
  ident: 10.1016/j.tws.2022.109152_b55
  article-title: Experimental studies of hollow flange channel beams subject to combined bending and shear actions
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2013.12.003
– year: 2017
  ident: 10.1016/j.tws.2022.109152_b25
– volume: 67
  start-page: 1050
  issue: 6
  year: 2011
  ident: 10.1016/j.tws.2022.109152_b12
  article-title: New design rules for the shear strength of LiteSteel beams
  publication-title: J. Construct. Steel Res.
  doi: 10.1016/j.jcsr.2010.11.010
– volume: 119
  start-page: 851
  year: 2017
  ident: 10.1016/j.tws.2022.109152_b21
  article-title: Shear behaviour of single perforated lean duplex stainless steel (LDSS) rectangular hollow beams
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2017.08.006
– volume: 141
  issue: 11
  year: 2015
  ident: 10.1016/j.tws.2022.109152_b16
  article-title: Experimental study of longitudinally stiffened web channels subjected to combined bending and shear
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0001259
– volume: 133
  start-page: 206
  year: 2018
  ident: 10.1016/j.tws.2022.109152_b38
  article-title: New approach for developing soft computational prediction models for moment and rotation of boltless steel connections
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2018.09.032
– volume: 224
  year: 2020
  ident: 10.1016/j.tws.2022.109152_b53
  article-title: Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.111221
– volume: 168
  year: 2020
  ident: 10.1016/j.tws.2022.109152_b18
  article-title: Numerical modelling and shear design rules of stainless steel lipped channel sections
  publication-title: J. Construct. Steel Res.
  doi: 10.1016/j.jcsr.2019.105873
– volume: 68
  start-page: 138
  issue: 1
  year: 2012
  ident: 10.1016/j.tws.2022.109152_b32
  article-title: Neural networks for prediction of deflection in composite bridges
  publication-title: J. Construct. Steel Res.
  doi: 10.1016/j.jcsr.2011.08.003
– volume: 37
  start-page: 193
  year: 2020
  ident: 10.1016/j.tws.2022.109152_b51
  article-title: Comparison of machine learning algorithms for regression and classification of ultimate load-carrying capacity of steel frames
  publication-title: Steel Compos. Struct.
– volume: 180
  start-page: 320
  year: 2018
  ident: 10.1016/j.tws.2022.109152_b73
  article-title: A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.05.201
– volume: 32
  start-page: 2627
  issue: 14
  year: 1998
  ident: 10.1016/j.tws.2022.109152_b67
  article-title: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(97)00447-0
SSID ssj0017194
Score 2.4768724
Snippet This study presents the application of popular machine learning algorithms in prediction of the shear resistance of steel channel sections using experimental...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109152
SubjectTerms Channel sections
Design rules
Machine learning
Shear capacity
Title Prediction of shear capacity of steel channel sections using machine learning algorithms
URI https://dx.doi.org/10.1016/j.tws.2022.109152
Volume 175
WOSCitedRecordID wos000792947400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3223
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017194
  issn: 0263-8231
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RXvKBE6tUeTs-VqhQkFjtoUh7ixzH3ocWp0qyffwI_jPj2E7SQhE9cHEiK3aizOfxeDz-BqH3NOVJULDUkzCbeHEgKYy5AArB_TKRISt91iWbILNZtljQ-WTy052FOd8SpbLLS3r2X0UNdSBsfXT2DuLuO4UKuAehQwlih_KfBD-v9d6LMwQbnbF6ymFK5Db4AsQqtt2BXwXXpgvFUs101zkNfnSxlcIlk1hO2XZZ1et2ZUnNNw5ca-Vd6DQs5dQw0O7qUYp6ECZT7IqZwJ9vrFztmtUAw9lyd2W03UnF7MyptXOlFTEz3nxzZkjU7ajdXNSaHtJi-LO2XUWzWrJ67LqAVW8fYmU1XJhGnt6HvKaOSTJSqJq31FDc_qbrjdthc9heaNr1MDwcnr3Oq31jvuujEF2A2yaHLnLdRW66uIf2Q5JQUJL7R1-OF1_7bSlAcWycdua73TZ5FzB44zv-bOiMjJfTx-iRXXXgI4OWJ2gi1FP0cMRF-QwtBtzgSuION9jhpqvRuMEWN9jhBne4wRY32OEGD7h5jr5_Oj79eOLZtBseDylpPRFyyv2kpGDgkBTMVakpfAiTUZwKGVERZIWMAkFkVsBoLvyQZZTrfHUEzMGSRy_QnqqUeIkwZTT2S5_6pdDUeXGRCCE1nxTjaUy5PEC--0c5t5z0OjXKNr9VNgfoQ9_kzBCy_O3h2P343FqUxlLMAUS3N3t1l3e8Rg8GbL9BezDoxFt0n5-366Z-ZxH0C5_3mns
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+shear+capacity+of+steel+channel+sections+using+machine+learning+algorithms&rft.jtitle=Thin-walled+structures&rft.au=Dissanayake%2C+Madhushan&rft.au=Nguyen%2C+Hoang&rft.au=Poologanathan%2C+Keerthan&rft.au=Perampalam%2C+Gatheeshgar&rft.date=2022-06-01&rft.issn=0263-8231&rft.volume=175&rft.spage=109152&rft_id=info:doi/10.1016%2Fj.tws.2022.109152&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tws_2022_109152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8231&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8231&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8231&client=summon