MAR-GSA: Mixed attraction and repulsion based gravitational search algorithm

As a population-based stochastic optimization algorithm, Gravitational Search Algorithm (GSA) has attracted numerous interests and has been applied in various applications. However, GSA has drawbacks such as uneven search and premature convergence in practical applications. This paper specifically e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences Jg. 662; S. 120250
Hauptverfasser: Qian, Zhiqiang, Xie, Yongfang, Xie, Shiwen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.03.2024
Schlagworte:
ISSN:0020-0255, 1872-6291
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As a population-based stochastic optimization algorithm, Gravitational Search Algorithm (GSA) has attracted numerous interests and has been applied in various applications. However, GSA has drawbacks such as uneven search and premature convergence in practical applications. This paper specifically explains the inherent characteristic of GSA in prioritizing the center position. Correspondingly, an improvement strategy of fitness normalization with mass shift is proposed, creating a situation where gravity and repulsion are mixed. Then, the global best mechanism with weights is incorporated into the particle's velocity update formula, which compensates for the difficulties in the later exploitation stage. Finally, an empirical formula for the initial gravitational constant related to the size of the solution space is proposed, which enhances the global search ability together with the former strategy. 12 shifted benchmark functions are used to construct 20 optimization problems ranging from 2 to 120 dimensions. The average performance of the proposed algorithm, other GSA and well-known algorithms are compared under the same budget. The results demonstrate that the proposed GSA not only effectively addresses the drawbacks of GSA and maintains good performance, but also exhibits strong competitiveness compared to various similar algorithms.
AbstractList As a population-based stochastic optimization algorithm, Gravitational Search Algorithm (GSA) has attracted numerous interests and has been applied in various applications. However, GSA has drawbacks such as uneven search and premature convergence in practical applications. This paper specifically explains the inherent characteristic of GSA in prioritizing the center position. Correspondingly, an improvement strategy of fitness normalization with mass shift is proposed, creating a situation where gravity and repulsion are mixed. Then, the global best mechanism with weights is incorporated into the particle's velocity update formula, which compensates for the difficulties in the later exploitation stage. Finally, an empirical formula for the initial gravitational constant related to the size of the solution space is proposed, which enhances the global search ability together with the former strategy. 12 shifted benchmark functions are used to construct 20 optimization problems ranging from 2 to 120 dimensions. The average performance of the proposed algorithm, other GSA and well-known algorithms are compared under the same budget. The results demonstrate that the proposed GSA not only effectively addresses the drawbacks of GSA and maintains good performance, but also exhibits strong competitiveness compared to various similar algorithms.
ArticleNumber 120250
Author Xie, Yongfang
Qian, Zhiqiang
Xie, Shiwen
Author_xml – sequence: 1
  givenname: Zhiqiang
  surname: Qian
  fullname: Qian, Zhiqiang
– sequence: 2
  givenname: Yongfang
  surname: Xie
  fullname: Xie, Yongfang
– sequence: 3
  givenname: Shiwen
  orcidid: 0000-0002-5485-4234
  surname: Xie
  fullname: Xie, Shiwen
  email: sw.xie@csu.edu.cn
BookMark eNp9kMtOwzAQRS0EEm3hA9jlBxLGTmInsKoqKEitkHisrfGjras0qexQwd_jqF2x6GZGM1dndOeOyWXbtZaQOwoZBcrvt5lrQ8aAFRmNtYQLMqKVYClnNb0kIwAGadyX12QcwhYACsH5iCyW0_d0_jF9SJbux5oE-96j7l3XJtiaxNv9dxOGSWGI8trjwfU46NgkwaLXmwSbdeddv9ndkKsVNsHenvqEfD0_fc5e0sXb_HU2XaSa1aJPjUIoClC6Yqu6hFKjEboq6lwZzVVVK4Z1jnnFlaAUjKLIjaUIucgpQ6PzCRHHu9p3IXi7kvpkKpp3jaQgh1DkVsZQ5BCKPIYSSfqP3Hu3Q_97lnk8Mja-dHDWy6CdbbU1zlvdS9O5M_QfLXt8fA
