An ensemble of differential evolution and Adam for training feed-forward neural networks

Adam is an adaptive gradient descent approach that is commonly used in back-propagation (BP) algorithms for training feed-forward neural networks (FFNNs). However, it has the defect that it may easily fall into local optima. To solve this problem, some metaheuristic approaches have been proposed to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 608; s. 453 - 471
Hlavní autoři: Xue, Yu, Tong, Yiling, Neri, Ferrante
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.08.2022
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.