Automatic modulation classification of radar signals utilizing X-net
Automatic modulation classification (AMC) of radar signals has long been a challenge, especially in the area of electronic reconnaissance, where collecting and labeling numerous signal samples are usually harsh and impracticable. In this article, a novel recognition network is proposed for detecting...
Gespeichert in:
| Veröffentlicht in: | Digital signal processing Jg. 123; S. 103396 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
30.04.2022
|
| Schlagworte: | |
| ISSN: | 1051-2004 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Automatic modulation classification (AMC) of radar signals has long been a challenge, especially in the area of electronic reconnaissance, where collecting and labeling numerous signal samples are usually harsh and impracticable. In this article, a novel recognition network is proposed for detecting radiation signals under intense noise background with only simulation samples for model training. Owing to the X-shaped structure, the recognition network is named X-net. A residual learning convolutional denoising autoencoder (RLCDAE) and a supplementary classification network based on noise level estimation (NLE) constitute the X-net. Via pre-training of RLCDAE, the robustness against noise is enhanced. Then, a supplementary classification network further improves the recognition performance under low signal-to-noise ratios (SNRs). To evaluate the method, comparative experiments with some excellent algorithms on noise immunity and recognition accuracy are conducted. The cognitive system can still recognize ten kinds of radar signals with an overall precision of 96% even when the SNR is −8 dB. Furthermore, simulation samples trained model is verified by measured data. Outstanding performance proves the effectiveness and superiority of the proposed method on cognitive radar signals under low SNRs. |
|---|---|
| AbstractList | Automatic modulation classification (AMC) of radar signals has long been a challenge, especially in the area of electronic reconnaissance, where collecting and labeling numerous signal samples are usually harsh and impracticable. In this article, a novel recognition network is proposed for detecting radiation signals under intense noise background with only simulation samples for model training. Owing to the X-shaped structure, the recognition network is named X-net. A residual learning convolutional denoising autoencoder (RLCDAE) and a supplementary classification network based on noise level estimation (NLE) constitute the X-net. Via pre-training of RLCDAE, the robustness against noise is enhanced. Then, a supplementary classification network further improves the recognition performance under low signal-to-noise ratios (SNRs). To evaluate the method, comparative experiments with some excellent algorithms on noise immunity and recognition accuracy are conducted. The cognitive system can still recognize ten kinds of radar signals with an overall precision of 96% even when the SNR is −8 dB. Furthermore, simulation samples trained model is verified by measured data. Outstanding performance proves the effectiveness and superiority of the proposed method on cognitive radar signals under low SNRs. |
| ArticleNumber | 103396 |
| Author | Zhao, Huichang Chen, Si Zhang, Shuning Chen, Kuiyu Zhang, Jingyi |
| Author_xml | – sequence: 1 givenname: Kuiyu surname: Chen fullname: Chen, Kuiyu email: kuiyu_chen@163.com – sequence: 2 givenname: Jingyi surname: Zhang fullname: Zhang, Jingyi email: jingyizhang_njust@163.com – sequence: 3 givenname: Si orcidid: 0000-0003-4108-0070 surname: Chen fullname: Chen, Si email: csnjust@163.com – sequence: 4 givenname: Shuning surname: Zhang fullname: Zhang, Shuning email: zsnnjust@163.com – sequence: 5 givenname: Huichang surname: Zhao fullname: Zhao, Huichang email: zhaohcnjust@163.com |
| BookMark | eNp9j8tKAzEUhrOoYFt9AHfzAlNzmSuuSr1CwY2Cu5DJOSkZpklJUkGf3qnjykVX__kPfD98CzJz3iEhN4yuGGXVbb-CeFhxyvnYhWirGZkzWrKcU1pckkWMPaW0Lng1J_frY_J7lazO9h6Ow3h5l-lBxWiN1VP1JgsKVMii3Tk1xOyY7GC_rdtlH7nDdEUuzPjG679ckvfHh7fNc759fXrZrLe55m2dckDTYl0YwaBsS94IXhadaigahQ2rsWkrQxsErmgBqCvTcRBQM111AjoAsSRs2tXBxxjQyEOwexW-JKPypC57OarLk7qc1Eem_sdom361UlB2OEveTSSOSp8Wg4zaotMINqBOErw9Q_8AUPJ5Yg |
| CitedBy_id | crossref_primary_10_3390_s24165344 crossref_primary_10_1016_j_dsp_2024_104552 crossref_primary_10_1109_TIM_2023_3242013 crossref_primary_10_3390_e26110915 crossref_primary_10_1016_j_compeleceng_2023_108948 crossref_primary_10_1016_j_dsp_2023_104017 crossref_primary_10_1007_s11760_025_04182_9 crossref_primary_10_1109_LSP_2025_3578289 crossref_primary_10_3390_drones7070472 crossref_primary_10_1109_LGRS_2024_3451499 crossref_primary_10_1007_s11276_023_03518_y crossref_primary_10_1109_JIOT_2024_3391752 crossref_primary_10_1109_JSEN_2024_3403856 crossref_primary_10_3390_drones7050312 crossref_primary_10_1109_JIOT_2024_3432548 crossref_primary_10_1007_s12083_025_01959_0 crossref_primary_10_1109_JSEN_2025_3560442 crossref_primary_10_3390_electronics12081913 crossref_primary_10_1109_JIOT_2025_3538939 crossref_primary_10_1109_TAES_2023_3271965 |
| Cites_doi | 10.1016/j.optcom.2019.03.058 10.1016/j.sigpro.2003.10.019 10.3390/s21020449 10.1016/j.knosys.2019.04.022 10.1007/s11042-018-7137-4 10.1109/TIM.2018.2795178 10.1109/ACCESS.2017.2716191 10.1109/TIM.2018.2849478 10.1109/TIP.2017.2662206 10.1109/TASLP.2018.2821903 10.1038/nature14539 10.1016/j.sigpro.2018.11.004 10.1109/TIP.2016.2639447 10.1109/TVT.2019.2900460 10.1109/5.726791 10.1109/JSTSP.2007.897055 10.1109/TIM.2010.2045447 10.1109/TAES.2017.2667142 10.1109/JCN.2015.000087 10.1109/LCOMM.2018.2809732 10.3390/s21062117 10.1109/TASLP.2017.2751747 10.1109/TIM.2007.895675 10.1109/MIM.2015.7066677 10.1109/TSP.2002.804091 10.1016/j.ymssp.2018.05.050 10.1109/ACCESS.2018.2864347 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Inc. |
| Copyright_xml | – notice: 2022 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.dsp.2022.103396 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_dsp_2022_103396 S1051200422000136 |
| GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20200075 funderid: https://doi.org/10.13039/501100004608 – fundername: National Natural Science Foundation of China grantid: 61971226; 61801220 funderid: https://doi.org/10.13039/501100001809 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABBOA ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSH SST SSV SSZ T5K ZMT ZU3 ~G- 29G 9DU AAQXK AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADJOM ADMUD ADNMO AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS EFLBG EJD F0J FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c297t-def9e74f31d595283254ba80efae817e896f08ed2a04dec6fb2d3d71c6b3dbdd3 |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000782997500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1051-2004 |
| IngestDate | Sat Nov 29 07:04:40 EST 2025 Tue Nov 18 21:22:28 EST 2025 Sun Apr 06 06:59:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Radar signals Measured data Residual learning convolutional denoising autoencoder Supplementary classification networks Noise level estimation Automatic modulation classification |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-def9e74f31d595283254ba80efae817e896f08ed2a04dec6fb2d3d71c6b3dbdd3 |
| ORCID | 0000-0003-4108-0070 |
| ParticipantIDs | crossref_primary_10_1016_j_dsp_2022_103396 crossref_citationtrail_10_1016_j_dsp_2022_103396 elsevier_sciencedirect_doi_10_1016_j_dsp_2022_103396 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-30 |
| PublicationDateYYYYMMDD | 2022-04-30 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Digital signal processing |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Dong, Zhou, Tang (br0310) 2017; 26 Eldemerdash, Dobre (br0030) Feb. 2019; 68 Li, Li, Yang, Li (br0180) 2018; 22 Dobre (br0040) 2015; 18 Grimaldi, Rapuano, De (br0020) Oct. 2007; 56 Gupta, Bampis, Jin (br0320) 2018 Wang, Liu, Yang, Gui (br0170) 2019; 68 Zhang, Diao, Guo (br0190) 2017; 5 Philip (br0260) 2008 Taigman, Yang, Ranzato, l (br0290) Jun. 2014 He, Zhang, Ren (br0230) 2016 Dumoulin, Visin (br0280) Yu (br0140) 2019; 178 Qu, Mao, Hou (br0070) 2018; 40 Guo, Nan, Zhang (br0080) 2015; 17 Ravi, Rao (br0270) April 2017; 53 Lunden, Koivunen (br0110) 2007; 1 Qu, Mao, Deng (br0200) 2018; 6 Fu, Wang, Tsao, Lu, Kawai (br0300) 2018; 26 De Vito, Rapuano, Villanacci (br0010) Oct. 2010; 59 Fang, Yi (br0330) 2019; 78 Wong, Nandi (br0050) 2004; 84 Zhang, Zuo, y (br0120) July 2017; 26 Sahraeian, Van (br0130) 2017; 25 Lecun, Bottou (br0220) 1998; 86 Sendur, Selesnick (br0250) 2002; 50 Mei, Yang, Yin (br0240) 2018; 67 Han (br0100) 2021; 21 Chen, Zhang, Zhu (br0210) 2021; 21 Rui, Yan, Chen (br0150) 2019; 115 Xu, Zhang, Zhou (br0090) 2019; 157 Lecun, Bengio, Hinton (br0160) 2015; 521 Wang, Du, Chen (br0060) 2019; 444 Han (10.1016/j.dsp.2022.103396_br0100) 2021; 21 Taigman (10.1016/j.dsp.2022.103396_br0290) 2014 Xu (10.1016/j.dsp.2022.103396_br0090) 2019; 157 Fu (10.1016/j.dsp.2022.103396_br0300) 2018; 26 Eldemerdash (10.1016/j.dsp.2022.103396_br0030) 2019; 68 Dobre (10.1016/j.dsp.2022.103396_br0040) 2015; 18 Rui (10.1016/j.dsp.2022.103396_br0150) 2019; 115 Qu (10.1016/j.dsp.2022.103396_br0070) 2018; 40 Zhang (10.1016/j.dsp.2022.103396_br0120) 2017; 26 Zhang (10.1016/j.dsp.2022.103396_br0190) 2017; 5 Gupta (10.1016/j.dsp.2022.103396_br0320) 2018 Qu (10.1016/j.dsp.2022.103396_br0200) 2018; 6 Yu (10.1016/j.dsp.2022.103396_br0140) 2019; 178 Lecun (10.1016/j.dsp.2022.103396_br0220) 1998; 86 Dumoulin (10.1016/j.dsp.2022.103396_br0280) Guo (10.1016/j.dsp.2022.103396_br0080) 2015; 17 Philip (10.1016/j.dsp.2022.103396_br0260) 2008 He (10.1016/j.dsp.2022.103396_br0230) 2016 Sendur (10.1016/j.dsp.2022.103396_br0250) 2002; 50 Sahraeian (10.1016/j.dsp.2022.103396_br0130) 2017; 25 Wang (10.1016/j.dsp.2022.103396_br0060) 2019; 444 Grimaldi (10.1016/j.dsp.2022.103396_br0020) 2007; 56 Fang (10.1016/j.dsp.2022.103396_br0330) 2019; 78 Wang (10.1016/j.dsp.2022.103396_br0170) 2019; 68 Mei (10.1016/j.dsp.2022.103396_br0240) 2018; 67 Lunden (10.1016/j.dsp.2022.103396_br0110) 2007; 1 Ravi (10.1016/j.dsp.2022.103396_br0270) 2017; 53 Lecun (10.1016/j.dsp.2022.103396_br0160) 2015; 521 Chen (10.1016/j.dsp.2022.103396_br0210) 2021; 21 Dong (10.1016/j.dsp.2022.103396_br0310) 2017; 26 Li (10.1016/j.dsp.2022.103396_br0180) 2018; 22 De Vito (10.1016/j.dsp.2022.103396_br0010) 2010; 59 Wong (10.1016/j.dsp.2022.103396_br0050) 2004; 84 |
| References_xml | – volume: 84 start-page: 351 year: 2004 end-page: 365 ident: br0050 article-title: Automatic digital modulation recognition using artificial neural network and genetic algorithm publication-title: Signal Process. – volume: 17 start-page: 491 year: 2015 end-page: 498 ident: br0080 article-title: Recognition of radar emitter signals based on SVD and AF main ridge slice publication-title: J. Commun. Netw. – volume: 59 start-page: 2639 year: Oct. 2010 end-page: 2651 ident: br0010 article-title: Prototype of an automatic digital modulation classifier embedded in a real-time spectrum analyzer publication-title: IEEE Trans. Instrum. Meas. – volume: 26 start-page: 3142 year: July 2017 end-page: 3155 ident: br0120 article-title: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising publication-title: IEEE Trans. Image Process. – volume: 6 start-page: 43874 year: 2018 end-page: 43884 ident: br0200 article-title: Radar signal intra-pulse modulation recognition based on convolutional neural network publication-title: IEEE Access – start-page: 770 year: 2016 end-page: 778 ident: br0230 article-title: Deep residual learning for image recognition publication-title: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern, Recognition (CVPR) – volume: 21 start-page: 2117 year: 2021 ident: br0100 article-title: Automatic modulation classification based on deep feature fusion for high noise level and large dynamic input publication-title: Sensors – volume: 68 start-page: 642 year: Feb. 2019 end-page: 644 ident: br0030 article-title: A robust modulation classification method for PSK signals using random graphs publication-title: IEEE Trans. Instrum. Meas. – volume: 40 start-page: 303 year: 2018 end-page: 307 ident: br0070 article-title: Radar signal recognition based on singular value entropy and fractal dimension publication-title: Syst. Eng. Electron. – volume: 5 start-page: 11074 year: 2017 end-page: 11082 ident: br0190 article-title: Convolutional neural networks for automatic cognitive radio waveform recognition publication-title: IEEE Access – volume: 68 start-page: 4074 year: 2019 end-page: 4077 ident: br0170 article-title: Data-driven deep learning for automatic modulation recognition in cognitive radios publication-title: IEEE Trans. Veh. Technol. – volume: 444 start-page: 1 year: 2019 end-page: 8 ident: br0060 article-title: QAM classification methods by SVM machine learning for improved optical interconnection publication-title: Opt. Commun. – ident: br0280 article-title: A guide to convolution arithmetic for deep learning – volume: 50 start-page: 2744 year: 2002 end-page: 2756 ident: br0250 article-title: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency publication-title: IEEE Trans. Signal Process. – volume: 115 start-page: 213 year: 2019 end-page: 237 ident: br0150 article-title: Deep learning and its applications to machine health monitoring publication-title: Mech. Syst. Signal Process. – volume: 67 start-page: 1266 year: 2018 end-page: 1277 ident: br0240 article-title: An unsupervised-learning-based approach for automated defect inspection on textured surfaces publication-title: IEEE Trans. Instrum. Meas. – volume: 18 start-page: 11 year: 2015 end-page: 18 ident: br0040 article-title: Signal identification for emerging intelligent radios: classical problems and new challenges publication-title: Instrum. Meas. Mag. – volume: 78 start-page: 1 year: 2019 end-page: 22 ident: br0330 article-title: A novel natural image noise level estimation based on flat patches and local statistics publication-title: Multimed. Tools Appl. – volume: 1 start-page: 124 year: 2007 end-page: 136 ident: br0110 article-title: Automatic radar waveform recognition publication-title: IEEE J. Sel. Top. Signal Process. – volume: 21 start-page: 449 year: 2021 end-page: 466 ident: br0210 article-title: Modulation recognition of radar signals based on adaptive singular value reconstruction and deep residual learning publication-title: Sensors – year: 2018 ident: br0320 article-title: Natural scene statistics for noise estimation publication-title: 2018 IEEE Southwest Symposium on Image Analysis and Interpretation – volume: 26 start-page: 1017 year: 2017 end-page: 1030 ident: br0310 article-title: Noise level estimation for natural images based on scale-invariant kurtosis and piecewise stationarity publication-title: IEEE Trans. Image Process. – year: 2008 ident: br0260 article-title: Detecting and Classifying Low Probability of Intercept Radar, Second Edition – volume: 22 start-page: 946 year: 2018 end-page: 949 ident: br0180 article-title: Robust automated VHF modulation recognition based on deep convolutional neural networks publication-title: IEEE Commun. Lett. – volume: 53 start-page: 901 year: April 2017 end-page: 914 ident: br0270 article-title: Automatic intrapulse modulation classification of advanced LPI radar waveforms publication-title: IEEE Trans. Aerosp. Electron. Syst. – volume: 25 start-page: 2301 year: 2017 end-page: 2312 ident: br0130 article-title: Crosslingual and multilingual speech recognition based on the speech manifold publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. – volume: 26 start-page: 1570 year: 2018 end-page: 1584 ident: br0300 article-title: End-to-end waveform utterance enhancement for direct evaluation metrics optimization by fully convolutional neural networks publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. – start-page: 1701 year: Jun. 2014 end-page: 1708 ident: br0290 article-title: DeepFace: closing the gap to human-level performance in face verification publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: br0220 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – volume: 157 start-page: 30 year: 2019 end-page: 44 ident: br0090 article-title: Recognition of radar signals based on AF grids and geometric shape constraint publication-title: Signal Process. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: br0160 article-title: Deep learning publication-title: Nature – volume: 178 start-page: 111 year: 2019 end-page: 122 ident: br0140 article-title: Evolutionary manifold regularized stacked denoising autoencoders for gearbox fault diagnosis publication-title: Knowl.-Based Syst. – volume: 56 start-page: 1711 year: Oct. 2007 end-page: 1720 ident: br0020 article-title: An automatic digital modulation classifier for measurement on telecommunication networks publication-title: IEEE Trans. Instrum. Meas. – volume: 444 start-page: 1 year: 2019 ident: 10.1016/j.dsp.2022.103396_br0060 article-title: QAM classification methods by SVM machine learning for improved optical interconnection publication-title: Opt. Commun. doi: 10.1016/j.optcom.2019.03.058 – volume: 84 start-page: 351 issue: 2 year: 2004 ident: 10.1016/j.dsp.2022.103396_br0050 article-title: Automatic digital modulation recognition using artificial neural network and genetic algorithm publication-title: Signal Process. doi: 10.1016/j.sigpro.2003.10.019 – volume: 21 start-page: 449 issue: 2 year: 2021 ident: 10.1016/j.dsp.2022.103396_br0210 article-title: Modulation recognition of radar signals based on adaptive singular value reconstruction and deep residual learning publication-title: Sensors doi: 10.3390/s21020449 – volume: 178 start-page: 111 year: 2019 ident: 10.1016/j.dsp.2022.103396_br0140 article-title: Evolutionary manifold regularized stacked denoising autoencoders for gearbox fault diagnosis publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.04.022 – volume: 78 start-page: 1 issue: 13 year: 2019 ident: 10.1016/j.dsp.2022.103396_br0330 article-title: A novel natural image noise level estimation based on flat patches and local statistics publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-7137-4 – volume: 67 start-page: 1266 issue: 6 year: 2018 ident: 10.1016/j.dsp.2022.103396_br0240 article-title: An unsupervised-learning-based approach for automated defect inspection on textured surfaces publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2018.2795178 – volume: 5 start-page: 11074 year: 2017 ident: 10.1016/j.dsp.2022.103396_br0190 article-title: Convolutional neural networks for automatic cognitive radio waveform recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2716191 – volume: 68 start-page: 642 issue: 2 year: 2019 ident: 10.1016/j.dsp.2022.103396_br0030 article-title: A robust modulation classification method for PSK signals using random graphs publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2018.2849478 – volume: 26 start-page: 3142 issue: 7 year: 2017 ident: 10.1016/j.dsp.2022.103396_br0120 article-title: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2662206 – volume: 26 start-page: 1570 issue: 9 year: 2018 ident: 10.1016/j.dsp.2022.103396_br0300 article-title: End-to-end waveform utterance enhancement for direct evaluation metrics optimization by fully convolutional neural networks publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2018.2821903 – volume: 40 start-page: 303 issue: 2 year: 2018 ident: 10.1016/j.dsp.2022.103396_br0070 article-title: Radar signal recognition based on singular value entropy and fractal dimension publication-title: Syst. Eng. Electron. – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.dsp.2022.103396_br0160 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – year: 2018 ident: 10.1016/j.dsp.2022.103396_br0320 article-title: Natural scene statistics for noise estimation – volume: 157 start-page: 30 year: 2019 ident: 10.1016/j.dsp.2022.103396_br0090 article-title: Recognition of radar signals based on AF grids and geometric shape constraint publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.11.004 – volume: 26 start-page: 1017 issue: 2 year: 2017 ident: 10.1016/j.dsp.2022.103396_br0310 article-title: Noise level estimation for natural images based on scale-invariant kurtosis and piecewise stationarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2639447 – volume: 68 start-page: 4074 year: 2019 ident: 10.1016/j.dsp.2022.103396_br0170 article-title: Data-driven deep learning for automatic modulation recognition in cognitive radios publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2900460 – volume: 86 start-page: 2278 year: 1998 ident: 10.1016/j.dsp.2022.103396_br0220 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 1 start-page: 124 issue: 1 year: 2007 ident: 10.1016/j.dsp.2022.103396_br0110 article-title: Automatic radar waveform recognition publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2007.897055 – volume: 59 start-page: 2639 issue: 10 year: 2010 ident: 10.1016/j.dsp.2022.103396_br0010 article-title: Prototype of an automatic digital modulation classifier embedded in a real-time spectrum analyzer publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2010.2045447 – volume: 53 start-page: 901 issue: 2 year: 2017 ident: 10.1016/j.dsp.2022.103396_br0270 article-title: Automatic intrapulse modulation classification of advanced LPI radar waveforms publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2017.2667142 – volume: 17 start-page: 491 issue: 5 year: 2015 ident: 10.1016/j.dsp.2022.103396_br0080 article-title: Recognition of radar emitter signals based on SVD and AF main ridge slice publication-title: J. Commun. Netw. doi: 10.1109/JCN.2015.000087 – volume: 22 start-page: 946 year: 2018 ident: 10.1016/j.dsp.2022.103396_br0180 article-title: Robust automated VHF modulation recognition based on deep convolutional neural networks publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2018.2809732 – start-page: 1701 year: 2014 ident: 10.1016/j.dsp.2022.103396_br0290 article-title: DeepFace: closing the gap to human-level performance in face verification – volume: 21 start-page: 2117 issue: 6 year: 2021 ident: 10.1016/j.dsp.2022.103396_br0100 article-title: Automatic modulation classification based on deep feature fusion for high noise level and large dynamic input publication-title: Sensors doi: 10.3390/s21062117 – volume: 25 start-page: 2301 year: 2017 ident: 10.1016/j.dsp.2022.103396_br0130 article-title: Crosslingual and multilingual speech recognition based on the speech manifold publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2017.2751747 – volume: 56 start-page: 1711 issue: 5 year: 2007 ident: 10.1016/j.dsp.2022.103396_br0020 article-title: An automatic digital modulation classifier for measurement on telecommunication networks publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2007.895675 – volume: 18 start-page: 11 issue: 2 year: 2015 ident: 10.1016/j.dsp.2022.103396_br0040 article-title: Signal identification for emerging intelligent radios: classical problems and new challenges publication-title: Instrum. Meas. Mag. doi: 10.1109/MIM.2015.7066677 – year: 2008 ident: 10.1016/j.dsp.2022.103396_br0260 – volume: 50 start-page: 2744 issue: 11 year: 2002 ident: 10.1016/j.dsp.2022.103396_br0250 article-title: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2002.804091 – ident: 10.1016/j.dsp.2022.103396_br0280 – start-page: 770 year: 2016 ident: 10.1016/j.dsp.2022.103396_br0230 article-title: Deep residual learning for image recognition – volume: 115 start-page: 213 year: 2019 ident: 10.1016/j.dsp.2022.103396_br0150 article-title: Deep learning and its applications to machine health monitoring publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.05.050 – volume: 6 start-page: 43874 year: 2018 ident: 10.1016/j.dsp.2022.103396_br0200 article-title: Radar signal intra-pulse modulation recognition based on convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2864347 |
| SSID | ssj0007426 |
| Score | 2.4248435 |
| Snippet | Automatic modulation classification (AMC) of radar signals has long been a challenge, especially in the area of electronic reconnaissance, where collecting and... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103396 |
| SubjectTerms | Automatic modulation classification Measured data Noise level estimation Radar signals Residual learning convolutional denoising autoencoder Supplementary classification networks |
| Title | Automatic modulation classification of radar signals utilizing X-net |
| URI | https://dx.doi.org/10.1016/j.dsp.2022.103396 |
| Volume | 123 |
| WOSCitedRecordID | wos000782997500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1051-2004 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007426 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcKspDlJd84MQqKInz8gVpRYvoQxXSFrS3yMk4kGrJrrabqu2vZ_zKvloESFysyBo70XyOPR7PfCbkLRRFksRMeEKyQh0zxvgEhZcwyX2ASJQ62uLbSXp6mo1G_Euv98HlwlyO06bJrq749L9CjXUItkqd_Qu4u06xAp8RdCwRdiz_CPhBO58YHtafE7CXc_VLZSSrqKDOQpwJELO-Ct9QBMr4PeP6RrkNRl4jV_z1-_V3dbGIFe1PTWaBW_F0ZICZuo7b-rrdcEQfoeR1vS47rDcEhz_axvVq3RC4g12cqGjfmMuPWQnfROMtMOAsz7cmwXhj7jZuhPP3cKF4RMNQ8QEwvsaTrVfeoeo31PRl2oZN7pHtMI05Tszbg8OD0VG3FuPGX-eXue9w59o6wm_tRbdbJkvWxtkjsmO3CXRg4N0lPdk8Jg-XyCOfkP0OaLoAmq4CTScV1UBTCzTtgKYa6Kfk66eDs4-fPXsnhleGPJ17ICsu06hiAcRcEfPgBr8QmS8rIbMglRlPKj-TEAo_AlkmVRECgzQok4JBAcCeka1m0sjnhApF9VhlEISpiGLJOP6tgkOlKP5i6Zd7xHf6yEtLGK_uLRnnLjLwPEcV5kqFuVHhHnnXNZkatpTfCUdOybk194wZl-OIuLvZi39r9pI8WAzbV2RrPmvla3K_vJzXF7M3dtz8AkTLeyE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+modulation+classification+of+radar+signals+utilizing+X-net&rft.jtitle=Digital+signal+processing&rft.au=Chen%2C+Kuiyu&rft.au=Zhang%2C+Jingyi&rft.au=Chen%2C+Si&rft.au=Zhang%2C+Shuning&rft.date=2022-04-30&rft.pub=Elsevier+Inc&rft.issn=1051-2004&rft.volume=123&rft_id=info:doi/10.1016%2Fj.dsp.2022.103396&rft.externalDocID=S1051200422000136 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-2004&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-2004&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-2004&client=summon |