CitedBy_id crossref_primary_10_1038_s41598_025_01835_0
crossref_primary_10_3390_en18154180
crossref_primary_10_1142_S1793962325500205
crossref_primary_10_3390_math13091517
crossref_primary_10_1109_ACCESS_2024_3445269
Cites_doi 10.1016/j.asoc.2017.01.008
10.1016/j.phycom.2020.101091
10.1007/s11047-009-9175-3
10.1007/s00170-021-07152-w
10.1109/JAS.2020.1003462
10.1016/j.asoc.2021.107404
10.1109/20.376418
10.1016/j.asoc.2012.12.003
10.1109/TCYB.2016.2641986
10.1016/j.ins.2021.10.070
10.1109/TII.2020.2975273
10.1287/inte.11.5.84
10.1007/s10462-012-9328-0
10.1016/j.ijepes.2011.08.012
10.1109/4235.585893
10.1016/j.ins.2009.03.004
10.1080/0952813X.2020.1725650
10.1016/j.ins.2018.11.041
10.1016/j.ins.2013.09.034
10.1016/j.swevo.2020.100808
10.1016/j.mcm.2011.06.048
10.1007/s00521-014-1629-6
10.3390/app12178392
10.1016/j.knosys.2019.104913
10.1109/3477.484436
10.1007/s11431-012-4890-x
10.1109/TEVC.2018.2869001
10.1016/j.swevo.2013.08.001
10.1109/79.543973
10.1016/j.apm.2020.11.013
10.1016/j.swevo.2015.10.011
10.1016/j.aei.2022.101636
10.1111/insr.12022
10.1109/ICNN.1995.488968
10.1007/s11042-022-12336-x
10.1007/978-3-642-30504-7_8
10.1007/s00500-020-05527-x
10.1016/j.hydromet.2014.11.004
10.1016/j.engappai.2015.01.002
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2024.120250
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
ExternalDocumentID 10_1016_j_ins_2024_120250
S0020025524001634
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-dba0440bc82f9505cad7c8493bdc6b89b2a93a386b7110db1a6de1a037312adc3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001181815200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 21:19:01 EST 2025
Sat Nov 29 07:02:25 EST 2025
Sat Feb 24 15:50:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Shift transformation
Gravitational search algorithm
Center-biased search characteristic
Mixed attraction and repulsion
Population-based algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-dba0440bc82f9505cad7c8493bdc6b89b2a93a386b7110db1a6de1a037312adc3
ORCID 0000-0002-5485-4234
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2024_120250
crossref_primary_10_1016_j_ins_2024_120250
elsevier_sciencedirect_doi_10_1016_j_ins_2024_120250
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Jin, Wang, Chugh, Guo, Miettinen (b0005) 2018; 23
J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN'95-international conference on neural networks, IEEE, 1995, pp. 1942-1948.
Alirezanejad, Enayatifar, Motameni, Nematzadeh (b0105) 2021; 33
Hooda, Verma (b0175) 2022; 81
Meng, Zhang, Xiao, Chen, Yi, Xu (b0180) 2021; 114
Wang, Zhang, Zhou (b0080) 2021; 60
Biabani, Shojaee, Hamzehei-Javaran (b0140) 2022
Wang, Gao, Zhou, Yu (b0205) 2020; 8
Maringer (b0045) 2005
Deng, Shang, Cai, Zhao, Song, Xu (b0075) 2021; 25
Kirkpatrick, Gelatt, Vecchi (b0060) 1983; 220
Liu, Khishe, Mohammadi, Mohammed (b0010) 2022; 53
Dowlatshahi, Nezamabadi-Pour, Mashinchi (b0165) 2014; 258
Das, Behera, Panigrahi (b0145) 2016; 28
Zamfirache, Precup, Roman, Petriu (b0185) 2022; 583
Eappen, Shankar (b0195) 2020; 40
Mirjalili, Wang, Coelho (b0215) 2014; 25
Garg (b0150) 2019; 478
Mirjalili, Gandomi (b0110) 2017; 53
Sabri, Puteh, Mahmood (b0100) 2013; 5
Wang, Li, Gao, Li, Gupta (b0085) 2021; 107
Behmanesh, Zandieh (b0070) 2019; 186
Chen, Wang, Hong, Zhang, Huang, Chen, Sun, Fang (b0170) 2022; 2022
Xie, Xie, Chen, Gui, Yang, Caccetta (b0020) 2015; 151
Dorigo, Maniezzo, Colorni (b0065) 1996; 26
Jain, Saihjpal, Singh, Singh (b0210) 2022; 12
Wolpert, Macready (b0220) 1997; 1
Kumar, Kumar, Edukondalu (b0115) 2013; 13
Li, Duan (b0135) 2012; 55
Mirjalili, Hashim (b0130) 2010; 2010
Xie, Xie, Huang, Gui (b0015) 2020; 17
Wang, Xie, Xie, Chen (b0090) 2022
Shaw, Mukherjee, Ghoshal (b0200) 2012; 35
Zanakis, Evans (b0040) 1981; 11
Nezamabadi-Pour (b0160) 2015; 40
Rashedi, Nezamabadi-Pour, Saryazdi (b0095) 2009; 179
Wang, Pan, Jiao (b0230) 2000; 28
K.V. Price, Differential evolution, in: Handbook of optimization: From classical to modern approach, Springer, 2013, pp. 187-214.
Lange, Chi, Zhou (b0025) 2014; 82
Avalos (b0030) 2021; 92
Haupt (b0035) 1995; 31
Zhang, Sun, Ren, Li, Wang, Jia (b0120) 2016; 48
Rashedi, Nezamabadi-Pour, Saryazdi (b0155) 2010; 9
Yazdani, Nezamabadi-Pour, Kamyab (b0125) 2014; 14
Tang, Man, Kwong, He (b0050) 1996; 13
Sarafrazi, Nezamabadi-Pour (b0190) 2013; 57
Karaboga, Gorkemli, Ozturk, Karaboga (b0225) 2014; 42
Wang (10.1016/j.ins.2024.120250_b0205) 2020; 8
10.1016/j.ins.2024.120250_b0235
Yazdani (10.1016/j.ins.2024.120250_b0125) 2014; 14
Wang (10.1016/j.ins.2024.120250_b0090) 2022
Dorigo (10.1016/j.ins.2024.120250_b0065) 1996; 26
Meng (10.1016/j.ins.2024.120250_b0180) 2021; 114
Rashedi (10.1016/j.ins.2024.120250_b0095) 2009; 179
Mirjalili (10.1016/j.ins.2024.120250_b0130) 2010; 2010
Sarafrazi (10.1016/j.ins.2024.120250_b0190) 2013; 57
Xie (10.1016/j.ins.2024.120250_b0015) 2020; 17
Garg (10.1016/j.ins.2024.120250_b0150) 2019; 478
Dowlatshahi (10.1016/j.ins.2024.120250_b0165) 2014; 258
Wang (10.1016/j.ins.2024.120250_b0080) 2021; 60
Alirezanejad (10.1016/j.ins.2024.120250_b0105) 2021; 33
Jain (10.1016/j.ins.2024.120250_b0210) 2022; 12
Chen (10.1016/j.ins.2024.120250_b0170) 2022; 2022
Tang (10.1016/j.ins.2024.120250_b0050) 1996; 13
Kirkpatrick (10.1016/j.ins.2024.120250_b0060) 1983; 220
Wolpert (10.1016/j.ins.2024.120250_b0220) 1997; 1
Deng (10.1016/j.ins.2024.120250_b0075) 2021; 25
Das (10.1016/j.ins.2024.120250_b0145) 2016; 28
Xie (10.1016/j.ins.2024.120250_b0020) 2015; 151
10.1016/j.ins.2024.120250_b0055
Kumar (10.1016/j.ins.2024.120250_b0115) 2013; 13
Zhang (10.1016/j.ins.2024.120250_b0120) 2016; 48
Rashedi (10.1016/j.ins.2024.120250_b0155) 2010; 9
Behmanesh (10.1016/j.ins.2024.120250_b0070) 2019; 186
Li (10.1016/j.ins.2024.120250_b0135) 2012; 55
Zanakis (10.1016/j.ins.2024.120250_b0040) 1981; 11
Karaboga (10.1016/j.ins.2024.120250_b0225) 2014; 42
Lange (10.1016/j.ins.2024.120250_b0025) 2014; 82
Avalos (10.1016/j.ins.2024.120250_b0030) 2021; 92
Hooda (10.1016/j.ins.2024.120250_b0175) 2022; 81
Eappen (10.1016/j.ins.2024.120250_b0195) 2020; 40
Nezamabadi-Pour (10.1016/j.ins.2024.120250_b0160) 2015; 40
Liu (10.1016/j.ins.2024.120250_b0010) 2022; 53
Biabani (10.1016/j.ins.2024.120250_b0140) 2022
Shaw (10.1016/j.ins.2024.120250_b0200) 2012; 35
Jin (10.1016/j.ins.2024.120250_b0005) 2018; 23
Zamfirache (10.1016/j.ins.2024.120250_b0185) 2022; 583
Mirjalili (10.1016/j.ins.2024.120250_b0215) 2014; 25
Wang (10.1016/j.ins.2024.120250_b0230) 2000; 28
Haupt (10.1016/j.ins.2024.120250_b0035) 1995; 31
Maringer (10.1016/j.ins.2024.120250_b0045) 2005
Wang (10.1016/j.ins.2024.120250_b0085) 2021; 107
Sabri (10.1016/j.ins.2024.120250_b0100) 2013; 5
Mirjalili (10.1016/j.ins.2024.120250_b0110) 2017; 53
References_xml – volume: 13
  start-page: 22
  year: 1996
  end-page: 37
  ident: b0050
  article-title: Genetic algorithms and their applications
  publication-title: IEEE Signal Process Mag.
