A modified structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equations from transport theory

We consider the nonsymmetric algebraic Riccati equation arising in transport theory, where the n×n coefficient matrices A,B,C and E involved in the equation are rank structured. After a balancing strategy the matrix X̃T is the minimal positive solution of the dual algebraic Riccati equation, we can...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and applied mathematics Ročník 261; s. 213 - 220
Hlavní autoři: Guo, Pei-Chang, Guo, Xiao-Xia
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.05.2014
Témata:
ISSN:0377-0427, 1879-1778
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the nonsymmetric algebraic Riccati equation arising in transport theory, where the n×n coefficient matrices A,B,C and E involved in the equation are rank structured. After a balancing strategy the matrix X̃T is the minimal positive solution of the dual algebraic Riccati equation, we can simplify the structure-preserving doubling algorithm (SDA) to this special equation and give a modified SDA, which has less computational cost at each iteration step. Also, we use numerical experiments to show the effectiveness of our new methods.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2013.09.058