On a leader election algorithm: Truncated geometric case study

Recent work of Kalpathy and Mahmoud (in press) gives very general results for a broad class of fair leader election algorithms. They study the duration of contestants, i.e., the number of rounds a randomly selected contestant stays in the competition and another parameter for the associated tree str...

Full description

Saved in:
Bibliographic Details
Published in:Statistics & probability letters Vol. 87; pp. 40 - 47
Main Authors: Kalpathy, Ravi, Ward, Mark Daniel
Format: Journal Article
Language:English
Published: Elsevier B.V 01.04.2014
Subjects:
ISSN:0167-7152, 1879-2103
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recent work of Kalpathy and Mahmoud (in press) gives very general results for a broad class of fair leader election algorithms. They study the duration of contestants, i.e., the number of rounds a randomly selected contestant stays in the competition and another parameter for the associated tree structure. They present a unifying treatment for leader election algorithms, and they show how perpetuities naturally come about. Their theory, however, produces only trivial asymptotic results for the duration of election for some distributions, such as a truncated geometric distribution. In the case of a truncated geometric distribution, the limiting distribution of the duration of contestants is degenerate, and the method of Kalpathy and Mahmoud (in press) does not yield the precise asymptotics. The goal of this short note is to use an alternative method–namely, the q-series methodology–to make a very precise asymptotic analysis of the rate of decay of the mean and the variance of the duration of the election.
AbstractList Recent work of Kalpathy and Mahmoud (in press) gives very general results for a broad class of fair leader election algorithms. They study the duration of contestants, i.e., the number of rounds a randomly selected contestant stays in the competition and another parameter for the associated tree structure. They present a unifying treatment for leader election algorithms, and they show how perpetuities naturally come about. Their theory, however, produces only trivial asymptotic results for the duration of election for some distributions, such as a truncated geometric distribution. In the case of a truncated geometric distribution, the limiting distribution of the duration of contestants is degenerate, and the method of Kalpathy and Mahmoud (in press) does not yield the precise asymptotics. The goal of this short note is to use an alternative method–namely, the q-series methodology–to make a very precise asymptotic analysis of the rate of decay of the mean and the variance of the duration of the election.
Author Kalpathy, Ravi
Ward, Mark Daniel
Author_xml – sequence: 1
  givenname: Ravi
  surname: Kalpathy
  fullname: Kalpathy, Ravi
  email: kalpathy@gwu.edu
  organization: Department of Statistics, The George Washington University, Washington, DC 20052, USA
– sequence: 2
  givenname: Mark Daniel
  surname: Ward
  fullname: Ward, Mark Daniel
  email: mdw@purdue.edu
  organization: Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
BookMark eNp9kMtqwzAQRUVJoUnaD-hOP2BXI9mx3UKhhL4gkE26FspolCo4dpCUQv6-Dumqi6wGhjnDvWfCRl3fEWP3IHIQMHvY5nHf5lKAykHmQoorNoa6ajIJQo3YeLipsgpKecMmMW6FELIsYcyelx03vCVjKXBqCZPvh0276YNP37tHvgqHDk0iyzfU7ygFjxxNJB7TwR5v2bUzbaS7vzllX2-vq_lHtli-f85fFhnKpkqZdaoArEtrXAMIM1Urh8auqwLJUSGLUpi1JVRrNFRKRY2qXYFYz5raQWPVlFXnvxj6GAM5jT6ZU9YUjG81CH3SoLd60KBPGjRIPWgYSPhH7oPfmXC8yDydGRoq_XgKOqKnDsn6MBjStvcX6F-M-njk
CitedBy_id crossref_primary_10_1016_j_chaos_2018_01_016
crossref_primary_10_1016_j_spl_2015_02_018
crossref_primary_10_1007_s11009_014_9428_1
Cites_doi 10.1145/1008328.1008329
10.1239/aap/1396360110
10.1137/1.9781611973037.8
10.1007/s10998-012-9101-9
10.1137/1.9781611973013.14
10.1007/s00026-009-0004-2
10.1214/aoap/1035463332
10.1239/jap/1308662645
10.1016/j.spl.2013.09.011
10.1016/0012-365X(93)90572-B
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.spl.2013.12.020
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1879-2103
EndPage 47
ExternalDocumentID 10_1016_j_spl_2013_12_020
S0167715213004197
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1OL
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYJJ
ABAOU
ABEHJ
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMJ
HVGLF
HX~
HZ~
H~9
IHE
J1W
KOM
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-df341c85daf91c16383fcadb74cefe42450abdec3bcae523e938f4cc8698f19d3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000334486200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7152
IngestDate Tue Nov 18 22:18:52 EST 2025
Sat Nov 29 05:40:45 EST 2025
Fri Feb 23 02:34:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 60C05
Recurrence
68W40
Analysis of algorithms
q-series
Leader election
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-df341c85daf91c16383fcadb74cefe42450abdec3bcae523e938f4cc8698f19d3
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_spl_2013_12_020
crossref_primary_10_1016_j_spl_2013_12_020
elsevier_sciencedirect_doi_10_1016_j_spl_2013_12_020
PublicationCentury 2000
PublicationDate April 2014
2014-04-00
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: April 2014
PublicationDecade 2010
PublicationTitle Statistics & probability letters
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mohamed (br000060) 2006
Knuth (br000040) 1976
Kalpathy, Mahmoud, Ward (br000035) 2011; 48
Kalpathy, R., 2013. Perpetuities in fair leader election algorithms. Ph.D. Dissertation. Department of Statistics, The George Washington University. Washington, DC.
Janson, Lavault, Louchard (br000010) 2008; 10
Janson, Szpankowski (br000015) 1997; 4
Prodinger (br000065) 1993; 120
Louchard, Prodinger, Ward (br000055) 2012; 64
Louchard, G., Martínez, C., Prodinger, H., 2011. The swedish leader election protocol: analysis and variations, in: Flajolet, P., Panario, D. (Eds.), Proceedings of the Eighth ACM-SIAM Workshop on Analytic Algorithmics and Combinatorics (ANALCO). San Francisco, pp. 127–134.
Fill, Mahmoud, Szpankowski (br000005) 1996; 6
Kalpathy, Mahmoud, Rosenkrantz (br000030) 2013; 83
Louchard, Prodinger (br000050) 2009; 12
Kalpathy, Mahmoud (br000025) 2014; 46
Knuth (10.1016/j.spl.2013.12.020_br000040) 1976
10.1016/j.spl.2013.12.020_br000045
Kalpathy (10.1016/j.spl.2013.12.020_br000025) 2014; 46
Janson (10.1016/j.spl.2013.12.020_br000010) 2008; 10
Louchard (10.1016/j.spl.2013.12.020_br000050) 2009; 12
Kalpathy (10.1016/j.spl.2013.12.020_br000030) 2013; 83
Kalpathy (10.1016/j.spl.2013.12.020_br000035) 2011; 48
Janson (10.1016/j.spl.2013.12.020_br000015) 1997; 4
Mohamed (10.1016/j.spl.2013.12.020_br000060) 2006
Prodinger (10.1016/j.spl.2013.12.020_br000065) 1993; 120
Louchard (10.1016/j.spl.2013.12.020_br000055) 2012; 64
Fill (10.1016/j.spl.2013.12.020_br000005) 1996; 6
10.1016/j.spl.2013.12.020_br000020
References_xml – volume: 12
  start-page: 449
  year: 2009
  end-page: 478
  ident: br000050
  article-title: The asymmetric leader election algorithm: another approach
  publication-title: Ann. Comb.
– volume: 120
  start-page: 149
  year: 1993
  end-page: 159
  ident: br000065
  article-title: How to select a loser
  publication-title: Discrete Math.
– volume: 6
  start-page: 1260
  year: 1996
  end-page: 1283
  ident: br000005
  article-title: The distribution for the duration of a randomized leader election algorithm
  publication-title: Ann. Appl. Probab.
– volume: 83
  start-page: 2743
  year: 2013
  end-page: 2749
  ident: br000030
  article-title: Survivors in leader election algorithms
  publication-title: Statist. Probab. Lett.
– volume: 10
  start-page: 171
  year: 2008
  end-page: 196
  ident: br000010
  article-title: Convergence of some leader election algorithms
  publication-title: Discrete Math. Theor. Comput. Sci.
– volume: 64
  start-page: 101
  year: 2012
  end-page: 117
  ident: br000055
  article-title: Number of survivors in the presence of a demon
  publication-title: Period. Math. Hungar.
– volume: 4
  start-page: 1
  year: 1997
  end-page: 16
  ident: br000015
  article-title: Analysis of an asymmetric leader election algorithm
  publication-title: Electron. J. Combin.
– reference: Louchard, G., Martínez, C., Prodinger, H., 2011. The swedish leader election protocol: analysis and variations, in: Flajolet, P., Panario, D. (Eds.), Proceedings of the Eighth ACM-SIAM Workshop on Analytic Algorithmics and Combinatorics (ANALCO). San Francisco, pp. 127–134.
– start-page: 225
  year: 2006
  end-page: 236
  ident: br000060
  article-title: A probabilistic analysis of a leader election algorithm
  publication-title: DMTCS Proceedings AG
– reference: Kalpathy, R., 2013. Perpetuities in fair leader election algorithms. Ph.D. Dissertation. Department of Statistics, The George Washington University. Washington, DC.
– start-page: 18
  year: 1976
  end-page: 24
  ident: br000040
  article-title: Big omicron and big omega and big theta
  publication-title: SIGACT News
– volume: 46
  year: 2014
  ident: br000025
  article-title: Perpetuities in fair leader election algorithms
  publication-title: Adv. Appl. Probab.
– volume: 48
  start-page: 569
  year: 2011
  end-page: 575
  ident: br000035
  article-title: Asymptotic properties of a leader election algorithm
  publication-title: J. Appl. Probab.
– start-page: 18
  year: 1976
  ident: 10.1016/j.spl.2013.12.020_br000040
  article-title: Big omicron and big omega and big theta
  publication-title: SIGACT News
  doi: 10.1145/1008328.1008329
– volume: 46
  issue: 1
  year: 2014
  ident: 10.1016/j.spl.2013.12.020_br000025
  article-title: Perpetuities in fair leader election algorithms
  publication-title: Adv. Appl. Probab.
  doi: 10.1239/aap/1396360110
– volume: 4
  start-page: 1
  issue: R17
  year: 1997
  ident: 10.1016/j.spl.2013.12.020_br000015
  article-title: Analysis of an asymmetric leader election algorithm
  publication-title: Electron. J. Combin.
– ident: 10.1016/j.spl.2013.12.020_br000020
  doi: 10.1137/1.9781611973037.8
– volume: 10
  start-page: 171
  year: 2008
  ident: 10.1016/j.spl.2013.12.020_br000010
  article-title: Convergence of some leader election algorithms
  publication-title: Discrete Math. Theor. Comput. Sci.
– volume: 64
  start-page: 101
  year: 2012
  ident: 10.1016/j.spl.2013.12.020_br000055
  article-title: Number of survivors in the presence of a demon
  publication-title: Period. Math. Hungar.
  doi: 10.1007/s10998-012-9101-9
– ident: 10.1016/j.spl.2013.12.020_br000045
  doi: 10.1137/1.9781611973013.14
– volume: 12
  start-page: 449
  year: 2009
  ident: 10.1016/j.spl.2013.12.020_br000050
  article-title: The asymmetric leader election algorithm: another approach
  publication-title: Ann. Comb.
  doi: 10.1007/s00026-009-0004-2
– volume: 6
  start-page: 1260
  year: 1996
  ident: 10.1016/j.spl.2013.12.020_br000005
  article-title: The distribution for the duration of a randomized leader election algorithm
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/aoap/1035463332
– volume: 48
  start-page: 569
  year: 2011
  ident: 10.1016/j.spl.2013.12.020_br000035
  article-title: Asymptotic properties of a leader election algorithm
  publication-title: J. Appl. Probab.
  doi: 10.1239/jap/1308662645
– start-page: 225
  year: 2006
  ident: 10.1016/j.spl.2013.12.020_br000060
  article-title: A probabilistic analysis of a leader election algorithm
  publication-title: DMTCS Proceedings AG
– volume: 83
  start-page: 2743
  year: 2013
  ident: 10.1016/j.spl.2013.12.020_br000030
  article-title: Survivors in leader election algorithms
  publication-title: Statist. Probab. Lett.
  doi: 10.1016/j.spl.2013.09.011
– volume: 120
  start-page: 149
  year: 1993
  ident: 10.1016/j.spl.2013.12.020_br000065
  article-title: How to select a loser
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(93)90572-B
SSID ssj0002551
Score 2.0306783
Snippet Recent work of Kalpathy and Mahmoud (in press) gives very general results for a broad class of fair leader election algorithms. They study the duration of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 40
SubjectTerms [formula omitted]-series
Analysis of algorithms
Leader election
Recurrence
Title On a leader election algorithm: Truncated geometric case study
URI https://dx.doi.org/10.1016/j.spl.2013.12.020
Volume 87
WOSCitedRecordID wos000334486200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2103
  dateEnd: 20180430
  omitProxy: false
  ssIdentifier: ssj0002551
  issn: 0167-7152
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELXYDnBArGKXD5xAkbI4TcwBCSEQILYDoN4i23GgqKSotBWfz0zsuGUVHLhEVVS7UZ47M54Zv0fItmRC-rFmXhhx6THmC0-KhvJgaSmJlbdGdcr17jy5vEybTX5tVTpfKjmBpCzT11f-_K9Qwz0AG4_O_gFuNyncgM8AOlwBdrj-CvirclegGASSRFQiN1XDcfu-0231HkyXRbePVLAQat7rzhNKaqldBd5shGvWhqsYilomZ1wiqD5jeL1RbqIi5nQGW7RR3NhAJgatYaLe9M7jmSB7nn000RCM9qfY3CPY1CSI3xlP6y2N9TPES9aPGiLNTxbaJAseYQQWfoKoSsaG_tAd1SX4D17K9Q7WbWmPGUyR4RRZEGYwxTiZDJOYg2mbPDg9ap45hwy7pqCmeMfnr4vbVZvfh-f4OjwZCTlu5sis3SvQA4PxPBnT5QKZuXBEuy8LZHqI0CLZvyqpoAZ6WkNPHfR71AFPHfAUgacV8Evk9vjo5vDEs_oYngp50vPyAkIQlca5KHigMLCOCiVymTClC40lbV_IXKtIKqHjMNI8SgumVNrgaRHwPFomE2Wn1CuEMs2En8LfOS9ClgcFCprBzp5rsNCSR2yV-PVryZQlj0cNk3b2LRyrZMcNeTbMKT99mdXvOrOhnwnpMlg33w9b-8tvrJPp4bLeIBO9bl9vkik1AJi6W3bRvAE9g3ki
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+leader+election+algorithm%3A+Truncated+geometric+case+study&rft.jtitle=Statistics+%26+probability+letters&rft.au=Kalpathy%2C+Ravi&rft.au=Ward%2C+Mark+Daniel&rft.date=2014-04-01&rft.issn=0167-7152&rft.volume=87&rft.spage=40&rft.epage=47&rft_id=info:doi/10.1016%2Fj.spl.2013.12.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spl_2013_12_020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7152&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7152&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7152&client=summon