Automatic modulation classification of radar signals utilizing X-net

Automatic modulation classification (AMC) of radar signals has long been a challenge, especially in the area of electronic reconnaissance, where collecting and labeling numerous signal samples are usually harsh and impracticable. In this article, a novel recognition network is proposed for detecting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digital signal processing Jg. 123; S. 103396
Hauptverfasser: Chen, Kuiyu, Zhang, Jingyi, Chen, Si, Zhang, Shuning, Zhao, Huichang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 30.04.2022
Schlagworte:
ISSN:1051-2004
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Automatic modulation classification (AMC) of radar signals has long been a challenge, especially in the area of electronic reconnaissance, where collecting and labeling numerous signal samples are usually harsh and impracticable. In this article, a novel recognition network is proposed for detecting radiation signals under intense noise background with only simulation samples for model training. Owing to the X-shaped structure, the recognition network is named X-net. A residual learning convolutional denoising autoencoder (RLCDAE) and a supplementary classification network based on noise level estimation (NLE) constitute the X-net. Via pre-training of RLCDAE, the robustness against noise is enhanced. Then, a supplementary classification network further improves the recognition performance under low signal-to-noise ratios (SNRs). To evaluate the method, comparative experiments with some excellent algorithms on noise immunity and recognition accuracy are conducted. The cognitive system can still recognize ten kinds of radar signals with an overall precision of 96% even when the SNR is −8 dB. Furthermore, simulation samples trained model is verified by measured data. Outstanding performance proves the effectiveness and superiority of the proposed method on cognitive radar signals under low SNRs.
AbstractList Automatic modulation classification (AMC) of radar signals has long been a challenge, especially in the area of electronic reconnaissance, where collecting and labeling numerous signal samples are usually harsh and impracticable. In this article, a novel recognition network is proposed for detecting radiation signals under intense noise background with only simulation samples for model training. Owing to the X-shaped structure, the recognition network is named X-net. A residual learning convolutional denoising autoencoder (RLCDAE) and a supplementary classification network based on noise level estimation (NLE) constitute the X-net. Via pre-training of RLCDAE, the robustness against noise is enhanced. Then, a supplementary classification network further improves the recognition performance under low signal-to-noise ratios (SNRs). To evaluate the method, comparative experiments with some excellent algorithms on noise immunity and recognition accuracy are conducted. The cognitive system can still recognize ten kinds of radar signals with an overall precision of 96% even when the SNR is −8 dB. Furthermore, simulation samples trained model is verified by measured data. Outstanding performance proves the effectiveness and superiority of the proposed method on cognitive radar signals under low SNRs.
ArticleNumber 103396
Author Zhao, Huichang
Chen, Si
Zhang, Shuning
Chen, Kuiyu
Zhang, Jingyi
Author_xml – sequence: 1
  givenname: Kuiyu
  surname: Chen
  fullname: Chen, Kuiyu
  email: kuiyu_chen@163.com
– sequence: 2
  givenname: Jingyi
  surname: Zhang
  fullname: Zhang, Jingyi
  email: jingyizhang_njust@163.com
– sequence: 3
  givenname: Si
  orcidid: 0000-0003-4108-0070
  surname: Chen
  fullname: Chen, Si
  email: csnjust@163.com
– sequence: 4
  givenname: Shuning
  surname: Zhang
  fullname: Zhang, Shuning
  email: zsnnjust@163.com
– sequence: 5
  givenname: Huichang
  surname: Zhao
  fullname: Zhao, Huichang
  email: zhaohcnjust@163.com
BookMark eNp9j8tKAzEUhrOoYFt9AHfzAlNzmSuuSr1CwY2Cu5DJOSkZpklJUkGf3qnjykVX__kPfD98CzJz3iEhN4yuGGXVbb-CeFhxyvnYhWirGZkzWrKcU1pckkWMPaW0Lng1J_frY_J7lazO9h6Ow3h5l-lBxWiN1VP1JgsKVMii3Tk1xOyY7GC_rdtlH7nDdEUuzPjG679ckvfHh7fNc759fXrZrLe55m2dckDTYl0YwaBsS94IXhadaigahQ2rsWkrQxsErmgBqCvTcRBQM111AjoAsSRs2tXBxxjQyEOwexW-JKPypC57OarLk7qc1Eem_sdom361UlB2OEveTSSOSp8Wg4zaotMINqBOErw9Q_8AUPJ5Yg
CitedBy_id crossref_primary_10_3390_s24165344
crossref_primary_10_1016_j_dsp_2024_104552
crossref_primary_10_1109_TIM_2023_3242013
crossref_primary_10_3390_e26110915
crossref_primary_10_1016_j_compeleceng_2023_108948
crossref_primary_10_1016_j_dsp_2023_104017
crossref_primary_10_1007_s11760_025_04182_9
crossref_primary_10_1109_LSP_2025_3578289
crossref_primary_10_3390_drones7070472
crossref_primary_10_1109_LGRS_2024_3451499
crossref_primary_10_1007_s11276_023_03518_y
crossref_primary_10_1109_JIOT_2024_3391752
crossref_primary_10_1109_JSEN_2024_3403856
crossref_primary_10_3390_drones7050312
crossref_primary_10_1109_JIOT_2024_3432548
crossref_primary_10_1007_s12083_025_01959_0
crossref_primary_10_1109_JSEN_2025_3560442
crossref_primary_10_3390_electronics12081913
crossref_primary_10_1109_JIOT_2025_3538939
crossref_primary_10_1109_TAES_2023_3271965
Cites_doi 10.1016/j.optcom.2019.03.058
10.1016/j.sigpro.2003.10.019
10.3390/s21020449
10.1016/j.knosys.2019.04.022
10.1007/s11042-018-7137-4
10.1109/TIM.2018.2795178
10.1109/ACCESS.2017.2716191
10.1109/TIM.2018.2849478
10.1109/TIP.2017.2662206
10.1109/TASLP.2018.2821903
10.1038/nature14539
10.1016/j.sigpro.2018.11.004
10.1109/TIP.2016.2639447
10.1109/TVT.2019.2900460
10.1109/5.726791
10.1109/JSTSP.2007.897055
10.1109/TIM.2010.2045447
10.1109/TAES.2017.2667142
10.1109/JCN.2015.000087
10.1109/LCOMM.2018.2809732
10.3390/s21062117
10.1109/TASLP.2017.2751747
10.1109/TIM.2007.895675
10.1109/MIM.2015.7066677
10.1109/TSP.2002.804091
10.1016/j.ymssp.2018.05.050
10.1109/ACCESS.2018.2864347
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.dsp.2022.103396
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_dsp_2022_103396
S1051200422000136
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20200075
  funderid: https://doi.org/10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 61971226; 61801220
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
ZMT
ZU3
~G-
29G
9DU
AAQXK
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EFLBG
EJD
F0J
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c297t-def9e74f31d595283254ba80efae817e896f08ed2a04dec6fb2d3d71c6b3dbdd3
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000782997500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-2004
IngestDate Sat Nov 29 07:04:40 EST 2025
Tue Nov 18 21:22:28 EST 2025
Sun Apr 06 06:59:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Radar signals
Measured data
Residual learning convolutional denoising autoencoder
Supplementary classification networks
Noise level estimation
Automatic modulation classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-def9e74f31d595283254ba80efae817e896f08ed2a04dec6fb2d3d71c6b3dbdd3
ORCID 0000-0003-4108-0070
ParticipantIDs crossref_primary_10_1016_j_dsp_2022_103396
crossref_citationtrail_10_1016_j_dsp_2022_103396
elsevier_sciencedirect_doi_10_1016_j_dsp_2022_103396
PublicationCentury 2000
PublicationDate 2022-04-30
PublicationDateYYYYMMDD 2022-04-30
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-30
  day: 30
PublicationDecade 2020
PublicationTitle Digital signal processing
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Dong, Zhou, Tang (br0310) 2017; 26
Eldemerdash, Dobre (br0030) Feb. 2019; 68
Li, Li, Yang, Li (br0180) 2018; 22
Dobre (br0040) 2015; 18
Grimaldi, Rapuano, De (br0020) Oct. 2007; 56
Gupta, Bampis, Jin (br0320) 2018
Wang, Liu, Yang, Gui (br0170) 2019; 68
Zhang, Diao, Guo (br0190) 2017; 5
Philip (br0260) 2008
Taigman, Yang, Ranzato, l (br0290) Jun. 2014
He, Zhang, Ren (br0230) 2016
Dumoulin, Visin (br0280)
Yu (br0140) 2019; 178
Qu, Mao, Hou (br0070) 2018; 40
Guo, Nan, Zhang (br0080) 2015; 17
Ravi, Rao (br0270) April 2017; 53
Lunden, Koivunen (br0110) 2007; 1
Qu, Mao, Deng (br0200) 2018; 6
Fu, Wang, Tsao, Lu, Kawai (br0300) 2018; 26
De Vito, Rapuano, Villanacci (br0010) Oct. 2010; 59
Fang, Yi (br0330) 2019; 78
Wong, Nandi (br0050) 2004; 84
Zhang, Zuo, y (br0120) July 2017; 26
Sahraeian, Van (br0130) 2017; 25
Lecun, Bottou (br0220) 1998; 86
Sendur, Selesnick (br0250) 2002; 50
Mei, Yang, Yin (br0240) 2018; 67
Han (br0100) 2021; 21
Chen, Zhang, Zhu (br0210) 2021; 21
Rui, Yan, Chen (br0150) 2019; 115
Xu, Zhang, Zhou (br0090) 2019; 157
Lecun, Bengio, Hinton (br0160) 2015; 521
Wang, Du, Chen (br0060) 2019; 444
Han (10.1016/j.dsp.2022.103396_br0100) 2021; 21
Taigman (10.1016/j.dsp.2022.103396_br0290) 2014
Xu (10.1016/j.dsp.2022.103396_br0090) 2019; 157
Fu (10.1016/j.dsp.2022.103396_br0300) 2018; 26
Eldemerdash (10.1016/j.dsp.2022.103396_br0030) 2019; 68
Dobre (10.1016/j.dsp.2022.103396_br0040) 2015; 18
Rui (10.1016/j.dsp.2022.103396_br0150) 2019; 115
Qu (10.1016/j.dsp.2022.103396_br0070) 2018; 40
Zhang (10.1016/j.dsp.2022.103396_br0120) 2017; 26
Zhang (10.1016/j.dsp.2022.103396_br0190) 2017; 5
Gupta (10.1016/j.dsp.2022.103396_br0320) 2018
Qu (10.1016/j.dsp.2022.103396_br0200) 2018; 6
Yu (10.1016/j.dsp.2022.103396_br0140) 2019; 178
Lecun (10.1016/j.dsp.2022.103396_br0220) 1998; 86
Dumoulin (10.1016/j.dsp.2022.103396_br0280)
Guo (10.1016/j.dsp.2022.103396_br0080) 2015; 17
Philip (10.1016/j.dsp.2022.103396_br0260) 2008
He (10.1016/j.dsp.2022.103396_br0230) 2016
Sendur (10.1016/j.dsp.2022.103396_br0250) 2002; 50
Sahraeian (10.1016/j.dsp.2022.103396_br0130) 2017; 25
Wang (10.1016/j.dsp.2022.103396_br0060) 2019; 444
Grimaldi (10.1016/j.dsp.2022.103396_br0020) 2007; 56
Fang (10.1016/j.dsp.2022.103396_br0330) 2019; 78
Wang (10.1016/j.dsp.2022.103396_br0170) 2019; 68
Mei (10.1016/j.dsp.2022.103396_br0240) 2018; 67
Lunden (10.1016/j.dsp.2022.103396_br0110) 2007; 1
Ravi (10.1016/j.dsp.2022.103396_br0270) 2017; 53
Lecun (10.1016/j.dsp.2022.103396_br0160) 2015; 521
Chen (10.1016/j.dsp.2022.103396_br0210) 2021; 21
Dong (10.1016/j.dsp.2022.103396_br0310) 2017; 26
Li (10.1016/j.dsp.2022.103396_br0180) 2018; 22
De Vito (10.1016/j.dsp.2022.103396_br0010) 2010; 59
Wong (10.1016/j.dsp.2022.103396_br0050) 2004; 84
References_xml – volume: 84
  start-page: 351
  year: 2004
  end-page: 365
  ident: br0050
  article-title: Automatic digital modulation recognition using artificial neural network and genetic algorithm
  publication-title: Signal Process.
– volume: 17
  start-page: 491
  year: 2015
  end-page: 498
  ident: br0080
  article-title: Recognition of radar emitter signals based on SVD and AF main ridge slice
  publication-title: J. Commun. Netw.
– volume: 59
  start-page: 2639
  year: Oct. 2010
  end-page: 2651
  ident: br0010
  article-title: Prototype of an automatic digital modulation classifier embedded in a real-time spectrum analyzer
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 26
  start-page: 3142
  year: July 2017
  end-page: 3155
  ident: br0120
  article-title: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 6
  start-page: 43874
  year: 2018
  end-page: 43884
  ident: br0200
  article-title: Radar signal intra-pulse modulation recognition based on convolutional neural network
  publication-title: IEEE Access
– start-page: 770
  year: 2016
  end-page: 778
  ident: br0230
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern, Recognition (CVPR)
– volume: 21
  start-page: 2117
  year: 2021
  ident: br0100
  article-title: Automatic modulation classification based on deep feature fusion for high noise level and large dynamic input
  publication-title: Sensors
– volume: 68
  start-page: 642
  year: Feb. 2019
  end-page: 644
  ident: br0030
  article-title: A robust modulation classification method for PSK signals using random graphs
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 40
  start-page: 303
  year: 2018
  end-page: 307
  ident: br0070
  article-title: Radar signal recognition based on singular value entropy and fractal dimension
  publication-title: Syst. Eng. Electron.
– volume: 5
  start-page: 11074
  year: 2017
  end-page: 11082
  ident: br0190
  article-title: Convolutional neural networks for automatic cognitive radio waveform recognition
  publication-title: IEEE Access
– volume: 68
  start-page: 4074
  year: 2019
  end-page: 4077
  ident: br0170
  article-title: Data-driven deep learning for automatic modulation recognition in cognitive radios
  publication-title: IEEE Trans. Veh. Technol.
– volume: 444
  start-page: 1
  year: 2019
  end-page: 8
  ident: br0060
  article-title: QAM classification methods by SVM machine learning for improved optical interconnection
  publication-title: Opt. Commun.
– ident: br0280
  article-title: A guide to convolution arithmetic for deep learning
– volume: 50
  start-page: 2744
  year: 2002
  end-page: 2756
  ident: br0250
  article-title: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency
  publication-title: IEEE Trans. Signal Process.
– volume: 115
  start-page: 213
  year: 2019
  end-page: 237
  ident: br0150
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech. Syst. Signal Process.
– volume: 67
  start-page: 1266
  year: 2018
  end-page: 1277
  ident: br0240
  article-title: An unsupervised-learning-based approach for automated defect inspection on textured surfaces
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 18
  start-page: 11
  year: 2015
  end-page: 18
  ident: br0040
  article-title: Signal identification for emerging intelligent radios: classical problems and new challenges
  publication-title: Instrum. Meas. Mag.
– volume: 78
  start-page: 1
  year: 2019
  end-page: 22
  ident: br0330
  article-title: A novel natural image noise level estimation based on flat patches and local statistics
  publication-title: Multimed. Tools Appl.
– volume: 1
  start-page: 124
  year: 2007
  end-page: 136
  ident: br0110
  article-title: Automatic radar waveform recognition
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 21
  start-page: 449
  year: 2021
  end-page: 466
  ident: br0210
  article-title: Modulation recognition of radar signals based on adaptive singular value reconstruction and deep residual learning
  publication-title: Sensors
– year: 2018
  ident: br0320
  article-title: Natural scene statistics for noise estimation
  publication-title: 2018 IEEE Southwest Symposium on Image Analysis and Interpretation
– volume: 26
  start-page: 1017
  year: 2017
  end-page: 1030
  ident: br0310
  article-title: Noise level estimation for natural images based on scale-invariant kurtosis and piecewise stationarity
  publication-title: IEEE Trans. Image Process.
– year: 2008
  ident: br0260
  article-title: Detecting and Classifying Low Probability of Intercept Radar, Second Edition
– volume: 22
  start-page: 946
  year: 2018
  end-page: 949
  ident: br0180
  article-title: Robust automated VHF modulation recognition based on deep convolutional neural networks
  publication-title: IEEE Commun. Lett.
– volume: 53
  start-page: 901
  year: April 2017
  end-page: 914
  ident: br0270
  article-title: Automatic intrapulse modulation classification of advanced LPI radar waveforms
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 25
  start-page: 2301
  year: 2017
  end-page: 2312
  ident: br0130
  article-title: Crosslingual and multilingual speech recognition based on the speech manifold
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
– volume: 26
  start-page: 1570
  year: 2018
  end-page: 1584
  ident: br0300
  article-title: End-to-end waveform utterance enhancement for direct evaluation metrics optimization by fully convolutional neural networks
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
– start-page: 1701
  year: Jun. 2014
  end-page: 1708
  ident: br0290
  article-title: DeepFace: closing the gap to human-level performance in face verification
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: br0220
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 157
  start-page: 30
  year: 2019
  end-page: 44
  ident: br0090
  article-title: Recognition of radar signals based on AF grids and geometric shape constraint
  publication-title: Signal Process.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: br0160
  article-title: Deep learning
  publication-title: Nature
– volume: 178
  start-page: 111
  year: 2019
  end-page: 122
  ident: br0140
  article-title: Evolutionary manifold regularized stacked denoising autoencoders for gearbox fault diagnosis
  publication-title: Knowl.-Based Syst.
– volume: 56
  start-page: 1711
  year: Oct. 2007
  end-page: 1720
  ident: br0020
  article-title: An automatic digital modulation classifier for measurement on telecommunication networks
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 444
  start-page: 1
  year: 2019
  ident: 10.1016/j.dsp.2022.103396_br0060
  article-title: QAM classification methods by SVM machine learning for improved optical interconnection
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2019.03.058
– volume: 84
  start-page: 351
  issue: 2
  year: 2004
  ident: 10.1016/j.dsp.2022.103396_br0050
  article-title: Automatic digital modulation recognition using artificial neural network and genetic algorithm
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2003.10.019
– volume: 21
  start-page: 449
  issue: 2
  year: 2021
  ident: 10.1016/j.dsp.2022.103396_br0210
  article-title: Modulation recognition of radar signals based on adaptive singular value reconstruction and deep residual learning
  publication-title: Sensors
  doi: 10.3390/s21020449
– volume: 178
  start-page: 111
  year: 2019
  ident: 10.1016/j.dsp.2022.103396_br0140
  article-title: Evolutionary manifold regularized stacked denoising autoencoders for gearbox fault diagnosis
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.04.022
– volume: 78
  start-page: 1
  issue: 13
  year: 2019
  ident: 10.1016/j.dsp.2022.103396_br0330
  article-title: A novel natural image noise level estimation based on flat patches and local statistics
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-7137-4
– volume: 67
  start-page: 1266
  issue: 6
  year: 2018
  ident: 10.1016/j.dsp.2022.103396_br0240
  article-title: An unsupervised-learning-based approach for automated defect inspection on textured surfaces
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2795178
– volume: 5
  start-page: 11074
  year: 2017
  ident: 10.1016/j.dsp.2022.103396_br0190
  article-title: Convolutional neural networks for automatic cognitive radio waveform recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2716191
– volume: 68
  start-page: 642
  issue: 2
  year: 2019
  ident: 10.1016/j.dsp.2022.103396_br0030
  article-title: A robust modulation classification method for PSK signals using random graphs
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2849478
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  ident: 10.1016/j.dsp.2022.103396_br0120
  article-title: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2662206
– volume: 26
  start-page: 1570
  issue: 9
  year: 2018
  ident: 10.1016/j.dsp.2022.103396_br0300
  article-title: End-to-end waveform utterance enhancement for direct evaluation metrics optimization by fully convolutional neural networks
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2018.2821903
– volume: 40
  start-page: 303
  issue: 2
  year: 2018
  ident: 10.1016/j.dsp.2022.103396_br0070
  article-title: Radar signal recognition based on singular value entropy and fractal dimension
  publication-title: Syst. Eng. Electron.
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.dsp.2022.103396_br0160
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2018
  ident: 10.1016/j.dsp.2022.103396_br0320
  article-title: Natural scene statistics for noise estimation
– volume: 157
  start-page: 30
  year: 2019
  ident: 10.1016/j.dsp.2022.103396_br0090
  article-title: Recognition of radar signals based on AF grids and geometric shape constraint
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.11.004
– volume: 26
  start-page: 1017
  issue: 2
  year: 2017
  ident: 10.1016/j.dsp.2022.103396_br0310
  article-title: Noise level estimation for natural images based on scale-invariant kurtosis and piecewise stationarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2639447
– volume: 68
  start-page: 4074
  year: 2019
  ident: 10.1016/j.dsp.2022.103396_br0170
  article-title: Data-driven deep learning for automatic modulation recognition in cognitive radios
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2900460
– volume: 86
  start-page: 2278
  year: 1998
  ident: 10.1016/j.dsp.2022.103396_br0220
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 1
  start-page: 124
  issue: 1
  year: 2007
  ident: 10.1016/j.dsp.2022.103396_br0110
  article-title: Automatic radar waveform recognition
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2007.897055
– volume: 59
  start-page: 2639
  issue: 10
  year: 2010
  ident: 10.1016/j.dsp.2022.103396_br0010
  article-title: Prototype of an automatic digital modulation classifier embedded in a real-time spectrum analyzer
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2010.2045447
– volume: 53
  start-page: 901
  issue: 2
  year: 2017
  ident: 10.1016/j.dsp.2022.103396_br0270
  article-title: Automatic intrapulse modulation classification of advanced LPI radar waveforms
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2017.2667142
– volume: 17
  start-page: 491
  issue: 5
  year: 2015
  ident: 10.1016/j.dsp.2022.103396_br0080
  article-title: Recognition of radar emitter signals based on SVD and AF main ridge slice
  publication-title: J. Commun. Netw.
  doi: 10.1109/JCN.2015.000087
– volume: 22
  start-page: 946
  year: 2018
  ident: 10.1016/j.dsp.2022.103396_br0180
  article-title: Robust automated VHF modulation recognition based on deep convolutional neural networks
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2018.2809732
– start-page: 1701
  year: 2014
  ident: 10.1016/j.dsp.2022.103396_br0290
  article-title: DeepFace: closing the gap to human-level performance in face verification
– volume: 21
  start-page: 2117
  issue: 6
  year: 2021
  ident: 10.1016/j.dsp.2022.103396_br0100
  article-title: Automatic modulation classification based on deep feature fusion for high noise level and large dynamic input
  publication-title: Sensors
  doi: 10.3390/s21062117
– volume: 25
  start-page: 2301
  year: 2017
  ident: 10.1016/j.dsp.2022.103396_br0130
  article-title: Crosslingual and multilingual speech recognition based on the speech manifold
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2017.2751747
– volume: 56
  start-page: 1711
  issue: 5
  year: 2007
  ident: 10.1016/j.dsp.2022.103396_br0020
  article-title: An automatic digital modulation classifier for measurement on telecommunication networks
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2007.895675
– volume: 18
  start-page: 11
  issue: 2
  year: 2015
  ident: 10.1016/j.dsp.2022.103396_br0040
  article-title: Signal identification for emerging intelligent radios: classical problems and new challenges
  publication-title: Instrum. Meas. Mag.
  doi: 10.1109/MIM.2015.7066677
– year: 2008
  ident: 10.1016/j.dsp.2022.103396_br0260
– volume: 50
  start-page: 2744
  issue: 11
  year: 2002
  ident: 10.1016/j.dsp.2022.103396_br0250
  article-title: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2002.804091
– ident: 10.1016/j.dsp.2022.103396_br0280
– start-page: 770
  year: 2016
  ident: 10.1016/j.dsp.2022.103396_br0230
  article-title: Deep residual learning for image recognition
– volume: 115
  start-page: 213
  year: 2019
  ident: 10.1016/j.dsp.2022.103396_br0150
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.05.050
– volume: 6
  start-page: 43874
  year: 2018
  ident: 10.1016/j.dsp.2022.103396_br0200
  article-title: Radar signal intra-pulse modulation recognition based on convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2864347
SSID ssj0007426
Score 2.4248435
Snippet Automatic modulation classification (AMC) of radar signals has long been a challenge, especially in the area of electronic reconnaissance, where collecting and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103396
SubjectTerms Automatic modulation classification
Measured data
Noise level estimation
Radar signals
Residual learning convolutional denoising autoencoder
Supplementary classification networks
Title Automatic modulation classification of radar signals utilizing X-net
URI https://dx.doi.org/10.1016/j.dsp.2022.103396
Volume 123
WOSCitedRecordID wos000782997500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1051-2004
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007426
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcKspDlJd84MQqKInz8gVpRYvoQxXSFrS3yMk4kGrJrrabqu2vZ_zKvloESFysyBo70XyOPR7PfCbkLRRFksRMeEKyQh0zxvgEhZcwyX2ASJQ62uLbSXp6mo1G_Euv98HlwlyO06bJrq749L9CjXUItkqd_Qu4u06xAp8RdCwRdiz_CPhBO58YHtafE7CXc_VLZSSrqKDOQpwJELO-Ct9QBMr4PeP6RrkNRl4jV_z1-_V3dbGIFe1PTWaBW_F0ZICZuo7b-rrdcEQfoeR1vS47rDcEhz_axvVq3RC4g12cqGjfmMuPWQnfROMtMOAsz7cmwXhj7jZuhPP3cKF4RMNQ8QEwvsaTrVfeoeo31PRl2oZN7pHtMI05Tszbg8OD0VG3FuPGX-eXue9w59o6wm_tRbdbJkvWxtkjsmO3CXRg4N0lPdk8Jg-XyCOfkP0OaLoAmq4CTScV1UBTCzTtgKYa6Kfk66eDs4-fPXsnhleGPJ17ICsu06hiAcRcEfPgBr8QmS8rIbMglRlPKj-TEAo_AlkmVRECgzQok4JBAcCeka1m0sjnhApF9VhlEISpiGLJOP6tgkOlKP5i6Zd7xHf6yEtLGK_uLRnnLjLwPEcV5kqFuVHhHnnXNZkatpTfCUdOybk194wZl-OIuLvZi39r9pI8WAzbV2RrPmvla3K_vJzXF7M3dtz8AkTLeyE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+modulation+classification+of+radar+signals+utilizing+X-net&rft.jtitle=Digital+signal+processing&rft.au=Chen%2C+Kuiyu&rft.au=Zhang%2C+Jingyi&rft.au=Chen%2C+Si&rft.au=Zhang%2C+Shuning&rft.date=2022-04-30&rft.pub=Elsevier+Inc&rft.issn=1051-2004&rft.volume=123&rft_id=info:doi/10.1016%2Fj.dsp.2022.103396&rft.externalDocID=S1051200422000136
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-2004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-2004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-2004&client=summon