– volume: 107
  year: 2021
  ident: b0085
  article-title: A genetic simulated annealing algorithm for parallel partial disassembly line balancing problem
  publication-title: Appl. Soft Comput.
– volume: 28
  start-page: 14
  year: 2016
  end-page: 28
  ident: b0145
  article-title: A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning
  publication-title: Swarm Evol. Comput.
– volume: 151
  start-page: 62
  year: 2015
  end-page: 72
  ident: b0020
  article-title: An integrated predictive model with an on-line updating strategy for iron precipitation in zinc hydrometallurgy
  publication-title: Hydrometall.
– volume: 478
  start-page: 499
  year: 2019
  end-page: 523
  ident: b0150
  article-title: A hybrid GSA-GA algorithm for constrained optimization problems
  publication-title: Inf. Sci.
– volume: 82
  start-page: 46
  year: 2014
  end-page: 70
  ident: b0025
  article-title: A brief survey of modern optimization for statisticians
  publication-title: Int. Stat. Rev.
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b0095
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf. Sci.
– volume: 9
  start-page: 727
  year: 2010
  end-page: 745
  ident: b0155
  article-title: BGSA: binary gravitational search algorithm
  publication-title: Nat. Comput.
– volume: 55
  start-page: 2712
  year: 2012
  end-page: 2719
  ident: b0135
  article-title: Path planning of unmanned aerial vehicle based on improved gravitational search algorithm
  publication-title: Sci. China Technol. Sci.
– volume: 26
  start-page: 29
  year: 1996
  end-page: 41
  ident: b0065
  article-title: Ant system: optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics
  publication-title: Part B (cybernetics)
– volume: 14
  start-page: 1
  year: 2014
  end-page: 14
  ident: b0125
  article-title: A gravitational search algorithm for multimodal optimization
  publication-title: Swarm Evol. Comput.
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b0220
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 23
  start-page: 442
  year: 2018
  end-page: 458
  ident: b0005
  article-title: Data-driven evolutionary optimization: An overview and case studies
  publication-title: IEEE Trans. Evol. Comput.
– volume: 17
  start-page: 569
  year: 2020
  end-page: 577
  ident: b0015
  article-title: Multiobjective-based optimization and control for iron removal process under dynamic environment
  publication-title: IEEE Trans. Ind. Inf.
– volume: 33
  start-page: 109
  year: 2021
  end-page: 125
  ident: b0105
  article-title: GSA-LA: gravitational search algorithm based on learning automata
  publication-title: J. Exp. Theor. Artif. Intell.
– volume: 583
  start-page: 99
  year: 2022
  end-page: 120
  ident: b0185
  article-title: Reinforcement Learning-based control using Q-learning and gravitational search algorithm with experimental validation on a nonlinear servo system
  publication-title: Inf. Sci.
– start-page: 38
  year: 2005
  end-page: 76
  ident: b0045
  article-title: Heuristic optimization
  publication-title: Portfolio Management with Heuristic Optimization
– volume: 92
  start-page: 261
  year: 2021
  end-page: 280
  ident: b0030
  article-title: GSA for machine learning problems: A comprehensive overview
  publication-title: App. Math. Model.
– reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN'95-international conference on neural networks, IEEE, 1995, pp. 1942-1948.
– volume: 5
  start-page: 1
  year: 2013
  end-page: 39
  ident: b0100
  article-title: A review of gravitational search algorithm
  publication-title: Int. J. Advance. Soft Comput. Appl
– volume: 25
  start-page: 1423
  year: 2014
  end-page: 1435
  ident: b0215
  article-title: Binary optimization using hybrid particle swarm optimization and gravitational search algorithm
  publication-title: Neural Comput. & Applic.
– volume: 40
  start-page: 62
  year: 2015
  end-page: 75
  ident: b0160
  article-title: A quantum-inspired gravitational search algorithm for binary encoded optimization problems
  publication-title: Eng. Appl. Artif. Intel.
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: b0060
  publication-title: Optimization by Simulated Annealing, Science
– volume: 2010
  start-page: 374
  year: 2010
  end-page: 377
  ident: b0130
  article-title: A new hybrid PSOGSA algorithm for function optimization, in, international conference on computer and information application
  publication-title: IEEE
– volume: 81
  start-page: 29633
  year: 2022
  end-page: 29652
  ident: b0175
  article-title: Fuzzy clustering using gravitational search algorithm for brain image segmentation
  publication-title: Multimed. Tools Appl.
– volume: 8
  start-page: 94
  year: 2020
  end-page: 109
  ident: b0205
  article-title: A multi-layered gravitational search algorithm for function optimization and real-world problems
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 13
  start-page: 2445
  year: 2013
  end-page: 2455
  ident: b0115
  article-title: Strategic bidding using fuzzy adaptive gravitational search algorithm in a pool based electricity market
  publication-title: Appl. Soft Comput.
– volume: 40
  year: 2020
  ident: b0195
  article-title: Hybrid PSO-GSA for energy efficient spectrum sensing in cognitive radio network
  publication-title: Phys. Commun.
– volume: 31
  start-page: 1932
  year: 1995
  end-page: 1935
  ident: b0035
  article-title: Comparison between genetic and gradient-based optimization algorithms for solving electromagnetics problems
  publication-title: IEEE Trans. Magn.
– volume: 48
  start-page: 436
  year: 2016
  end-page: 447
  ident: b0120
  article-title: A dynamic neighborhood learning-based gravitational search algorithm
  publication-title: IEEE Trans. Cybern.
– volume: 114
  start-page: 3793
  year: 2021
  end-page: 3802
  ident: b0180
  article-title: Tool wear prediction in milling based on a GSA-BP model with a multisensor fusion method
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 11
  start-page: 84
  year: 1981
  end-page: 91
  ident: b0040
  article-title: Heuristic “optimization”: Why, when, and how to use it
  publication-title: Interfaces
– volume: 53
  year: 2022
  ident: b0010
  article-title: Optimization of constraint engineering problems using robust universal learning chimp optimization
  publication-title: Adv. Eng. Inf.
– start-page: 1
  year: 2022
  end-page: 20
  ident: b0090
  article-title: Cooperative particle swarm optimizer with depth first search strategy for global optimization of multimodal functions
  publication-title: Appl. Intell.
– volume: 25
  start-page: 5277
  year: 2021
  end-page: 5298
  ident: b0075
  article-title: An improved differential evolution algorithm and its application in optimization problem
  publication-title: Soft. Comput.
– start-page: 1168
  year: 2022
  end-page: 1189
  ident: b0140
  article-title: A new insight into metaheuristic optimization method using a hybrid of PSO, GSA, and GWO
– volume: 2022
  start-page: 191
  year: 2022
  end-page: 196
  ident: b0170
  article-title: Power Quality Disturbance Identification Method Based on Improved GSA-SVM Algorithm, in, IEEE 5th International Electrical and Energy Conference (CIEEC)
  publication-title: IEEE
– reference: K.V. Price, Differential evolution, in: Handbook of optimization: From classical to modern approach, Springer, 2013, pp. 187-214.
– volume: 57
  start-page: 270
  year: 2013
  end-page: 278
  ident: b0190
  article-title: Facing the classification of binary problems with a GSA-SVM hybrid system
  publication-title: Math. Comput. Model.
– volume: 258
  start-page: 94
  year: 2014
  end-page: 107
  ident: b0165
  article-title: A discrete gravitational search algorithm for solving combinatorial optimization problems
  publication-title: Inf. Sci.
– volume: 60
  year: 2021
  ident: b0080
  article-title: A particle swarm optimization algorithm for mixed-variable optimization problems
  publication-title: Swarm Evol. Comput.
– volume: 42
  start-page: 21
  year: 2014
  end-page: 57
  ident: b0225
  article-title: A comprehensive survey: artificial bee colony (ABC) algorithm and applications
  publication-title: Artif. Intell. Rev.
– volume: 35
  start-page: 21
  year: 2012
  end-page: 33
  ident: b0200
  article-title: A novel opposition-based gravitational search algorithm for combined economic and emission dispatch problems of power systems
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 12
  start-page: 8392
  year: 2022
  ident: b0210
  article-title: An overview of variants and advancements of PSO algorithm
  publication-title: Appl. Sci.
– volume: 186
  year: 2019
  ident: b0070
  article-title: Surgical case scheduling problem with fuzzy surgery time: An advanced bi-objective ant system approach
  publication-title: Knowl.-Based Syst.
– volume: 28
  start-page: 96
  year: 2000
  ident: b0230
  article-title: The immune algorithm
  publication-title: ACTA ELECTONICA SINICA
– volume: 53
  start-page: 407
  year: 2017
  end-page: 419
  ident: b0110
  article-title: Chaotic gravitational constants for the gravitational search algorithm
  publication-title: Appl. Soft Comput.
– volume: 53
  start-page: 407
  year: 2017
  ident: 10.1016/j.ins.2024.120250_b0110
  article-title: Chaotic gravitational constants for the gravitational search algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.01.008
– volume: 40
  year: 2020
  ident: 10.1016/j.ins.2024.120250_b0195
  article-title: Hybrid PSO-GSA for energy efficient spectrum sensing in cognitive radio network
  publication-title: Phys. Commun.
  doi: 10.1016/j.phycom.2020.101091
– volume: 28
  start-page: 96
  year: 2000
  ident: 10.1016/j.ins.2024.120250_b0230
  article-title: The immune algorithm
  publication-title: ACTA ELECTONICA SINICA
– volume: 5
  start-page: 1
  year: 2013
  ident: 10.1016/j.ins.2024.120250_b0100
  article-title: A review of gravitational search algorithm
  publication-title: Int. J. Advance. Soft Comput. Appl
– volume: 2010
  start-page: 374
  year: 2010
  ident: 10.1016/j.ins.2024.120250_b0130
  article-title: A new hybrid PSOGSA algorithm for function optimization, in, international conference on computer and information application
  publication-title: IEEE
– volume: 9
  start-page: 727
  year: 2010
  ident: 10.1016/j.ins.2024.120250_b0155
  article-title: BGSA: binary gravitational search algorithm
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-009-9175-3
– volume: 114
  start-page: 3793
  year: 2021
  ident: 10.1016/j.ins.2024.120250_b0180
  article-title: Tool wear prediction in milling based on a GSA-BP model with a multisensor fusion method
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-021-07152-w
– volume: 8
  start-page: 94
  year: 2020
  ident: 10.1016/j.ins.2024.120250_b0205
  article-title: A multi-layered gravitational search algorithm for function optimization and real-world problems
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2020.1003462
– start-page: 1
  year: 2022
  ident: 10.1016/j.ins.2024.120250_b0090
  article-title: Cooperative particle swarm optimizer with depth first search strategy for global optimization of multimodal functions
  publication-title: Appl. Intell.
– volume: 107
  year: 2021
  ident: 10.1016/j.ins.2024.120250_b0085
  article-title: A genetic simulated annealing algorithm for parallel partial disassembly line balancing problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107404
– volume: 31
  start-page: 1932
  year: 1995
  ident: 10.1016/j.ins.2024.120250_b0035
  article-title: Comparison between genetic and gradient-based optimization algorithms for solving electromagnetics problems
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.376418
– volume: 13
  start-page: 2445
  year: 2013
  ident: 10.1016/j.ins.2024.120250_b0115
  article-title: Strategic bidding using fuzzy adaptive gravitational search algorithm in a pool based electricity market
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.12.003
– volume: 48
  start-page: 436
  year: 2016
  ident: 10.1016/j.ins.2024.120250_b0120
  article-title: A dynamic neighborhood learning-based gravitational search algorithm
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2641986
– volume: 583
  start-page: 99
  year: 2022
  ident: 10.1016/j.ins.2024.120250_b0185
  article-title: Reinforcement Learning-based control using Q-learning and gravitational search algorithm with experimental validation on a nonlinear servo system
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.10.070
– volume: 17
  start-page: 569
  year: 2020
  ident: 10.1016/j.ins.2024.120250_b0015
  article-title: Multiobjective-based optimization and control for iron removal process under dynamic environment
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2020.2975273
– volume: 11
  start-page: 84
  year: 1981
  ident: 10.1016/j.ins.2024.120250_b0040
  article-title: Heuristic “optimization”: Why, when, and how to use it
  publication-title: Interfaces
  doi: 10.1287/inte.11.5.84
– volume: 42
  start-page: 21
  year: 2014
  ident: 10.1016/j.ins.2024.120250_b0225
  article-title: A comprehensive survey: artificial bee colony (ABC) algorithm and applications
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-012-9328-0
– volume: 35
  start-page: 21
  year: 2012
  ident: 10.1016/j.ins.2024.120250_b0200
  article-title: A novel opposition-based gravitational search algorithm for combined economic and emission dispatch problems of power systems
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2011.08.012
– volume: 1
  start-page: 67
  year: 1997
  ident: 10.1016/j.ins.2024.120250_b0220
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 179
  start-page: 2232
  year: 2009
  ident: 10.1016/j.ins.2024.120250_b0095
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 33
  start-page: 109
  year: 2021
  ident: 10.1016/j.ins.2024.120250_b0105
  article-title: GSA-LA: gravitational search algorithm based on learning automata
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/0952813X.2020.1725650
– volume: 478
  start-page: 499
  year: 2019
  ident: 10.1016/j.ins.2024.120250_b0150
  article-title: A hybrid GSA-GA algorithm for constrained optimization problems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.11.041
– volume: 258
  start-page: 94
  year: 2014
  ident: 10.1016/j.ins.2024.120250_b0165
  article-title: A discrete gravitational search algorithm for solving combinatorial optimization problems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.09.034
– volume: 60
  year: 2021
  ident: 10.1016/j.ins.2024.120250_b0080
  article-title: A particle swarm optimization algorithm for mixed-variable optimization problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100808
– volume: 2022
  start-page: 191
  year: 2022
  ident: 10.1016/j.ins.2024.120250_b0170
  article-title: Power Quality Disturbance Identification Method Based on Improved GSA-SVM Algorithm, in, IEEE 5th International Electrical and Energy Conference (CIEEC)
  publication-title: IEEE
– volume: 57
  start-page: 270
  year: 2013
  ident: 10.1016/j.ins.2024.120250_b0190
  article-title: Facing the classification of binary problems with a GSA-SVM hybrid system
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2011.06.048
– volume: 25
  start-page: 1423
  year: 2014
  ident: 10.1016/j.ins.2024.120250_b0215
  article-title: Binary optimization using hybrid particle swarm optimization and gravitational search algorithm
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-014-1629-6
– volume: 220
  start-page: 671
  year: 1983
  ident: 10.1016/j.ins.2024.120250_b0060
  publication-title: Optimization by Simulated Annealing, Science
– volume: 12
  start-page: 8392
  year: 2022
  ident: 10.1016/j.ins.2024.120250_b0210
  article-title: An overview of variants and advancements of PSO algorithm
  publication-title: Appl. Sci.
  doi: 10.3390/app12178392
– volume: 186
  year: 2019
  ident: 10.1016/j.ins.2024.120250_b0070
  article-title: Surgical case scheduling problem with fuzzy surgery time: An advanced bi-objective ant system approach
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.104913
– volume: 26
  start-page: 29
  year: 1996
  ident: 10.1016/j.ins.2024.120250_b0065
  article-title: Ant system: optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics
  publication-title: Part B (cybernetics)
  doi: 10.1109/3477.484436
– volume: 55
  start-page: 2712
  year: 2012
  ident: 10.1016/j.ins.2024.120250_b0135
  article-title: Path planning of unmanned aerial vehicle based on improved gravitational search algorithm
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-012-4890-x
– volume: 23
  start-page: 442
  year: 2018
  ident: 10.1016/j.ins.2024.120250_b0005
  article-title: Data-driven evolutionary optimization: An overview and case studies
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2869001
– volume: 14
  start-page: 1
  year: 2014
  ident: 10.1016/j.ins.2024.120250_b0125
  article-title: A gravitational search algorithm for multimodal optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2013.08.001
– volume: 13
  start-page: 22
  year: 1996
  ident: 10.1016/j.ins.2024.120250_b0050
  article-title: Genetic algorithms and their applications
  publication-title: IEEE Signal Process Mag.
  doi: 10.1109/79.543973
– start-page: 1168
  year: 2022
  ident: 10.1016/j.ins.2024.120250_b0140
– volume: 92
  start-page: 261
  year: 2021
  ident: 10.1016/j.ins.2024.120250_b0030
  article-title: GSA for machine learning problems: A comprehensive overview
  publication-title: App. Math. Model.
  doi: 10.1016/j.apm.2020.11.013
– volume: 28
  start-page: 14
  year: 2016
  ident: 10.1016/j.ins.2024.120250_b0145
  article-title: A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2015.10.011
– volume: 53
  year: 2022
  ident: 10.1016/j.ins.2024.120250_b0010
  article-title: Optimization of constraint engineering problems using robust universal learning chimp optimization
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2022.101636
– volume: 82
  start-page: 46
  year: 2014
  ident: 10.1016/j.ins.2024.120250_b0025
  article-title: A brief survey of modern optimization for statisticians
  publication-title: Int. Stat. Rev.
  doi: 10.1111/insr.12022
– ident: 10.1016/j.ins.2024.120250_b0055
  doi: 10.1109/ICNN.1995.488968
– volume: 81
  start-page: 29633
  year: 2022
  ident: 10.1016/j.ins.2024.120250_b0175
  article-title: Fuzzy clustering using gravitational search algorithm for brain image segmentation
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-12336-x
– ident: 10.1016/j.ins.2024.120250_b0235
  doi: 10.1007/978-3-642-30504-7_8
– volume: 25
  start-page: 5277
  year: 2021
  ident: 10.1016/j.ins.2024.120250_b0075
  article-title: An improved differential evolution algorithm and its application in optimization problem
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-020-05527-x
– volume: 151
  start-page: 62
  year: 2015
  ident: 10.1016/j.ins.2024.120250_b0020
  article-title: An integrated predictive model with an on-line updating strategy for iron precipitation in zinc hydrometallurgy
  publication-title: Hydrometall.
  doi: 10.1016/j.hydromet.2014.11.004
– volume: 40
  start-page: 62
  year: 2015
  ident: 10.1016/j.ins.2024.120250_b0160
  article-title: A quantum-inspired gravitational search algorithm for binary encoded optimization problems
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2015.01.002
– start-page: 38
  year: 2005
  ident: 10.1016/j.ins.2024.120250_b0045
  article-title: Heuristic optimization
  publication-title: Portfolio Management with Heuristic Optimization
SSID ssj0004766
Score 2.4658122
Snippet As a population-based stochastic optimization algorithm, Gravitational Search Algorithm (GSA) has attracted numerous interests and has been applied in various...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 120250
SubjectTerms Center-biased search characteristic
Gravitational search algorithm
Mixed attraction and repulsion
Population-based algorithm
Shift transformation
Title MAR-GSA: Mixed attraction and repulsion based gravitational search algorithm
URI https://dx.doi.org/10.1016/j.ins.2024.120250
Volume 662
WOSCitedRecordID wos001181815200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeg44E9IBigDdjkB8QDU1DjpLHNW4XGAG0TsIEKL5E_kjZTl5Yug_75nL-SjgECJF6iyIqdyPfL-XfnOx9Cj7lhoRqYm6IliVKW8oiJRETpQILJnLGibxNpPx7QoyM2GvG3vsbmuS0nQOuaLZd8_l9FDW0gbJM6-xfibgeFBrgHocMVxA7XPxL84fB9tH9s_eaH1RL4pGiaRagIbpNV5hdT4yPbNSuY3jUFiPxB3SZ3xHlBxHQ8W1TN5GyVvPrUJTuSXzlbRv6ucp7Uz5PqC9yOQ_vI7X98mtXj8mrz8aT65nPRvOeBpF3olXOHhZSYSxGbhn9GxlBxC4zTqoySKCOuLFdQu5nTwldUuPMmnILdYU5TJ-mzmBie1q1XbRSh2Wi2NpGJgwVemV5Ha4QOOOuhteHrvdGbLkGWuk3r8G1he9sG-v3wop8TlBXScXIb3fLWAh46Kd9B14p6A62vnCG5gbZ95gl-glfkg73OvosOPB6eY4sG3KEBAxpwiwZs0YAvoQE7NOAWDffQh5d7Jy9eRb6ERqQIp02kpTA1xaVipORAdpXQVMEPmUitMsm4JIInImGZpMADtYxFpotY9BOaxERoldxHvXpWF5sIw8OyKFIl4gQGEH34pQexjMtSE6LTLNtC_TBvufIfasqcTPMQSHiaw1TnZqpzN9Vb6GnbZe4OV_ndw2kQRu4x7lhfDsj5dbcH_9btIbrZQf4R6jWLi2Ib3VBfm-p8sePx9R0FRoZ-
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MAR-GSA%3A+Mixed+attraction+and+repulsion+based+gravitational+search+algorithm&rft.jtitle=Information+sciences&rft.au=Qian%2C+Zhiqiang&rft.au=Xie%2C+Yongfang&rft.au=Xie%2C+Shiwen&rft.date=2024-03-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=662&rft_id=info:doi/10.1016%2Fj.ins.2024.120250&rft.externalDocID=S0020025524001634
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon