A novel CNN based security guaranteed image watermarking generation scenario for smart city applications
The rise of machine learning increases the current computing capabilities and paves the way to novel disruptive applications. In the current era of big data, the application of image retrieval technology for large-scale data is a popular research area. To ensure the robustness and security of digita...
Uložené v:
| Vydané v: | Information sciences Ročník 479; s. 432 - 447 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.04.2019
|
| Predmet: | |
| ISSN: | 0020-0255, 1872-6291 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The rise of machine learning increases the current computing capabilities and paves the way to novel disruptive applications. In the current era of big data, the application of image retrieval technology for large-scale data is a popular research area. To ensure the robustness and security of digital image watermarking, we propose a novel algorithm using synergetic neural networks. The algorithm first processes a meaningful gray watermark image, then embeds it as a watermark signal into the block Discrete Cosine Transform (DCT) component. The companion algorithm for detection and extraction of the watermark uses a cooperative neural network, where the suspected watermark signal is used as the input while the output consists in the result of the recognition process. The simulation experiments show that the algorithm can complete certain image processing operations with improved performance, not only simultaneously completing watermark detection and extraction, but also efficiently determining the watermark attribution. Compared with other state-of-the-art models, the proposed model obtains an optimal Peak Signal-to-noise ratio (PSNR). |
|---|---|
| AbstractList | The rise of machine learning increases the current computing capabilities and paves the way to novel disruptive applications. In the current era of big data, the application of image retrieval technology for large-scale data is a popular research area. To ensure the robustness and security of digital image watermarking, we propose a novel algorithm using synergetic neural networks. The algorithm first processes a meaningful gray watermark image, then embeds it as a watermark signal into the block Discrete Cosine Transform (DCT) component. The companion algorithm for detection and extraction of the watermark uses a cooperative neural network, where the suspected watermark signal is used as the input while the output consists in the result of the recognition process. The simulation experiments show that the algorithm can complete certain image processing operations with improved performance, not only simultaneously completing watermark detection and extraction, but also efficiently determining the watermark attribution. Compared with other state-of-the-art models, the proposed model obtains an optimal Peak Signal-to-noise ratio (PSNR). |
| Author | Wang, Haoxiang Deng, Lianbing Choi, Chang Bhooshan Gupta, Brij Li, Daming |
| Author_xml | – sequence: 1 givenname: Daming surname: Li fullname: Li, Daming organization: The Post-Doctoral Research Center of Zhuhai Da Hengqin Science and Technology Development Co. Ltd., Zhuhai, China – sequence: 2 givenname: Lianbing surname: Deng fullname: Deng, Lianbing organization: Huazhong University of Science and Technology, Wuhan, China – sequence: 3 givenname: Brij surname: Bhooshan Gupta fullname: Bhooshan Gupta, Brij organization: National Institute of Technology Kurukshetra, Haryana, India – sequence: 4 givenname: Haoxiang surname: Wang fullname: Wang, Haoxiang organization: Cornell University, USA – sequence: 5 givenname: Chang orcidid: 0000-0002-2276-2378 surname: Choi fullname: Choi, Chang email: changchoi@chosun.ac.kr organization: Department of Computer Engineering, Chosun University, Republic of Korea |
| BookMark | eNp9kM1uwjAQhK2KSgXaB-jNL5B0bUKcqCeE-ichemnP1mJvUtPgIDtQ8fYN0FMPnFZazTeamREb-NYTY_cCUgEif1inzsdUgihSkCnkcMWGolAyyWUpBmwIICEBOZ3esFGMawDIVJ4P2deM-3ZPDZ8vl3yFkSyPZHbBdQde7zCg76j_uQ3WxH-wo7DB8O18zWvyFLBzrefRkMfgWl61gcde0HFzNMDttnHmpIm37LrCJtLd3x2zz-enj_lrsnh_eZvPFomRpeoSEmolSpTVtJisbIZoM1LClJMsn6iCDGImpK1KBZXNVQZ2VUlZZFRQKcEWOBkzdfY1oY0xUKX7KKcIXUDXaAH6OJhe634wfRxMg9T9YD0p_pHb0PcOh4vM45mhvtLeUdDROPKGrAtkOm1bd4H-BdHHiEA |
| CitedBy_id | crossref_primary_10_1038_s41598_023_36759_0 crossref_primary_10_1007_s10586_021_03489_9 crossref_primary_10_1007_s11042_023_16240_w crossref_primary_10_1007_s11042_024_20258_z crossref_primary_10_1049_iet_ipr_2018_6040 crossref_primary_10_1007_s11042_022_12488_w crossref_primary_10_1016_j_future_2021_05_010 crossref_primary_10_1007_s42979_023_01940_9 crossref_primary_10_1016_j_seta_2021_101477 crossref_primary_10_4018_IJSWIS_344026 crossref_primary_10_1007_s11042_022_13411_z crossref_primary_10_1007_s11042_021_10896_y crossref_primary_10_1016_j_comcom_2021_06_003 crossref_primary_10_1088_1402_4896_ac8b41 crossref_primary_10_32604_cmc_2023_036450 crossref_primary_10_3390_electronics10141744 crossref_primary_10_1049_wss2_12100 crossref_primary_10_1016_j_jclepro_2023_137300 crossref_primary_10_1002_ett_4232 crossref_primary_10_1007_s00500_021_05871_6 crossref_primary_10_1016_j_future_2021_05_029 crossref_primary_10_3390_s25113384 crossref_primary_10_1155_2021_4907754 crossref_primary_10_1109_TIM_2024_3353274 crossref_primary_10_4018_IJSWIS_331083 crossref_primary_10_1007_s13369_024_09010_9 crossref_primary_10_1016_j_techfore_2021_120569 crossref_primary_10_1007_s10462_023_10689_9 crossref_primary_10_1007_s12083_021_01134_1 crossref_primary_10_1007_s11042_021_10631_7 crossref_primary_10_4018_IJSWIS_339000 crossref_primary_10_1109_TCSII_2023_3260248 crossref_primary_10_4018_IJSWIS_345246 crossref_primary_10_1007_s11042_023_14479_x crossref_primary_10_1007_s12652_023_04577_x crossref_primary_10_3390_s23031210 crossref_primary_10_1145_3382772 crossref_primary_10_1007_s12083_021_01232_0 crossref_primary_10_1007_s00500_024_09938_y crossref_primary_10_1016_j_neucom_2022_02_083 crossref_primary_10_1016_j_ijleo_2021_168194 crossref_primary_10_1371_journal_pone_0262609 crossref_primary_10_1007_s11042_023_15037_1 crossref_primary_10_1007_s11042_021_11081_x crossref_primary_10_1049_smc2_12086 crossref_primary_10_1111_exsy_12913 crossref_primary_10_1007_s12083_021_01220_4 crossref_primary_10_1080_17517575_2021_1930189 crossref_primary_10_1007_s11042_020_09262_1 crossref_primary_10_1007_s11235_021_00826_6 crossref_primary_10_1016_j_bdr_2021_100245 crossref_primary_10_1155_2021_9932292 crossref_primary_10_1007_s13198_025_02764_x crossref_primary_10_1016_j_ins_2020_05_086 crossref_primary_10_4018_IJSWIS_337286 crossref_primary_10_1016_j_jfranklin_2025_107511 crossref_primary_10_1007_s11042_021_11246_8 crossref_primary_10_1007_s11277_021_08769_6 crossref_primary_10_1016_j_bdr_2021_100295 crossref_primary_10_1016_j_comcom_2021_07_005 crossref_primary_10_1007_s11042_023_15699_x crossref_primary_10_4018_IJCAC_297095 crossref_primary_10_1007_s11277_021_08723_6 crossref_primary_10_1016_j_cosrev_2023_100568 crossref_primary_10_1007_s00521_021_06396_7 crossref_primary_10_1080_13682199_2023_2223080 crossref_primary_10_1155_2021_9403874 crossref_primary_10_3390_jsan13010002 crossref_primary_10_1007_s11042_020_09904_4 crossref_primary_10_1109_JAS_2021_1004003 crossref_primary_10_1007_s00034_025_03023_x crossref_primary_10_1016_j_techfore_2021_120591 crossref_primary_10_3390_math11071730 crossref_primary_10_4018_IJSWIS_343491 crossref_primary_10_1016_j_comnet_2021_108230 crossref_primary_10_1016_j_ins_2020_06_026 crossref_primary_10_1007_s12083_020_00963_w crossref_primary_10_1007_s11227_021_03889_z crossref_primary_10_1016_j_ins_2020_12_019 crossref_primary_10_1007_s11042_021_11301_4 crossref_primary_10_1109_TMM_2020_3006415 crossref_primary_10_1016_j_ssci_2021_105410 crossref_primary_10_1186_s13677_022_00310_9 crossref_primary_10_1371_journal_pone_0275422 crossref_primary_10_1007_s11042_018_7115_x crossref_primary_10_1007_s11042_023_16809_5 crossref_primary_10_32604_cmc_2022_019404 crossref_primary_10_1016_j_techfore_2020_120532 crossref_primary_10_1016_j_future_2021_09_012 crossref_primary_10_1186_s13635_021_00118_1 crossref_primary_10_1155_2021_5579148 crossref_primary_10_1007_s11042_023_14651_3 crossref_primary_10_1109_JAS_2021_1004344 crossref_primary_10_32604_cmc_2021_015770 crossref_primary_10_4018_IJSWIS_349577 crossref_primary_10_1007_s11042_023_15701_6 crossref_primary_10_1016_j_chaos_2023_113449 crossref_primary_10_3390_s25010128 crossref_primary_10_1007_s11042_021_11130_5 crossref_primary_10_1002_int_22742 crossref_primary_10_1007_s11042_023_16699_7 crossref_primary_10_1007_s13369_023_08263_0 crossref_primary_10_1007_s10586_023_04106_7 crossref_primary_10_4018_IJSWIS_344457 crossref_primary_10_1016_j_future_2021_09_018 crossref_primary_10_1007_s13735_020_00197_9 crossref_primary_10_1007_s12083_021_01249_5 crossref_primary_10_1007_s12083_021_01203_5 crossref_primary_10_1088_2631_8695_adf52a crossref_primary_10_1117_1_JEI_32_5_053013 crossref_primary_10_1007_s11042_020_09606_x crossref_primary_10_1007_s11063_020_10325_5 crossref_primary_10_3390_math13152493 crossref_primary_10_1007_s00500_020_05484_5 crossref_primary_10_1007_s11042_022_12072_2 crossref_primary_10_1016_j_jocs_2021_101445 