A novel CNN based security guaranteed image watermarking generation scenario for smart city applications

The rise of machine learning increases the current computing capabilities and paves the way to novel disruptive applications. In the current era of big data, the application of image retrieval technology for large-scale data is a popular research area. To ensure the robustness and security of digita...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information sciences Ročník 479; s. 432 - 447
Hlavní autori: Li, Daming, Deng, Lianbing, Bhooshan Gupta, Brij, Wang, Haoxiang, Choi, Chang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.04.2019
Predmet:
ISSN:0020-0255, 1872-6291
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The rise of machine learning increases the current computing capabilities and paves the way to novel disruptive applications. In the current era of big data, the application of image retrieval technology for large-scale data is a popular research area. To ensure the robustness and security of digital image watermarking, we propose a novel algorithm using synergetic neural networks. The algorithm first processes a meaningful gray watermark image, then embeds it as a watermark signal into the block Discrete Cosine Transform (DCT) component. The companion algorithm for detection and extraction of the watermark uses a cooperative neural network, where the suspected watermark signal is used as the input while the output consists in the result of the recognition process. The simulation experiments show that the algorithm can complete certain image processing operations with improved performance, not only simultaneously completing watermark detection and extraction, but also efficiently determining the watermark attribution. Compared with other state-of-the-art models, the proposed model obtains an optimal Peak Signal-to-noise ratio (PSNR).
AbstractList The rise of machine learning increases the current computing capabilities and paves the way to novel disruptive applications. In the current era of big data, the application of image retrieval technology for large-scale data is a popular research area. To ensure the robustness and security of digital image watermarking, we propose a novel algorithm using synergetic neural networks. The algorithm first processes a meaningful gray watermark image, then embeds it as a watermark signal into the block Discrete Cosine Transform (DCT) component. The companion algorithm for detection and extraction of the watermark uses a cooperative neural network, where the suspected watermark signal is used as the input while the output consists in the result of the recognition process. The simulation experiments show that the algorithm can complete certain image processing operations with improved performance, not only simultaneously completing watermark detection and extraction, but also efficiently determining the watermark attribution. Compared with other state-of-the-art models, the proposed model obtains an optimal Peak Signal-to-noise ratio (PSNR).
Author Wang, Haoxiang
Deng, Lianbing
Choi, Chang
Bhooshan Gupta, Brij
Li, Daming
Author_xml – sequence: 1
  givenname: Daming
  surname: Li
  fullname: Li, Daming
  organization: The Post-Doctoral Research Center of Zhuhai Da Hengqin Science and Technology Development Co. Ltd., Zhuhai, China
– sequence: 2
  givenname: Lianbing
  surname: Deng
  fullname: Deng, Lianbing
  organization: Huazhong University of Science and Technology, Wuhan, China
– sequence: 3
  givenname: Brij
  surname: Bhooshan Gupta
  fullname: Bhooshan Gupta, Brij
  organization: National Institute of Technology Kurukshetra, Haryana, India
– sequence: 4
  givenname: Haoxiang
  surname: Wang
  fullname: Wang, Haoxiang
  organization: Cornell University, USA
– sequence: 5
  givenname: Chang
  orcidid: 0000-0002-2276-2378
  surname: Choi
  fullname: Choi, Chang
  email: changchoi@chosun.ac.kr
  organization: Department of Computer Engineering, Chosun University, Republic of Korea
BookMark eNp9kM1uwjAQhK2KSgXaB-jNL5B0bUKcqCeE-ichemnP1mJvUtPgIDtQ8fYN0FMPnFZazTeamREb-NYTY_cCUgEif1inzsdUgihSkCnkcMWGolAyyWUpBmwIICEBOZ3esFGMawDIVJ4P2deM-3ZPDZ8vl3yFkSyPZHbBdQde7zCg76j_uQ3WxH-wo7DB8O18zWvyFLBzrefRkMfgWl61gcde0HFzNMDttnHmpIm37LrCJtLd3x2zz-enj_lrsnh_eZvPFomRpeoSEmolSpTVtJisbIZoM1LClJMsn6iCDGImpK1KBZXNVQZ2VUlZZFRQKcEWOBkzdfY1oY0xUKX7KKcIXUDXaAH6OJhe634wfRxMg9T9YD0p_pHb0PcOh4vM45mhvtLeUdDROPKGrAtkOm1bd4H-BdHHiEA
CitedBy_id crossref_primary_10_1038_s41598_023_36759_0
crossref_primary_10_1007_s10586_021_03489_9
crossref_primary_10_1007_s11042_023_16240_w
crossref_primary_10_1007_s11042_024_20258_z
crossref_primary_10_1049_iet_ipr_2018_6040
crossref_primary_10_1007_s11042_022_12488_w
crossref_primary_10_1016_j_future_2021_05_010
crossref_primary_10_1007_s42979_023_01940_9
crossref_primary_10_1016_j_seta_2021_101477
crossref_primary_10_4018_IJSWIS_344026
crossref_primary_10_1007_s11042_022_13411_z
crossref_primary_10_1007_s11042_021_10896_y
crossref_primary_10_1016_j_comcom_2021_06_003
crossref_primary_10_1088_1402_4896_ac8b41
crossref_primary_10_32604_cmc_2023_036450
crossref_primary_10_3390_electronics10141744
crossref_primary_10_1049_wss2_12100
crossref_primary_10_1016_j_jclepro_2023_137300
crossref_primary_10_1002_ett_4232
crossref_primary_10_1007_s00500_021_05871_6
crossref_primary_10_1016_j_future_2021_05_029
crossref_primary_10_3390_s25113384
crossref_primary_10_1155_2021_4907754
crossref_primary_10_1109_TIM_2024_3353274
crossref_primary_10_4018_IJSWIS_331083
crossref_primary_10_1007_s13369_024_09010_9
crossref_primary_10_1016_j_techfore_2021_120569
crossref_primary_10_1007_s10462_023_10689_9
crossref_primary_10_1007_s12083_021_01134_1
crossref_primary_10_1007_s11042_021_10631_7
crossref_primary_10_4018_IJSWIS_339000
crossref_primary_10_1109_TCSII_2023_3260248
crossref_primary_10_4018_IJSWIS_345246
crossref_primary_10_1007_s11042_023_14479_x
crossref_primary_10_1007_s12652_023_04577_x
crossref_primary_10_3390_s23031210
crossref_primary_10_1145_3382772
crossref_primary_10_1007_s12083_021_01232_0
crossref_primary_10_1007_s00500_024_09938_y
crossref_primary_10_1016_j_neucom_2022_02_083
crossref_primary_10_1016_j_ijleo_2021_168194
crossref_primary_10_1371_journal_pone_0262609
crossref_primary_10_1007_s11042_023_15037_1
crossref_primary_10_1007_s11042_021_11081_x
crossref_primary_10_1049_smc2_12086
crossref_primary_10_1111_exsy_12913
crossref_primary_10_1007_s12083_021_01220_4
crossref_primary_10_1080_17517575_2021_1930189
crossref_primary_10_1007_s11042_020_09262_1
crossref_primary_10_1007_s11235_021_00826_6
crossref_primary_10_1016_j_bdr_2021_100245
crossref_primary_10_1155_2021_9932292
crossref_primary_10_1007_s13198_025_02764_x
crossref_primary_10_1016_j_ins_2020_05_086
crossref_primary_10_4018_IJSWIS_337286
crossref_primary_10_1016_j_jfranklin_2025_107511
crossref_primary_10_1007_s11042_021_11246_8
crossref_primary_10_1007_s11277_021_08769_6
crossref_primary_10_1016_j_bdr_2021_100295
crossref_primary_10_1016_j_comcom_2021_07_005
crossref_primary_10_1007_s11042_023_15699_x
crossref_primary_10_4018_IJCAC_297095
crossref_primary_10_1007_s11277_021_08723_6
crossref_primary_10_1016_j_cosrev_2023_100568
crossref_primary_10_1007_s00521_021_06396_7
crossref_primary_10_1080_13682199_2023_2223080
crossref_primary_10_1155_2021_9403874
crossref_primary_10_3390_jsan13010002
crossref_primary_10_1007_s11042_020_09904_4
crossref_primary_10_1109_JAS_2021_1004003
crossref_primary_10_1007_s00034_025_03023_x
crossref_primary_10_1016_j_techfore_2021_120591
crossref_primary_10_3390_math11071730
crossref_primary_10_4018_IJSWIS_343491
crossref_primary_10_1016_j_comnet_2021_108230
crossref_primary_10_1016_j_ins_2020_06_026
crossref_primary_10_1007_s12083_020_00963_w
crossref_primary_10_1007_s11227_021_03889_z
crossref_primary_10_1016_j_ins_2020_12_019
crossref_primary_10_1007_s11042_021_11301_4
crossref_primary_10_1109_TMM_2020_3006415
crossref_primary_10_1016_j_ssci_2021_105410
crossref_primary_10_1186_s13677_022_00310_9
crossref_primary_10_1371_journal_pone_0275422
crossref_primary_10_1007_s11042_018_7115_x
crossref_primary_10_1007_s11042_023_16809_5
crossref_primary_10_32604_cmc_2022_019404
crossref_primary_10_1016_j_techfore_2020_120532
crossref_primary_10_1016_j_future_2021_09_012
crossref_primary_10_1186_s13635_021_00118_1
crossref_primary_10_1155_2021_5579148
crossref_primary_10_1007_s11042_023_14651_3
crossref_primary_10_1109_JAS_2021_1004344
crossref_primary_10_32604_cmc_2021_015770
crossref_primary_10_4018_IJSWIS_349577
crossref_primary_10_1007_s11042_023_15701_6
crossref_primary_10_1016_j_chaos_2023_113449
crossref_primary_10_3390_s25010128
crossref_primary_10_1007_s11042_021_11130_5
crossref_primary_10_1002_int_22742
crossref_primary_10_1007_s11042_023_16699_7
crossref_primary_10_1007_s13369_023_08263_0
crossref_primary_10_1007_s10586_023_04106_7
crossref_primary_10_4018_IJSWIS_344457
crossref_primary_10_1016_j_future_2021_09_018
crossref_primary_10_1007_s13735_020_00197_9
crossref_primary_10_1007_s12083_021_01249_5
crossref_primary_10_1007_s12083_021_01203_5
crossref_primary_10_1088_2631_8695_adf52a
crossref_primary_10_1117_1_JEI_32_5_053013
crossref_primary_10_1007_s11042_020_09606_x
crossref_primary_10_1007_s11063_020_10325_5
crossref_primary_10_3390_math13152493
crossref_primary_10_1007_s00500_020_05484_5
crossref_primary_10_1007_s11042_022_12072_2
crossref_primary_10_1016_j_jocs_2021_101445
crossref_primary_10_4018_JGIM_2020100108
crossref_primary_10_1007_s00500_018_3610_2
crossref_primary_10_1007_s13042_020_01241_0
crossref_primary_10_3390_math13060947
crossref_primary_10_3390_app132111852
crossref_primary_10_1007_s11042_022_12034_8
crossref_primary_10_4018_IJSWIS_352853
crossref_primary_10_1007_s11277_021_08451_x
crossref_primary_10_1016_j_iswa_2024_200325
crossref_primary_10_32604_cmc_2022_026759
crossref_primary_10_1016_j_bdr_2022_100360
crossref_primary_10_4018_IJCAC_311033
crossref_primary_10_1007_s00521_020_05410_8
crossref_primary_10_3233_JIFS_202919
crossref_primary_10_1007_s11042_023_16791_y
crossref_primary_10_1109_TITS_2022_3215538
crossref_primary_10_1007_s00500_020_04706_0
crossref_primary_10_1007_s42452_021_04387_w
crossref_primary_10_1007_s00530_020_00728_8
crossref_primary_10_1007_s11042_023_14873_5
crossref_primary_10_1016_j_ijleo_2020_165272
crossref_primary_10_1007_s12083_021_01200_8
crossref_primary_10_1109_ACCESS_2021_3071654
crossref_primary_10_1109_TCE_2022_3217974
crossref_primary_10_1002_dac_5237
crossref_primary_10_1049_rpg2_12785
crossref_primary_10_1145_3508365
crossref_primary_10_1007_s11042_022_12691_9
crossref_primary_10_1016_j_techfore_2021_120613
crossref_primary_10_1016_j_sysarc_2022_102569
crossref_primary_10_1016_j_ins_2023_119904
crossref_primary_10_3389_fenvs_2022_950055
crossref_primary_10_1007_s11517_020_02269_8
crossref_primary_10_1016_j_ijleo_2021_168231
crossref_primary_10_1007_s10766_024_00779_8
crossref_primary_10_1007_s11042_020_09776_8
crossref_primary_10_3390_electronics12010074
crossref_primary_10_1007_s11071_024_09547_2
crossref_primary_10_3390_su141711040
crossref_primary_10_1155_2021_5551976
crossref_primary_10_1117_1_JEI_32_3_031804
crossref_primary_10_1007_s12083_021_01153_y
crossref_primary_10_1111_exsy_13047
crossref_primary_10_1038_s41598_025_01297_4
crossref_primary_10_1007_s00500_021_05732_2
crossref_primary_10_4018_IJSSCI_334711
crossref_primary_10_4018_IJSWIS_337320
crossref_primary_10_1007_s11042_020_09341_3
crossref_primary_10_1007_s11042_023_17573_2
crossref_primary_10_1145_3309545
crossref_primary_10_1109_TCE_2024_3475517
crossref_primary_10_1109_TIP_2025_3593911
crossref_primary_10_4018_IJSWIS_335947
crossref_primary_10_1109_TIFS_2024_3428856
crossref_primary_10_1007_s10586_018_2516_1
crossref_primary_10_1155_2021_5589688
crossref_primary_10_3390_electronics10111337
crossref_primary_10_4018_IJSWIS_307324
crossref_primary_10_1109_TAI_2024_3515938
crossref_primary_10_4018_IJSWIS_333056
crossref_primary_10_1007_s10586_021_03362_9
crossref_primary_10_1155_2021_9943713
crossref_primary_10_1002_cpe_7143
crossref_primary_10_1007_s00500_018_3621_z
crossref_primary_10_4018_IJSWIS_324105
crossref_primary_10_1016_j_cosrev_2020_100317
crossref_primary_10_1051_itmconf_20246000009
crossref_primary_10_1016_j_techfore_2021_120754
crossref_primary_10_4018_JOEUC_2020100105
crossref_primary_10_1016_j_compeleceng_2023_108985
crossref_primary_10_1016_j_asoc_2021_107473
crossref_primary_10_1007_s11277_021_09087_7
crossref_primary_10_1016_j_comcom_2021_09_005
crossref_primary_10_1049_ipr2_12143
crossref_primary_10_1016_j_techfore_2021_120642
crossref_primary_10_1007_s11277_021_08715_6
crossref_primary_10_1109_ACCESS_2019_2931039
crossref_primary_10_4018_IJSWIS_333063
crossref_primary_10_1007_s00371_021_02277_1
crossref_primary_10_1007_s00500_023_07904_8
crossref_primary_10_1016_j_ipm_2020_102256
crossref_primary_10_4018_IJSWIS_338999
crossref_primary_10_1007_s11276_021_02554_w
crossref_primary_10_1016_j_jpdc_2021_03_011
crossref_primary_10_1016_j_bspc_2024_106195
crossref_primary_10_1002_dac_4907
crossref_primary_10_32604_cmc_2022_019802
crossref_primary_10_3390_s21093133
crossref_primary_10_1007_s13369_022_06841_2
crossref_primary_10_1016_j_compeleceng_2023_109058
crossref_primary_10_1007_s11277_022_09519_y
crossref_primary_10_1016_j_ins_2020_05_034
crossref_primary_10_4018_IJCAC_2022010101
crossref_primary_10_1080_17517575_2020_1856423
crossref_primary_10_1007_s11277_021_09086_8
crossref_primary_10_1007_s11042_022_13779_y
crossref_primary_10_1016_j_ipm_2020_102468
crossref_primary_10_1155_2021_9984453
crossref_primary_10_4018_IJSWIS_333712
crossref_primary_10_1109_TII_2019_2929228
crossref_primary_10_1002_int_22461
crossref_primary_10_1016_j_ipm_2022_103122
crossref_primary_10_1016_j_asoc_2020_106983
crossref_primary_10_4018_IJSWIS_340938
crossref_primary_10_3390_a14080242
crossref_primary_10_3390_s22072431
crossref_primary_10_4018_IJSWIS_336550
crossref_primary_10_1016_j_techfore_2020_120486
crossref_primary_10_1109_TETCI_2021_3055520
crossref_primary_10_1007_s12083_021_01173_8
crossref_primary_10_4018_IJSWIS_300824
crossref_primary_10_4018_IJSWIS_349986
crossref_primary_10_1007_s11042_023_16827_3
crossref_primary_10_1007_s11063_020_10258_z
crossref_primary_10_1007_s12652_021_03355_x
crossref_primary_10_32604_cmc_2022_029835
crossref_primary_10_3390_rs17030502
crossref_primary_10_1007_s12083_021_01268_2
crossref_primary_10_32604_cmc_2023_040914
crossref_primary_10_1007_s11042_019_08290_w
crossref_primary_10_1007_s12083_021_01207_1
Cites_doi 10.1038/323533a0
10.1109/TSMCA.2012.2223670
10.1007/s11042-015-3188-y
10.1016/j.neucom.2015.08.096
10.1007/s10032-014-0229-4
10.1007/s10586-017-0859-7
10.1109/TSP.2004.839896
10.1126/science.1127647
10.1109/TPAMI.2015.2389824
10.1109/TIT.2013.2267934
10.1007/s10278-015-9822-4
10.1113/jphysiol.1962.sp006837
10.1109/TITS.2014.2308281
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2018.02.060
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 447
ExternalDocumentID 10_1016_j_ins_2018_02_060
S0020025518301452
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-e17b19a2f583bd4aad4e71c9346378ecaa412df970fd6740dbf2284e8e920d8a3
ISICitedReferencesCount 258
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000458229200027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 06:57:08 EST 2025
Tue Nov 18 21:39:27 EST 2025
Fri Feb 23 02:33:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Image watermark
Smart cities
Algorithm design
Convolutional neural network
Generation scenario
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-e17b19a2f583bd4aad4e71c9346378ecaa412df970fd6740dbf2284e8e920d8a3
ORCID 0000-0002-2276-2378
PageCount 16
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2018_02_060
crossref_primary_10_1016_j_ins_2018_02_060
elsevier_sciencedirect_doi_10_1016_j_ins_2018_02_060
PublicationCentury 2000
PublicationDate April 2019
2019-04-00
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhu, Krahenbuhl, Shechtman, Efros (bib0044) 2015
Cai, Deng, Li (bib0004) 2017
Liang, Shi, Wang, Meng, Wang, Sun, Gu (bib0030) December 2016
Su, Chen (bib0037) 2017
Lu, Wei, Liu, Zhong, Sun, Liu (bib0029) 2017; 76
Williams, Hinton (bib0040) 1986; 323
Dahl, Sainath, Hinton (bib0008) May 2013
Qian, Tian, Li (bib0035) August 2016
Jiao, Permuter, Zhao, Kim, Weissman (bib0015) 2013; 59
Badshah, Liew, Zain, Ali (bib0001) 2016; 29
He, Zhang, Ren, Sun (bib0013) 2015; 37
M. Lin, Q. Chen, S. Yan, 2013. Network in network. arXiv preprint
Chen, Zhang, Yang (bib0006) 2017
Liu, Zhang, Cui, Wu, Aghajan, Zha (bib0031) October 2010
Wang, Li, Wang (bib0042) 2017
Scherer, Müller, Behnke (bib0038) 2010
Kim, Xie (bib0018) 2015; 18
Zareapoor, Shamsolmoali, Jain, Wang, Yang (bib0045) September 2017
Y. Liu, Y. Liang, S. Liu, D.S. Rosenblum, Y. Zheng, 2016. Predicting urban water quality with ubiquitous data. arXiv preprint
Deng, Dong, Socher, Li, Li, Fei-Fei (bib0007) 2009, June
Wang, Wang (bib0043) November 2014
Bakshi, Sa, Wang (bib0002) 2017
Liu, Cui, Zhao, Zha (bib0022) November 2012
Preoţiuc-Pietro, Liu, Hopkins, Ungar (bib0033) 2017; 1
Liu, Nie, Liu, Rosenblum (bib0027) 2016; 181
Hinton, Salakhutdinov (bib0014) 2006; 313
Y. Liu, Y. Zheng, Y. Liang, S. Liu, D.S. Rosenblum. Urban water quality prediction based on multi-task multi-view learning, 2016.
Krizhevsky, Sutskever, Hinton (bib0017) 2012
Boureau, Ponce, LeCun (bib0003) 2010
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0039) 2015
Wang, Moulin (bib0041) 2006; 2
Etemad, Samavi, Reza Soroushmehr (bib0009) 2017
He, Zhang, Ren, Sun (bib0012) 2015
.
Liu, Nie, Han, Zhang, Rosenblum (bib0026) July 2015
Zhang, Wang, Huang (bib0046) 2017; 20
Lin, Lv, Zhu, Yang, Cour, Yu, Cao, Huang (bib0020) June 2011
Girshick, Donahue, Darrell, Malik (bib0010) 2014
Plageras, Psannis, Stergiou, Wang, Gupta (bib0034) 2017
Liu, Cheng, Liu, Jia, Rosenblum (bib0028) February 2016; 30
Jin, Fu, Zhang (bib0016) 2014; 15
Liu, Zhang, Nie, Yan, Rosenblum (bib0021) February 2016
Hubel, Wiesel (bib0011) 1962; 160
Lyu, Farid (bib0019) 2005; 53
Mahendran, Vedaldi (bib0032) 2015
Cui, Liu, Xu, Zhao, Zha (bib0005) 2013; 43
Deng (10.1016/j.ins.2018.02.060_bib0007) 2009
Wang (10.1016/j.ins.2018.02.060_bib0043) 2014
Liu (10.1016/j.ins.2018.02.060_bib0022) 2012
Wang (10.1016/j.ins.2018.02.060_bib0041) 2006; 2
Hinton (10.1016/j.ins.2018.02.060_bib0014) 2006; 313
Liu (10.1016/j.ins.2018.02.060_bib0027) 2016; 181
Su (10.1016/j.ins.2018.02.060_bib0037) 2017
Cui (10.1016/j.ins.2018.02.060_bib0005) 2013; 43
Bakshi (10.1016/j.ins.2018.02.060_bib0002) 2017
Badshah (10.1016/j.ins.2018.02.060_bib0001) 2016; 29
Jiao (10.1016/j.ins.2018.02.060_bib0015) 2013; 59
Dahl (10.1016/j.ins.2018.02.060_bib0008) 2013
Scherer (10.1016/j.ins.2018.02.060_bib0038) 2010
Zhu (10.1016/j.ins.2018.02.060_bib0044) 2015
Liu (10.1016/j.ins.2018.02.060_bib0026) 2015
Hubel (10.1016/j.ins.2018.02.060_bib0011) 1962; 160
Zhang (10.1016/j.ins.2018.02.060_bib0046) 2017; 20
Krizhevsky (10.1016/j.ins.2018.02.060_bib0017) 2012
Szegedy (10.1016/j.ins.2018.02.060_bib0039) 2015
Boureau (10.1016/j.ins.2018.02.060_bib0003) 2010
Cai (10.1016/j.ins.2018.02.060_bib0004) 2017
Lyu (10.1016/j.ins.2018.02.060_bib0019) 2005; 53
Liu (10.1016/j.ins.2018.02.060_bib0021) 2016
Etemad (10.1016/j.ins.2018.02.060_bib0009) 2017
Lu (10.1016/j.ins.2018.02.060_bib0029) 2017; 76
Girshick (10.1016/j.ins.2018.02.060_bib0010) 2014
Jin (10.1016/j.ins.2018.02.060_bib0016) 2014; 15
Plageras (10.1016/j.ins.2018.02.060_bib0034) 2017
Liu (10.1016/j.ins.2018.02.060_bib0028) 2016; 30
Liu (10.1016/j.ins.2018.02.060_bib0031) 2010
Liang (10.1016/j.ins.2018.02.060_bib0030) 2016
He (10.1016/j.ins.2018.02.060_bib0013) 2015; 37
10.1016/j.ins.2018.02.060_bib0025
10.1016/j.ins.2018.02.060_bib0024
Lin (10.1016/j.ins.2018.02.060_bib0020) 2011
10.1016/j.ins.2018.02.060_bib0023
Williams (10.1016/j.ins.2018.02.060_bib0040) 1986; 323
Chen (10.1016/j.ins.2018.02.060_bib0006) 2017
He (10.1016/j.ins.2018.02.060_bib0012) 2015
Wang (10.1016/j.ins.2018.02.060_bib0042) 2017
Zareapoor (10.1016/j.ins.2018.02.060_bib0045) 2017
Kim (10.1016/j.ins.2018.02.060_bib0018) 2015; 18
Mahendran (10.1016/j.ins.2018.02.060_bib0032) 2015
Qian (10.1016/j.ins.2018.02.060_bib0035) 2016
Preoţiuc-Pietro (10.1016/j.ins.2018.02.060_bib0033) 2017; 1
References_xml – start-page: 26
  year: October 2010
  end-page: 33
  ident: bib0031
  article-title: Visual analysis of child-adult interactive behaviors in video sequences
  publication-title: Virtual Systems and Multimedia (VSMM), 2010 16th International Conference on
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0039
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: September 2017
  ident: bib0045
  article-title: Kernelized support vector machine with deep learning: an efficient approach for extreme multiclass dataset
  publication-title: Pattern Recogn. Lett.
– start-page: 2954
  year: December 2016
  end-page: 2958
  ident: bib0030
  article-title: Optimizing top precision performance measure of content-based image retrieval by learning similarity function
  publication-title: Pattern Recognition (ICPR), 2016 23rd International Conference on
– volume: 160
  start-page: 106
  year: 1962
  end-page: 154
  ident: bib0011
  article-title: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
  publication-title: J. Physiol.
– reference: Y. Liu, Y. Zheng, Y. Liang, S. Liu, D.S. Rosenblum. Urban water quality prediction based on multi-task multi-view learning, 2016.
– start-page: 201
  year: February 2016
  end-page: 207
  ident: bib0021
  article-title: Fortune teller: predicting your career path
  publication-title: AAAI
– volume: 29
  start-page: 216
  year: 2016
  end-page: 225
  ident: bib0001
  article-title: Watermark compression in medical image watermarking using Lempel-Ziv-Welch (LZW) lossless compression technique
  publication-title: J. Digital Imag.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0017
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 18
  start-page: 1
  year: 2015
  end-page: 13
  ident: bib0018
  article-title: Handwritten Hangul recognition using deep convolutional neural networks
  publication-title: Int. J. Document Anal. Recogn. (IJDAR)
– start-page: 277
  year: August 2016
  end-page: 280
  ident: bib0035
  article-title: Robust blind image watermarking algorithm based on singular value quantization
  publication-title: Proceedings of the International Conference on Internet Multimedia Computing and Service
– start-page: 898
  year: November 2012
  end-page: 901
  ident: bib0022
  article-title: Fusion of low-and high-dimensional approaches by trackers sampling for generic human motion tracking
  publication-title: Pattern Recognition (ICPR), 2012 21st International Conference on
– volume: 181
  start-page: 108
  year: 2016
  end-page: 115
  ident: bib0027
  article-title: From action to activity: sensor-based activity recognition
  publication-title: Neurocomputing
– volume: 2
  year: 2006
  ident: bib0041
  article-title: On discrimination between photorealistic and photographic images
  publication-title: Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on
– start-page: 111
  year: 2010
  end-page: 118
  ident: bib0003
  article-title: A theoretical analysis of feature pooling in visual recognition
  publication-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10)
– volume: 37
  start-page: 1904
  year: 2015
  end-page: 1916
  ident: bib0013
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 248
  year: 2009, June
  end-page: 255
  ident: bib0007
  article-title: Imagenet: a large-scale hierarchical image database
  publication-title: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on
– reference: M. Lin, Q. Chen, S. Yan, 2013. Network in network. arXiv preprint
– volume: 30
  start-page: 1266
  year: February 2016
  end-page: 1272
  ident: bib0028
  article-title: Recognizing Complex activities by a probabilistic interval-based model
  publication-title: AAAI
– year: 2017
  ident: bib0034
  article-title: Efficient IoT-based sensor BIG Data collection-processing and analysis in smart buildings
  publication-title: Future Gen. Comput. Syst.
– year: 2017
  ident: bib0006
  publication-title: Multimed. Tools Appl.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib0014
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– start-page: 8609
  year: May 2013
  end-page: 8613
  ident: bib0008
  article-title: Improving deep neural networks for LVCSR using rectified linear units and dropout
  publication-title: Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: bib0012
  article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 76
  start-page: 10701
  year: 2017
  end-page: 10719
  ident: bib0029
  article-title: Towards unsupervised physical activity recognition using smartphone accelerometers
  publication-title: Multimed. Tools Appl.
– volume: 59
  start-page: 6220
  year: 2013
  end-page: 6242
  ident: bib0015
  article-title: Universal estimation of directed information
  publication-title: IEEE Trans. Inf. Theory
– reference: Y. Liu, Y. Liang, S. Liu, D.S. Rosenblum, Y. Zheng, 2016. Predicting urban water quality with ubiquitous data. arXiv preprint
– volume: 20
  start-page: 1517
  year: 2017
  ident: bib0046
  publication-title: Cluster Comput.
– volume: 53
  start-page: 845
  year: 2005
  end-page: 850
  ident: bib0019
  article-title: How realistic is photorealistic?
  publication-title: IEEE Trans. Signal Process.
– start-page: 1617
  year: July 2015
  end-page: 1623
  ident: bib0026
  article-title: Action2Activity: recognizing complex activities from sensor data
  publication-title: IJCAI
– year: 2017
  ident: bib0002
  publication-title: Multimed. Tools Appl.
– volume: 1
  start-page: 729
  year: 2017
  end-page: 740
  ident: bib0033
  article-title: Beyond binary labels: political ideology prediction of twitter users
  publication-title: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
– year: 2017
  ident: bib0004
  publication-title: Cluster Comput.
– start-page: 1689
  year: June 2011
  end-page: 1696
  ident: bib0020
  article-title: Large-scale image classification: fast feature extraction and svm training
  publication-title: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on
– start-page: 853
  year: November 2014
  end-page: 858
  ident: bib0043
  article-title: An effective image representation method using kernel classification
  publication-title: Tools with Artificial Intelligence (ICTAI), 2014 IEEE 26th International Conference on
– reference: .
– year: 2017
  ident: bib0009
  publication-title: Multimed. Tools Appl.
– volume: 15
  start-page: 1991
  year: 2014
  end-page: 2000
  ident: bib0016
  article-title: Traffic sign recognition with hinge loss trained convolutional neural networks
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 5188
  year: 2015
  end-page: 5196
  ident: bib0032
  article-title: Understanding deep image representations by inverting them
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 323
  start-page: 533
  year: 1986
  end-page: 538
  ident: bib0040
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– start-page: 580
  year: 2014
  end-page: 587
  ident: bib0010
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2017
  ident: bib0042
  publication-title: Cluster Comput.
– volume: 43
  start-page: 996
  year: 2013
  end-page: 1002
  ident: bib0005
  article-title: Tracking generic human motion via fusion of low-and high-dimensional approaches
  publication-title: IEEE Trans. Syst. Man Cybernet.
– start-page: 1
  year: 2017
  end-page: 16
  ident: bib0037
  article-title: Robust color image watermarking technique in the spatial domain
  publication-title: Soft Comput.
– start-page: 92
  year: 2010
  end-page: 101
  ident: bib0038
  article-title: Evaluation of pooling operations in convolutional architectures for object recognition
  publication-title: Artificial Neural Networks–ICANN 2010
– start-page: 3943
  year: 2015
  end-page: 3951
  ident: bib0044
  article-title: Learning a discriminative model for the perception of realism in composite images
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– ident: 10.1016/j.ins.2018.02.060_bib0023
– year: 2017
  ident: 10.1016/j.ins.2018.02.060_bib0006
  publication-title: Multimed. Tools Appl.
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.ins.2018.02.060_bib0040
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 43
  start-page: 996
  issue: 4
  year: 2013
  ident: 10.1016/j.ins.2018.02.060_bib0005
  article-title: Tracking generic human motion via fusion of low-and high-dimensional approaches
  publication-title: IEEE Trans. Syst. Man Cybernet.
  doi: 10.1109/TSMCA.2012.2223670
– start-page: 898
  year: 2012
  ident: 10.1016/j.ins.2018.02.060_bib0022
  article-title: Fusion of low-and high-dimensional approaches by trackers sampling for generic human motion tracking
– start-page: 5188
  year: 2015
  ident: 10.1016/j.ins.2018.02.060_bib0032
  article-title: Understanding deep image representations by inverting them
– volume: 76
  start-page: 10701
  issue: 8
  year: 2017
  ident: 10.1016/j.ins.2018.02.060_bib0029
  article-title: Towards unsupervised physical activity recognition using smartphone accelerometers
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-015-3188-y
– volume: 181
  start-page: 108
  year: 2016
  ident: 10.1016/j.ins.2018.02.060_bib0027
  article-title: From action to activity: sensor-based activity recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.096
– start-page: 277
  year: 2016
  ident: 10.1016/j.ins.2018.02.060_bib0035
  article-title: Robust blind image watermarking algorithm based on singular value quantization
– start-page: 2954
  year: 2016
  ident: 10.1016/j.ins.2018.02.060_bib0030
  article-title: Optimizing top precision performance measure of content-based image retrieval by learning similarity function
– year: 2017
  ident: 10.1016/j.ins.2018.02.060_bib0045
  article-title: Kernelized support vector machine with deep learning: an efficient approach for extreme multiclass dataset
  publication-title: Pattern Recogn. Lett.
– volume: 18
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.ins.2018.02.060_bib0018
  article-title: Handwritten Hangul recognition using deep convolutional neural networks
  publication-title: Int. J. Document Anal. Recogn. (IJDAR)
  doi: 10.1007/s10032-014-0229-4
– start-page: 1
  year: 2017
  ident: 10.1016/j.ins.2018.02.060_bib0037
  article-title: Robust color image watermarking technique in the spatial domain
  publication-title: Soft Comput.
– year: 2017
  ident: 10.1016/j.ins.2018.02.060_bib0002
  publication-title: Multimed. Tools Appl.
– year: 2017
  ident: 10.1016/j.ins.2018.02.060_bib0009
  publication-title: Multimed. Tools Appl.
– volume: 20
  start-page: 1517
  year: 2017
  ident: 10.1016/j.ins.2018.02.060_bib0046
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-017-0859-7
– volume: 53
  start-page: 845
  issue: 2
  year: 2005
  ident: 10.1016/j.ins.2018.02.060_bib0019
  article-title: How realistic is photorealistic?
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2004.839896
– start-page: 853
  year: 2014
  ident: 10.1016/j.ins.2018.02.060_bib0043
  article-title: An effective image representation method using kernel classification
– ident: 10.1016/j.ins.2018.02.060_bib0025
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.ins.2018.02.060_bib0014
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– start-page: 1097
  year: 2012
  ident: 10.1016/j.ins.2018.02.060_bib0017
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 580
  year: 2014
  ident: 10.1016/j.ins.2018.02.060_bib0010
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  ident: 10.1016/j.ins.2018.02.060_bib0013
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– ident: 10.1016/j.ins.2018.02.060_bib0024
– volume: 59
  start-page: 6220
  issue: 10
  year: 2013
  ident: 10.1016/j.ins.2018.02.060_bib0015
  article-title: Universal estimation of directed information
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2013.2267934
– volume: 29
  start-page: 216
  issue: 2
  year: 2016
  ident: 10.1016/j.ins.2018.02.060_bib0001
  article-title: Watermark compression in medical image watermarking using Lempel-Ziv-Welch (LZW) lossless compression technique
  publication-title: J. Digital Imag.
  doi: 10.1007/s10278-015-9822-4
– start-page: 8609
  year: 2013
  ident: 10.1016/j.ins.2018.02.060_bib0008
  article-title: Improving deep neural networks for LVCSR using rectified linear units and dropout
– start-page: 1026
  year: 2015
  ident: 10.1016/j.ins.2018.02.060_bib0012
  article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification
– start-page: 1617
  year: 2015
  ident: 10.1016/j.ins.2018.02.060_bib0026
  article-title: Action2Activity: recognizing complex activities from sensor data
– year: 2017
  ident: 10.1016/j.ins.2018.02.060_bib0042
  publication-title: Cluster Comput.
– start-page: 92
  year: 2010
  ident: 10.1016/j.ins.2018.02.060_bib0038
  article-title: Evaluation of pooling operations in convolutional architectures for object recognition
– year: 2017
  ident: 10.1016/j.ins.2018.02.060_bib0004
  publication-title: Cluster Comput.
– start-page: 3943
  year: 2015
  ident: 10.1016/j.ins.2018.02.060_bib0044
  article-title: Learning a discriminative model for the perception of realism in composite images
– volume: 1
  start-page: 729
  year: 2017
  ident: 10.1016/j.ins.2018.02.060_bib0033
  article-title: Beyond binary labels: political ideology prediction of twitter users
– start-page: 111
  year: 2010
  ident: 10.1016/j.ins.2018.02.060_bib0003
  article-title: A theoretical analysis of feature pooling in visual recognition
– volume: 2
  year: 2006
  ident: 10.1016/j.ins.2018.02.060_bib0041
  article-title: On discrimination between photorealistic and photographic images
– volume: 160
  start-page: 106
  issue: 1
  year: 1962
  ident: 10.1016/j.ins.2018.02.060_bib0011
  article-title: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1962.sp006837
– volume: 15
  start-page: 1991
  issue: 5
  year: 2014
  ident: 10.1016/j.ins.2018.02.060_bib0016
  article-title: Traffic sign recognition with hinge loss trained convolutional neural networks
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2014.2308281
– start-page: 1689
  year: 2011
  ident: 10.1016/j.ins.2018.02.060_bib0020
  article-title: Large-scale image classification: fast feature extraction and svm training
– volume: 30
  start-page: 1266
  year: 2016
  ident: 10.1016/j.ins.2018.02.060_bib0028
  article-title: Recognizing Complex activities by a probabilistic interval-based model
– start-page: 1
  year: 2015
  ident: 10.1016/j.ins.2018.02.060_bib0039
  article-title: Going deeper with convolutions
– start-page: 248
  year: 2009
  ident: 10.1016/j.ins.2018.02.060_bib0007
  article-title: Imagenet: a large-scale hierarchical image database
– start-page: 201
  year: 2016
  ident: 10.1016/j.ins.2018.02.060_bib0021
  article-title: Fortune teller: predicting your career path
– start-page: 26
  year: 2010
  ident: 10.1016/j.ins.2018.02.060_bib0031
  article-title: Visual analysis of child-adult interactive behaviors in video sequences
– year: 2017
  ident: 10.1016/j.ins.2018.02.060_bib0034
  article-title: Efficient IoT-based sensor BIG Data collection-processing and analysis in smart buildings
  publication-title: Future Gen. Comput. Syst.
SSID ssj0004766
Score 2.6675441
Snippet The rise of machine learning increases the current computing capabilities and paves the way to novel disruptive applications. In the current era of big data,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 432
SubjectTerms Algorithm design
Convolutional neural network
Generation scenario
Image watermark
Smart cities
Title A novel CNN based security guaranteed image watermarking generation scenario for smart city applications
URI https://dx.doi.org/10.1016/j.ins.2018.02.060
Volume 479
WOSCitedRecordID wos000458229200027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeqjQMcEAwQA4Z8QByIIiWuU8fHbhoMVFUcBuotSmxnbdUlVduV_iv8tzx_NWZ8CJC4RJGVl0R5v7wvvw-EXlVgBWci055qRmMqKxVzIVRcVyIZyCwhlYl3fB6x8TifTPjHXu-rr4XZLljT5LsdX_5XVsMaMFuXzv4Fu_c3hQU4B6bDEdgOxz9i_DBq2q1aRGfjcaR1lIzWbkZddAV40F8S1mbXOlnnS2kks4mX62HKyuFBt3gCJ7o1SYhruGATCX2DcLs7NGtdUZOjNdJib6uPXCn7tVeS2mxWVsSMAJxVsH46bdv1FETOu5ulNWtPV7N5F_S3VBdluwPCqzBikfIg0cWE0XwpzXeZntpujbWDYxWTlcY5I_GA2HFeXlxTO3zGCVzqoqNWd1PbvfMHtWAjFHPwZXSH9jQ3bVrtHINb3bb15rXxs0DU6R1X0O6HhGUcBObh8P355ENXdMvsRrh_b79lbpIHbz3o50ZPYMhcPkD3nQeChxY5D1FPNUfoXtCX8giduGoW_BoHnMVODzxC0yE2GMOAMWwwhj3GcIcxbDCGQ4zhDmPYYwzDA7DBGNYYwyHGHqNPb88vzy5iN7IjFoSzTaxSVqW8JHWW9ytJy1JSxVLB-3TQZ7kSZUlTImvOkloOGE1kVRMwkFSuOElkXvafoIOmbdRThFMQHLnQpdG0BHlSV4xSqhIhpORZKepjlPhvWgjXz16PVVkUPnFxXgAbCs2GIiEFsOEYvdmTLG0zl99dTD2jCvfnWCuzAFT9muzZv5E9R3e7X-UFOtisbtQJuiO2m9l69dJh7xtAvLIZ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+CNN+based+security+guaranteed+image+watermarking+generation+scenario+for+smart+city+applications&rft.jtitle=Information+sciences&rft.au=Li%2C+Daming&rft.au=Deng%2C+Lianbing&rft.au=Bhooshan+Gupta%2C+Brij&rft.au=Wang%2C+Haoxiang&rft.date=2019-04-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=479&rft.spage=432&rft.epage=447&rft_id=info:doi/10.1016%2Fj.ins.2018.02.060&rft.externalDocID=S0020025518301452
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon