An ensemble of differential evolution and Adam for training feed-forward neural networks
Adam is an adaptive gradient descent approach that is commonly used in back-propagation (BP) algorithms for training feed-forward neural networks (FFNNs). However, it has the defect that it may easily fall into local optima. To solve this problem, some metaheuristic approaches have been proposed to...
Uloženo v:
| Vydáno v: | Information sciences Ročník 608; s. 453 - 471 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.08.2022
|
| Témata: | |
| ISSN: | 0020-0255, 1872-6291 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!