crossref_primary_10_4018_JGIM_2020100108 crossref_primary_10_1007_s00500_018_3610_2 crossref_primary_10_1007_s13042_020_01241_0 crossref_primary_10_3390_math13060947 crossref_primary_10_3390_app132111852 crossref_primary_10_1007_s11042_022_12034_8 crossref_primary_10_4018_IJSWIS_352853 crossref_primary_10_1007_s11277_021_08451_x crossref_primary_10_1016_j_iswa_2024_200325 crossref_primary_10_32604_cmc_2022_026759 crossref_primary_10_1016_j_bdr_2022_100360 crossref_primary_10_4018_IJCAC_311033 crossref_primary_10_1007_s00521_020_05410_8 crossref_primary_10_3233_JIFS_202919 crossref_primary_10_1007_s11042_023_16791_y crossref_primary_10_1109_TITS_2022_3215538 crossref_primary_10_1007_s00500_020_04706_0 crossref_primary_10_1007_s42452_021_04387_w crossref_primary_10_1007_s00530_020_00728_8 crossref_primary_10_1007_s11042_023_14873_5 crossref_primary_10_1016_j_ijleo_2020_165272 crossref_primary_10_1007_s12083_021_01200_8 crossref_primary_10_1109_ACCESS_2021_3071654 crossref_primary_10_1109_TCE_2022_3217974 crossref_primary_10_1002_dac_5237 crossref_primary_10_1049_rpg2_12785 crossref_primary_10_1145_3508365 crossref_primary_10_1007_s11042_022_12691_9 crossref_primary_10_1016_j_techfore_2021_120613 crossref_primary_10_1016_j_sysarc_2022_102569 crossref_primary_10_1016_j_ins_2023_119904 crossref_primary_10_3389_fenvs_2022_950055 crossref_primary_10_1007_s11517_020_02269_8 crossref_primary_10_1016_j_ijleo_2021_168231 crossref_primary_10_1007_s10766_024_00779_8 crossref_primary_10_1007_s11042_020_09776_8 crossref_primary_10_3390_electronics12010074 crossref_primary_10_1007_s11071_024_09547_2 crossref_primary_10_3390_su141711040 crossref_primary_10_1155_2021_5551976 crossref_primary_10_1117_1_JEI_32_3_031804 crossref_primary_10_1007_s12083_021_01153_y crossref_primary_10_1111_exsy_13047 crossref_primary_10_1038_s41598_025_01297_4 crossref_primary_10_1007_s00500_021_05732_2 crossref_primary_10_4018_IJSSCI_334711 crossref_primary_10_4018_IJSWIS_337320 crossref_primary_10_1007_s11042_020_09341_3 crossref_primary_10_1007_s11042_023_17573_2 crossref_primary_10_1145_3309545 crossref_primary_10_1109_TCE_2024_3475517 crossref_primary_10_1109_TIP_2025_3593911 crossref_primary_10_4018_IJSWIS_335947 crossref_primary_10_1109_TIFS_2024_3428856 crossref_primary_10_1007_s10586_018_2516_1 crossref_primary_10_1155_2021_5589688 crossref_primary_10_3390_electronics10111337 crossref_primary_10_4018_IJSWIS_307324 crossref_primary_10_1109_TAI_2024_3515938 crossref_primary_10_4018_IJSWIS_333056 crossref_primary_10_1007_s10586_021_03362_9 crossref_primary_10_1155_2021_9943713 crossref_primary_10_1002_cpe_7143 crossref_primary_10_1007_s00500_018_3621_z crossref_primary_10_4018_IJSWIS_324105 crossref_primary_10_1016_j_cosrev_2020_100317 crossref_primary_10_1051_itmconf_20246000009 crossref_primary_10_1016_j_techfore_2021_120754 crossref_primary_10_4018_JOEUC_2020100105 crossref_primary_10_1016_j_compeleceng_2023_108985 crossref_primary_10_1016_j_asoc_2021_107473 crossref_primary_10_1007_s11277_021_09087_7 crossref_primary_10_1016_j_comcom_2021_09_005 crossref_primary_10_1049_ipr2_12143 crossref_primary_10_1016_j_techfore_2021_120642 crossref_primary_10_1007_s11277_021_08715_6 crossref_primary_10_1109_ACCESS_2019_2931039 crossref_primary_10_4018_IJSWIS_333063 crossref_primary_10_1007_s00371_021_02277_1 crossref_primary_10_1007_s00500_023_07904_8 crossref_primary_10_1016_j_ipm_2020_102256 crossref_primary_10_4018_IJSWIS_338999 crossref_primary_10_1007_s11276_021_02554_w crossref_primary_10_1016_j_jpdc_2021_03_011 crossref_primary_10_1016_j_bspc_2024_106195 crossref_primary_10_1002_dac_4907 crossref_primary_10_32604_cmc_2022_019802 crossref_primary_10_3390_s21093133 crossref_primary_10_1007_s13369_022_06841_2 crossref_primary_10_1016_j_compeleceng_2023_109058 crossref_primary_10_1007_s11277_022_09519_y crossref_primary_10_1016_j_ins_2020_05_034 crossref_primary_10_4018_IJCAC_2022010101 crossref_primary_10_1080_17517575_2020_1856423 crossref_primary_10_1007_s11277_021_09086_8 crossref_primary_10_1007_s11042_022_13779_y crossref_primary_10_1016_j_ipm_2020_102468 crossref_primary_10_1155_2021_9984453 crossref_primary_10_4018_IJSWIS_333712 crossref_primary_10_1109_TII_2019_2929228 crossref_primary_10_1002_int_22461 crossref_primary_10_1016_j_ipm_2022_103122 crossref_primary_10_1016_j_asoc_2020_106983 crossref_primary_10_4018_IJSWIS_340938 crossref_primary_10_3390_a14080242 crossref_primary_10_3390_s22072431 crossref_primary_10_4018_IJSWIS_336550 crossref_primary_10_1016_j_techfore_2020_120486 crossref_primary_10_1109_TETCI_2021_3055520 crossref_primary_10_1007_s12083_021_01173_8 crossref_primary_10_4018_IJSWIS_300824 crossref_primary_10_4018_IJSWIS_349986 crossref_primary_10_1007_s11042_023_16827_3 crossref_primary_10_1007_s11063_020_10258_z crossref_primary_10_1007_s12652_021_03355_x crossref_primary_10_32604_cmc_2022_029835 crossref_primary_10_3390_rs17030502 crossref_primary_10_1007_s12083_021_01268_2 crossref_primary_10_32604_cmc_2023_040914 crossref_primary_10_1007_s11042_019_08290_w crossref_primary_10_1007_s12083_021_01207_1 |
| Cites_doi | 10.1038/323533a0 10.1109/TSMCA.2012.2223670 10.1007/s11042-015-3188-y 10.1016/j.neucom.2015.08.096 10.1007/s10032-014-0229-4 10.1007/s10586-017-0859-7 10.1109/TSP.2004.839896 10.1126/science.1127647 10.1109/TPAMI.2015.2389824 10.1109/TIT.2013.2267934 10.1007/s10278-015-9822-4 10.1113/jphysiol.1962.sp006837 10.1109/TITS.2014.2308281 |
| ContentType | Journal Article |
| Copyright | 2018 |
| Copyright_xml | – notice: 2018 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2018.02.060 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 447 |
| ExternalDocumentID | 10_1016_j_ins_2018_02_060 S0020025518301452 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-e17b19a2f583bd4aad4e71c9346378ecaa412df970fd6740dbf2284e8e920d8a3 |
| ISICitedReferencesCount | 258 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000458229200027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Sat Nov 29 06:57:08 EST 2025 Tue Nov 18 21:39:27 EST 2025 Fri Feb 23 02:33:55 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Image watermark Smart cities Algorithm design Convolutional neural network Generation scenario |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-e17b19a2f583bd4aad4e71c9346378ecaa412df970fd6740dbf2284e8e920d8a3 |
| ORCID | 0000-0002-2276-2378 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2018_02_060 crossref_primary_10_1016_j_ins_2018_02_060 elsevier_sciencedirect_doi_10_1016_j_ins_2018_02_060 |
| PublicationCentury | 2000 |
| PublicationDate | April 2019 2019-04-00 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Information sciences |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Zhu, Krahenbuhl, Shechtman, Efros (bib0044) 2015 Cai, Deng, Li (bib0004) 2017 Liang, Shi, Wang, Meng, Wang, Sun, Gu (bib0030) December 2016 Su, Chen (bib0037) 2017 Lu, Wei, Liu, Zhong, Sun, Liu (bib0029) 2017; 76 Williams, Hinton (bib0040) 1986; 323 Dahl, Sainath, Hinton (bib0008) May 2013 Qian, Tian, Li (bib0035) August 2016 Jiao, Permuter, Zhao, Kim, Weissman (bib0015) 2013; 59 Badshah, Liew, Zain, Ali (bib0001) 2016; 29 He, Zhang, Ren, Sun (bib0013) 2015; 37 M. Lin, Q. Chen, S. Yan, 2013. Network in network. arXiv preprint Chen, Zhang, Yang (bib0006) 2017 Liu, Zhang, Cui, Wu, Aghajan, Zha (bib0031) October 2010 Wang, Li, Wang (bib0042) 2017 Scherer, Müller, Behnke (bib0038) 2010 Kim, Xie (bib0018) 2015; 18 Zareapoor, Shamsolmoali, Jain, Wang, Yang (bib0045) September 2017 Y. Liu, Y. Liang, S. Liu, D.S. Rosenblum, Y. Zheng, 2016. Predicting urban water quality with ubiquitous data. arXiv preprint Deng, Dong, Socher, Li, Li, Fei-Fei (bib0007) 2009, June Wang, Wang (bib0043) November 2014 Bakshi, Sa, Wang (bib0002) 2017 Liu, Cui, Zhao, Zha (bib0022) November 2012 Preoţiuc-Pietro, Liu, Hopkins, Ungar (bib0033) 2017; 1 Liu, Nie, Liu, Rosenblum (bib0027) 2016; 181 Hinton, Salakhutdinov (bib0014) 2006; 313 Y. Liu, Y. Zheng, Y. Liang, S. Liu, D.S. Rosenblum. Urban water quality prediction based on multi-task multi-view learning, 2016. Krizhevsky, Sutskever, Hinton (bib0017) 2012 Boureau, Ponce, LeCun (bib0003) 2010 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0039) 2015 Wang, Moulin (bib0041) 2006; 2 Etemad, Samavi, Reza Soroushmehr (bib0009) 2017 He, Zhang, Ren, Sun (bib0012) 2015 . Liu, Nie, Han, Zhang, Rosenblum (bib0026) July 2015 Zhang, Wang, Huang (bib0046) 2017; 20 Lin, Lv, Zhu, Yang, Cour, Yu, Cao, Huang (bib0020) June 2011 Girshick, Donahue, Darrell, Malik (bib0010) 2014 Plageras, Psannis, Stergiou, Wang, Gupta (bib0034) 2017 Liu, Cheng, Liu, Jia, Rosenblum (bib0028) February 2016; 30 Jin, Fu, Zhang (bib0016) 2014; 15 Liu, Zhang, Nie, Yan, Rosenblum (bib0021) February 2016 Hubel, Wiesel (bib0011) 1962; 160 Lyu, Farid (bib0019) 2005; 53 Mahendran, Vedaldi (bib0032) 2015 Cui, Liu, Xu, Zhao, Zha (bib0005) 2013; 43 Deng (10.1016/j.ins.2018.02.060_bib0007) 2009 Wang (10.1016/j.ins.2018.02.060_bib0043) 2014 Liu (10.1016/j.ins.2018.02.060_bib0022) 2012 Wang (10.1016/j.ins.2018.02.060_bib0041) 2006; 2 Hinton (10.1016/j.ins.2018.02.060_bib0014) 2006; 313 Liu (10.1016/j.ins.2018.02.060_bib0027) 2016; 181 Su (10.1016/j.ins.2018.02.060_bib0037) 2017 Cui (10.1016/j.ins.2018.02.060_bib0005) 2013; 43 Bakshi (10.1016/j.ins.2018.02.060_bib0002) 2017 Badshah (10.1016/j.ins.2018.02.060_bib0001) 2016; 29 Jiao (10.1016/j.ins.2018.02.060_bib0015) 2013; 59 Dahl (10.1016/j.ins.2018.02.060_bib0008) 2013 Scherer (10.1016/j.ins.2018.02.060_bib0038) 2010 Zhu (10.1016/j.ins.2018.02.060_bib0044) 2015 Liu (10.1016/j.ins.2018.02.060_bib0026) 2015 Hubel (10.1016/j.ins.2018.02.060_bib0011) 1962; 160 Zhang (10.1016/j.ins.2018.02.060_bib0046) 2017; 20 Krizhevsky (10.1016/j.ins.2018.02.060_bib0017) 2012 Szegedy (10.1016/j.ins.2018.02.060_bib0039) 2015 Boureau (10.1016/j.ins.2018.02.060_bib0003) 2010 Cai (10.1016/j.ins.2018.02.060_bib0004) 2017 Lyu (10.1016/j.ins.2018.02.060_bib0019) 2005; 53 Liu (10.1016/j.ins.2018.02.060_bib0021) 2016 Etemad (10.1016/j.ins.2018.02.060_bib0009) 2017 Lu (10.1016/j.ins.2018.02.060_bib0029) 2017; 76 Girshick (10.1016/j.ins.2018.02.060_bib0010) 2014 Jin (10.1016/j.ins.2018.02.060_bib0016) 2014; 15 Plageras (10.1016/j.ins.2018.02.060_bib0034) 2017 Liu (10.1016/j.ins.2018.02.060_bib0028) 2016; 30 Liu (10.1016/j.ins.2018.02.060_bib0031) 2010 Liang (10.1016/j.ins.2018.02.060_bib0030) 2016 He (10.1016/j.ins.2018.02.060_bib0013) 2015; 37 10.1016/j.ins.2018.02.060_bib0025 10.1016/j.ins.2018.02.060_bib0024 Lin (10.1016/j.ins.2018.02.060_bib0020) 2011 10.1016/j.ins.2018.02.060_bib0023 Williams (10.1016/j.ins.2018.02.060_bib0040) 1986; 323 Chen (10.1016/j.ins.2018.02.060_bib0006) 2017 He (10.1016/j.ins.2018.02.060_bib0012) 2015 Wang (10.1016/j.ins.2018.02.060_bib0042) 2017 Zareapoor (10.1016/j.ins.2018.02.060_bib0045) 2017 Kim (10.1016/j.ins.2018.02.060_bib0018) 2015; 18 Mahendran (10.1016/j.ins.2018.02.060_bib0032) 2015 Qian (10.1016/j.ins.2018.02.060_bib0035) 2016 Preoţiuc-Pietro (10.1016/j.ins.2018.02.060_bib0033) 2017; 1 |
| References_xml | – start-page: 26 year: October 2010 end-page: 33 ident: bib0031 article-title: Visual analysis of child-adult interactive behaviors in video sequences publication-title: Virtual Systems and Multimedia (VSMM), 2010 16th International Conference on – start-page: 1 year: 2015 end-page: 9 ident: bib0039 article-title: Going deeper with convolutions publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: September 2017 ident: bib0045 article-title: Kernelized support vector machine with deep learning: an efficient approach for extreme multiclass dataset publication-title: Pattern Recogn. Lett. – start-page: 2954 year: December 2016 end-page: 2958 ident: bib0030 article-title: Optimizing top precision performance measure of content-based image retrieval by learning similarity function publication-title: Pattern Recognition (ICPR), 2016 23rd International Conference on – volume: 160 start-page: 106 year: 1962 end-page: 154 ident: bib0011 article-title: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex publication-title: J. Physiol. – reference: Y. Liu, Y. Zheng, Y. Liang, S. Liu, D.S. Rosenblum. Urban water quality prediction based on multi-task multi-view learning, 2016. – start-page: 201 year: February 2016 end-page: 207 ident: bib0021 article-title: Fortune teller: predicting your career path publication-title: AAAI – volume: 29 start-page: 216 year: 2016 end-page: 225 ident: bib0001 article-title: Watermark compression in medical image watermarking using Lempel-Ziv-Welch (LZW) lossless compression technique publication-title: J. Digital Imag. – start-page: 1097 year: 2012 end-page: 1105 ident: bib0017 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 18 start-page: 1 year: 2015 end-page: 13 ident: bib0018 article-title: Handwritten Hangul recognition using deep convolutional neural networks publication-title: Int. J. Document Anal. Recogn. (IJDAR) – start-page: 277 year: August 2016 end-page: 280 ident: bib0035 article-title: Robust blind image watermarking algorithm based on singular value quantization publication-title: Proceedings of the International Conference on Internet Multimedia Computing and Service – start-page: 898 year: November 2012 end-page: 901 ident: bib0022 article-title: Fusion of low-and high-dimensional approaches by trackers sampling for generic human motion tracking publication-title: Pattern Recognition (ICPR), 2012 21st International Conference on – volume: 181 start-page: 108 year: 2016 end-page: 115 ident: bib0027 article-title: From action to activity: sensor-based activity recognition publication-title: Neurocomputing – volume: 2 year: 2006 ident: bib0041 article-title: On discrimination between photorealistic and photographic images publication-title: Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on – start-page: 111 year: 2010 end-page: 118 ident: bib0003 article-title: A theoretical analysis of feature pooling in visual recognition publication-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10) – volume: 37 start-page: 1904 year: 2015 end-page: 1916 ident: bib0013 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 248 year: 2009, June end-page: 255 ident: bib0007 article-title: Imagenet: a large-scale hierarchical image database publication-title: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on – reference: M. Lin, Q. Chen, S. Yan, 2013. Network in network. arXiv preprint – volume: 30 start-page: 1266 year: February 2016 end-page: 1272 ident: bib0028 article-title: Recognizing Complex activities by a probabilistic interval-based model publication-title: AAAI – year: 2017 ident: bib0034 article-title: Efficient IoT-based sensor BIG Data collection-processing and analysis in smart buildings publication-title: Future Gen. Comput. Syst. – year: 2017 ident: bib0006 publication-title: Multimed. Tools Appl. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: bib0014 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – start-page: 8609 year: May 2013 end-page: 8613 ident: bib0008 article-title: Improving deep neural networks for LVCSR using rectified linear units and dropout publication-title: Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on – start-page: 1026 year: 2015 end-page: 1034 ident: bib0012 article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 76 start-page: 10701 year: 2017 end-page: 10719 ident: bib0029 article-title: Towards unsupervised physical activity recognition using smartphone accelerometers publication-title: Multimed. Tools Appl. – volume: 59 start-page: 6220 year: 2013 end-page: 6242 ident: bib0015 article-title: Universal estimation of directed information publication-title: IEEE Trans. Inf. Theory – reference: Y. Liu, Y. Liang, S. Liu, D.S. Rosenblum, Y. Zheng, 2016. Predicting urban water quality with ubiquitous data. arXiv preprint – volume: 20 start-page: 1517 year: 2017 ident: bib0046 publication-title: Cluster Comput. – volume: 53 start-page: 845 year: 2005 end-page: 850 ident: bib0019 article-title: How realistic is photorealistic? publication-title: IEEE Trans. Signal Process. – start-page: 1617 year: July 2015 end-page: 1623 ident: bib0026 article-title: Action2Activity: recognizing complex activities from sensor data publication-title: IJCAI – year: 2017 ident: bib0002 publication-title: Multimed. Tools Appl. – volume: 1 start-page: 729 year: 2017 end-page: 740 ident: bib0033 article-title: Beyond binary labels: political ideology prediction of twitter users publication-title: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) – year: 2017 ident: bib0004 publication-title: Cluster Comput. – start-page: 1689 year: June 2011 end-page: 1696 ident: bib0020 article-title: Large-scale image classification: fast feature extraction and svm training publication-title: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on – start-page: 853 year: November 2014 end-page: 858 ident: bib0043 article-title: An effective image representation method using kernel classification publication-title: Tools with Artificial Intelligence (ICTAI), 2014 IEEE 26th International Conference on – reference: . – year: 2017 ident: bib0009 publication-title: Multimed. Tools Appl. – volume: 15 start-page: 1991 year: 2014 end-page: 2000 ident: bib0016 article-title: Traffic sign recognition with hinge loss trained convolutional neural networks publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 5188 year: 2015 end-page: 5196 ident: bib0032 article-title: Understanding deep image representations by inverting them publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 323 start-page: 533 year: 1986 end-page: 538 ident: bib0040 article-title: Learning representations by back-propagating errors publication-title: Nature – start-page: 580 year: 2014 end-page: 587 ident: bib0010 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2017 ident: bib0042 publication-title: Cluster Comput. – volume: 43 start-page: 996 year: 2013 end-page: 1002 ident: bib0005 article-title: Tracking generic human motion via fusion of low-and high-dimensional approaches publication-title: IEEE Trans. Syst. Man Cybernet. – start-page: 1 year: 2017 end-page: 16 ident: bib0037 article-title: Robust color image watermarking technique in the spatial domain publication-title: Soft Comput. – start-page: 92 year: 2010 end-page: 101 ident: bib0038 article-title: Evaluation of pooling operations in convolutional architectures for object recognition publication-title: Artificial Neural Networks–ICANN 2010 – start-page: 3943 year: 2015 end-page: 3951 ident: bib0044 article-title: Learning a discriminative model for the perception of realism in composite images publication-title: Proceedings of the IEEE International Conference on Computer Vision – ident: 10.1016/j.ins.2018.02.060_bib0023 – year: 2017 ident: 10.1016/j.ins.2018.02.060_bib0006 publication-title: Multimed. Tools Appl. – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 10.1016/j.ins.2018.02.060_bib0040 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 43 start-page: 996 issue: 4 year: 2013 ident: 10.1016/j.ins.2018.02.060_bib0005 article-title: Tracking generic human motion via fusion of low-and high-dimensional approaches publication-title: IEEE Trans. Syst. Man Cybernet. doi: 10.1109/TSMCA.2012.2223670 – start-page: 898 year: 2012 ident: 10.1016/j.ins.2018.02.060_bib0022 article-title: Fusion of low-and high-dimensional approaches by trackers sampling for generic human motion tracking – start-page: 5188 year: 2015 ident: 10.1016/j.ins.2018.02.060_bib0032 article-title: Understanding deep image representations by inverting them – volume: 76 start-page: 10701 issue: 8 year: 2017 ident: 10.1016/j.ins.2018.02.060_bib0029 article-title: Towards unsupervised physical activity recognition using smartphone accelerometers publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-015-3188-y – volume: 181 start-page: 108 year: 2016 ident: 10.1016/j.ins.2018.02.060_bib0027 article-title: From action to activity: sensor-based activity recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.096 – start-page: 277 year: 2016 ident: 10.1016/j.ins.2018.02.060_bib0035 article-title: Robust blind image watermarking algorithm based on singular value quantization – start-page: 2954 year: 2016 ident: 10.1016/j.ins.2018.02.060_bib0030 article-title: Optimizing top precision performance measure of content-based image retrieval by learning similarity function – year: 2017 ident: 10.1016/j.ins.2018.02.060_bib0045 article-title: Kernelized support vector machine with deep learning: an efficient approach for extreme multiclass dataset publication-title: Pattern Recogn. Lett. – volume: 18 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.ins.2018.02.060_bib0018 article-title: Handwritten Hangul recognition using deep convolutional neural networks publication-title: Int. J. Document Anal. Recogn. (IJDAR) doi: 10.1007/s10032-014-0229-4 – start-page: 1 year: 2017 ident: 10.1016/j.ins.2018.02.060_bib0037 article-title: Robust color image watermarking technique in the spatial domain publication-title: Soft Comput. – year: 2017 ident: 10.1016/j.ins.2018.02.060_bib0002 publication-title: Multimed. Tools Appl. – year: 2017 ident: 10.1016/j.ins.2018.02.060_bib0009 publication-title: Multimed. Tools Appl. – volume: 20 start-page: 1517 year: 2017 ident: 10.1016/j.ins.2018.02.060_bib0046 publication-title: Cluster Comput. doi: 10.1007/s10586-017-0859-7 – volume: 53 start-page: 845 issue: 2 year: 2005 ident: 10.1016/j.ins.2018.02.060_bib0019 article-title: How realistic is photorealistic? publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2004.839896 – start-page: 853 year: 2014 ident: 10.1016/j.ins.2018.02.060_bib0043 article-title: An effective image representation method using kernel classification – ident: 10.1016/j.ins.2018.02.060_bib0025 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.ins.2018.02.060_bib0014 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – start-page: 1097 year: 2012 ident: 10.1016/j.ins.2018.02.060_bib0017 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 580 year: 2014 ident: 10.1016/j.ins.2018.02.060_bib0010 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation – volume: 37 start-page: 1904 issue: 9 year: 2015 ident: 10.1016/j.ins.2018.02.060_bib0013 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – ident: 10.1016/j.ins.2018.02.060_bib0024 – volume: 59 start-page: 6220 issue: 10 year: 2013 ident: 10.1016/j.ins.2018.02.060_bib0015 article-title: Universal estimation of directed information publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2013.2267934 – volume: 29 start-page: 216 issue: 2 year: 2016 ident: 10.1016/j.ins.2018.02.060_bib0001 article-title: Watermark compression in medical image watermarking using Lempel-Ziv-Welch (LZW) lossless compression technique publication-title: J. Digital Imag. doi: 10.1007/s10278-015-9822-4 – start-page: 8609 year: 2013 ident: 10.1016/j.ins.2018.02.060_bib0008 article-title: Improving deep neural networks for LVCSR using rectified linear units and dropout – start-page: 1026 year: 2015 ident: 10.1016/j.ins.2018.02.060_bib0012 article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification – start-page: 1617 year: 2015 ident: 10.1016/j.ins.2018.02.060_bib0026 article-title: Action2Activity: recognizing complex activities from sensor data – year: 2017 ident: 10.1016/j.ins.2018.02.060_bib0042 publication-title: Cluster Comput. – start-page: 92 year: 2010 ident: 10.1016/j.ins.2018.02.060_bib0038 article-title: Evaluation of pooling operations in convolutional architectures for object recognition – year: 2017 ident: 10.1016/j.ins.2018.02.060_bib0004 publication-title: Cluster Comput. – start-page: 3943 year: 2015 ident: 10.1016/j.ins.2018.02.060_bib0044 article-title: Learning a discriminative model for the perception of realism in composite images – volume: 1 start-page: 729 year: 2017 ident: 10.1016/j.ins.2018.02.060_bib0033 article-title: Beyond binary labels: political ideology prediction of twitter users – start-page: 111 year: 2010 ident: 10.1016/j.ins.2018.02.060_bib0003 article-title: A theoretical analysis of feature pooling in visual recognition – volume: 2 year: 2006 ident: 10.1016/j.ins.2018.02.060_bib0041 article-title: On discrimination between photorealistic and photographic images – volume: 160 start-page: 106 issue: 1 year: 1962 ident: 10.1016/j.ins.2018.02.060_bib0011 article-title: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex publication-title: J. Physiol. doi: 10.1113/jphysiol.1962.sp006837 – volume: 15 start-page: 1991 issue: 5 year: 2014 ident: 10.1016/j.ins.2018.02.060_bib0016 article-title: Traffic sign recognition with hinge loss trained convolutional neural networks publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2014.2308281 – start-page: 1689 year: 2011 ident: 10.1016/j.ins.2018.02.060_bib0020 article-title: Large-scale image classification: fast feature extraction and svm training – volume: 30 start-page: 1266 year: 2016 ident: 10.1016/j.ins.2018.02.060_bib0028 article-title: Recognizing Complex activities by a probabilistic interval-based model – start-page: 1 year: 2015 ident: 10.1016/j.ins.2018.02.060_bib0039 article-title: Going deeper with convolutions – start-page: 248 year: 2009 ident: 10.1016/j.ins.2018.02.060_bib0007 article-title: Imagenet: a large-scale hierarchical image database – start-page: 201 year: 2016 ident: 10.1016/j.ins.2018.02.060_bib0021 article-title: Fortune teller: predicting your career path – start-page: 26 year: 2010 ident: 10.1016/j.ins.2018.02.060_bib0031 article-title: Visual analysis of child-adult interactive behaviors in video sequences – year: 2017 ident: 10.1016/j.ins.2018.02.060_bib0034 article-title: Efficient IoT-based sensor BIG Data collection-processing and analysis in smart buildings publication-title: Future Gen. Comput. Syst. |
| SSID | ssj0004766 |
| Score | 2.6675441 |
| Snippet | The rise of machine learning increases the current computing capabilities and paves the way to novel disruptive applications. In the current era of big data,... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 432 |
| SubjectTerms | Algorithm design Convolutional neural network Generation scenario Image watermark Smart cities |
| Title | A novel CNN based security guaranteed image watermarking generation scenario for smart city applications |
| URI | https://dx.doi.org/10.1016/j.ins.2018.02.060 |
| Volume | 479 |
| WOSCitedRecordID | wos000458229200027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeqjQMcEAwQA4Z8QByIIiWuU8fHbhoMVFUcBuotSmxnbdUlVduV_iv8tzx_NWZ8CJC4RJGVl0R5v7wvvw-EXlVgBWci055qRmMqKxVzIVRcVyIZyCwhlYl3fB6x8TifTPjHXu-rr4XZLljT5LsdX_5XVsMaMFuXzv4Fu_c3hQU4B6bDEdgOxz9i_DBq2q1aRGfjcaR1lIzWbkZddAV40F8S1mbXOlnnS2kks4mX62HKyuFBt3gCJ7o1SYhruGATCX2DcLs7NGtdUZOjNdJib6uPXCn7tVeS2mxWVsSMAJxVsH46bdv1FETOu5ulNWtPV7N5F_S3VBdluwPCqzBikfIg0cWE0XwpzXeZntpujbWDYxWTlcY5I_GA2HFeXlxTO3zGCVzqoqNWd1PbvfMHtWAjFHPwZXSH9jQ3bVrtHINb3bb15rXxs0DU6R1X0O6HhGUcBObh8P355ENXdMvsRrh_b79lbpIHbz3o50ZPYMhcPkD3nQeChxY5D1FPNUfoXtCX8giduGoW_BoHnMVODzxC0yE2GMOAMWwwhj3GcIcxbDCGQ4zhDmPYYwzDA7DBGNYYwyHGHqNPb88vzy5iN7IjFoSzTaxSVqW8JHWW9ytJy1JSxVLB-3TQZ7kSZUlTImvOkloOGE1kVRMwkFSuOElkXvafoIOmbdRThFMQHLnQpdG0BHlSV4xSqhIhpORZKepjlPhvWgjXz16PVVkUPnFxXgAbCs2GIiEFsOEYvdmTLG0zl99dTD2jCvfnWCuzAFT9muzZv5E9R3e7X-UFOtisbtQJuiO2m9l69dJh7xtAvLIZ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+CNN+based+security+guaranteed+image+watermarking+generation+scenario+for+smart+city+applications&rft.jtitle=Information+sciences&rft.au=Li%2C+Daming&rft.au=Deng%2C+Lianbing&rft.au=Bhooshan+Gupta%2C+Brij&rft.au=Wang%2C+Haoxiang&rft.date=2019-04-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=479&rft.spage=432&rft.epage=447&rft_id=info:doi/10.1016%2Fj.ins.2018.02.060&rft.externalDocID=S0020025518301452 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |