An ensemble of differential evolution and Adam for training feed-forward neural networks

Adam is an adaptive gradient descent approach that is commonly used in back-propagation (BP) algorithms for training feed-forward neural networks (FFNNs). However, it has the defect that it may easily fall into local optima. To solve this problem, some metaheuristic approaches have been proposed to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 608; s. 453 - 471
Hlavní autoři: Xue, Yu, Tong, Yiling, Neri, Ferrante
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.08.2022
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Adam is an adaptive gradient descent approach that is commonly used in back-propagation (BP) algorithms for training feed-forward neural networks (FFNNs). However, it has the defect that it may easily fall into local optima. To solve this problem, some metaheuristic approaches have been proposed to train FFNNs. While these approaches have stronger global search capabilities enabling them to more readily escape from local optima, their convergence performance is not as good as that of Adam. The proposed algorithm is an ensemble of differential evolution and Adam (EDEAdam), which integrates a modern version of the differential evolution algorithm with Adam, using two different sub-algorithms to evolve two sub-populations in parallel and thereby achieving good results in both global and local search. Compared with traditional algorithms, the integration of the two algorithms endows EDEAdam with powerful capabilities to handle different classification problems. Experimental results prove that EDEAdam not only exhibits improved global and local search capabilities, but also achieves a fast convergence speed.
AbstractList Adam is an adaptive gradient descent approach that is commonly used in back-propagation (BP) algorithms for training feed-forward neural networks (FFNNs). However, it has the defect that it may easily fall into local optima. To solve this problem, some metaheuristic approaches have been proposed to train FFNNs. While these approaches have stronger global search capabilities enabling them to more readily escape from local optima, their convergence performance is not as good as that of Adam. The proposed algorithm is an ensemble of differential evolution and Adam (EDEAdam), which integrates a modern version of the differential evolution algorithm with Adam, using two different sub-algorithms to evolve two sub-populations in parallel and thereby achieving good results in both global and local search. Compared with traditional algorithms, the integration of the two algorithms endows EDEAdam with powerful capabilities to handle different classification problems. Experimental results prove that EDEAdam not only exhibits improved global and local search capabilities, but also achieves a fast convergence speed.
Author Neri, Ferrante
Tong, Yiling
Xue, Yu
Author_xml – sequence: 1
  givenname: Yu
  surname: Xue
  fullname: Xue, Yu
  email: xueyu@nuist.edu.cn
  organization: School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
– sequence: 2
  givenname: Yiling
  surname: Tong
  fullname: Tong, Yiling
  email: 20201220036@nuist.edu.cn
  organization: School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
– sequence: 3
  givenname: Ferrante
  surname: Neri
  fullname: Neri, Ferrante
  email: f.neri@surrey.ac.uk
  organization: NICE Research Group, Department of Computer Science, University of Surrey, Guildford, UK
BookMark eNp9kM1KAzEURoNUsK0-gLu8wIxJZiYzwVUp_kHBjYK7kEluJHWaSDJt8e3NUFcuurpwuefju2eBZj54QOiWkpISyu-2pfOpZISxkvCSVPwCzWnXsoIzQWdoTggjBWFNc4UWKW0JIXXL-Rx9rDwGn2DXD4CDxcZZCxH86NSA4RCG_eiCx8obvDJqh22IeIzKeec_sQUwRd4cVTTYwz5mxsN4DPErXaNLq4YEN39zid4fH97Wz8Xm9ellvdoUmol2LEzfVU1LbaUEZ6w3CgQA7bue9g1VVIPpG9ZpxiuhoeONqLWoDW_zcV0JXldL1J5ydQwpRbBSu1FNpaeag6REToLkVmZBchIkCZdZUCbpP_I7up2KP2eZ-xMD-aWDgyiTduBzTRdBj9IEd4b-BaCPgX0
CitedBy_id crossref_primary_10_1007_s00521_023_08365_8
crossref_primary_10_1016_j_engappai_2023_106008
crossref_primary_10_1016_j_ress_2024_110481
crossref_primary_10_1007_s11227_023_05390_1
crossref_primary_10_1007_s40571_025_00928_x
crossref_primary_10_1109_TNNLS_2025_3564654
crossref_primary_10_1016_j_engappai_2023_107579
crossref_primary_10_1007_s12530_023_09518_9
crossref_primary_10_1016_j_jwpe_2025_107784
crossref_primary_10_1057_s41599_025_04633_1
crossref_primary_10_1016_j_compbiomed_2023_107166
crossref_primary_10_1016_j_eswa_2025_127374
crossref_primary_10_1016_j_ins_2024_120124
crossref_primary_10_3390_computation11080166
crossref_primary_10_7717_peerj_cs_3178
crossref_primary_10_1016_j_optlaseng_2024_108561
crossref_primary_10_1016_j_csite_2024_105079
crossref_primary_10_1016_j_ipm_2023_103521
crossref_primary_10_1016_j_iswa_2022_200173
crossref_primary_10_3390_app14219972
crossref_primary_10_1016_j_eja_2025_127599
crossref_primary_10_3390_bioengineering10070850
crossref_primary_10_1109_ACCESS_2024_3445269
crossref_primary_10_1109_ACCESS_2023_3312010
crossref_primary_10_1016_j_cnsns_2023_107144
crossref_primary_10_1016_j_atech_2025_101266
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1016_j_foodchem_2025_144197
crossref_primary_10_1007_s11071_024_09605_9
crossref_primary_10_1002_rnc_6741
crossref_primary_10_1007_s00397_023_01425_9
crossref_primary_10_1016_j_engappai_2023_106504
crossref_primary_10_1007_s10586_024_04915_4
crossref_primary_10_1016_j_compbiomed_2024_108440
crossref_primary_10_1007_s10489_023_04595_4
crossref_primary_10_1016_j_bspc_2023_104893
crossref_primary_10_1109_ACCESS_2024_3355312
crossref_primary_10_1088_2515_7620_ad484b
crossref_primary_10_1016_j_neucom_2023_126899
crossref_primary_10_1016_j_emcon_2025_100558
crossref_primary_10_1109_TFUZZ_2025_3574947
crossref_primary_10_1109_ACCESS_2023_3321687
crossref_primary_10_1109_TPEL_2025_3544580
crossref_primary_10_1016_j_ins_2023_03_115
crossref_primary_10_1007_s10586_023_04173_w
crossref_primary_10_1007_s42979_025_04077_z
crossref_primary_10_1093_jcde_qwad093
crossref_primary_10_3390_biomimetics8030268
crossref_primary_10_1016_j_yofte_2025_104256
crossref_primary_10_1016_j_displa_2023_102485
crossref_primary_10_1016_j_compbiomed_2023_106949
crossref_primary_10_1016_j_compbiomed_2023_106948
crossref_primary_10_1016_j_ins_2024_120192
crossref_primary_10_1088_2631_8695_adebe1
crossref_primary_10_1016_j_bspc_2023_105208
crossref_primary_10_1109_JSEN_2025_3556912
crossref_primary_10_1038_s41598_025_02846_7
crossref_primary_10_1016_j_neunet_2025_107751
crossref_primary_10_1016_j_ins_2022_10_006
crossref_primary_10_1016_j_compbiomed_2023_107197
crossref_primary_10_1016_j_fuel_2024_133096
crossref_primary_10_1016_j_ins_2025_122039
crossref_primary_10_3390_ai4040054
crossref_primary_10_1016_j_engappai_2022_105755
crossref_primary_10_3390_biomimetics8030278
crossref_primary_10_1111_bcpt_13959
crossref_primary_10_3788_IRLA20240606
crossref_primary_10_1007_s11227_024_06799_y
crossref_primary_10_1016_j_compbiomed_2023_106950
crossref_primary_10_1109_ACCESS_2023_3236836
crossref_primary_10_3389_fninf_2023_1126783
crossref_primary_10_1016_j_ins_2024_120167
crossref_primary_10_1016_j_petsci_2023_08_032
crossref_primary_10_3390_biomimetics8060484
crossref_primary_10_1016_j_heliyon_2023_e18832
crossref_primary_10_1088_1361_6595_add95c
crossref_primary_10_1016_j_swevo_2025_102125
crossref_primary_10_1093_jcde_qwad073
crossref_primary_10_3390_sym15051120
crossref_primary_10_1088_1361_6595_ad98bf
crossref_primary_10_1016_j_isci_2023_107736
crossref_primary_10_1016_j_eswa_2023_119562
crossref_primary_10_3390_buildings14103299
crossref_primary_10_1016_j_swevo_2024_101829
crossref_primary_10_1016_j_fuel_2025_135270
crossref_primary_10_1016_j_engappai_2024_108188
crossref_primary_10_1016_j_neucom_2024_127664
crossref_primary_10_1016_j_ijhydene_2024_08_465
crossref_primary_10_1038_s42256_024_00849_z
crossref_primary_10_1109_JLT_2023_3348834
crossref_primary_10_1007_s13349_024_00821_w
crossref_primary_10_1038_s41598_023_35663_x
crossref_primary_10_1007_s00521_024_10781_3
crossref_primary_10_1016_j_bspc_2023_105423
crossref_primary_10_1371_journal_pone_0289691
crossref_primary_10_1007_s10489_025_06609_9
crossref_primary_10_1007_s42235_023_00367_5
crossref_primary_10_1016_j_neucom_2023_126467
crossref_primary_10_1007_s11831_023_10058_3
crossref_primary_10_3390_math11071675
crossref_primary_10_1007_s42235_023_00400_7
crossref_primary_10_1007_s00521_023_08287_5
crossref_primary_10_1109_ACCESS_2023_3300229
crossref_primary_10_1016_j_swevo_2024_101499
crossref_primary_10_1109_JAS_2025_125237
crossref_primary_10_1371_journal_pone_0291626
crossref_primary_10_1155_cplx_8823662
crossref_primary_10_7717_peerj_cs_2813
crossref_primary_10_1007_s11356_023_28777_2
crossref_primary_10_1016_j_asoc_2023_110782
crossref_primary_10_1016_j_asoc_2023_110664
crossref_primary_10_1016_j_ins_2024_121363
crossref_primary_10_1016_j_neucom_2024_128374
crossref_primary_10_32604_csse_2023_038912
crossref_primary_10_1002_eng2_70344
crossref_primary_10_1016_j_knosys_2024_111784
crossref_primary_10_1016_j_ipm_2023_103304
crossref_primary_10_1016_j_swevo_2023_101466
Cites_doi 10.1016/j.neunet.2021.02.011
10.1016/j.engappai.2017.01.013
10.1016/j.ins.2016.07.009
10.1007/s00521-020-04749-2
10.1016/j.advengsoft.2003.12.001
10.1016/j.ins.2020.09.041
10.1109/ICCV.2005.239
10.1145/3340848
10.1016/0925-2312(93)90006-O
10.1007/s10489-014-0645-7
10.1007/s00500-017-2547-1
10.1109/TEVC.2009.2039139
10.1007/s00521-017-2952-5
10.1007/s10462-009-9137-2
10.1007/s00521-020-05131-y
10.1007/s00500-009-0510-5
10.1016/j.neunet.2021.01.026
10.1016/j.asoc.2012.05.032
10.1137/130943170
10.1109/CVPR.2017.243
10.1109/TEVC.2010.2040183
10.1016/j.jup.2021.101294
10.1016/j.neunet.2021.10.004
10.1016/j.asoc.2014.01.038
10.1016/j.asoc.2010.05.007
10.1016/j.ins.2013.06.011
10.1007/s10489-019-01613-2
10.1109/ICNN.1995.488968
10.3233/ICA-150481
10.1016/j.ins.2016.12.028
10.1016/j.neucom.2013.12.062
10.1007/978-3-662-45523-4_50
10.1016/j.ins.2016.09.016
10.1109/CEC.2000.870802
10.1145/3449726.3463132
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2022.06.036
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 471
ExternalDocumentID 10_1016_j_ins_2022_06_036
S0020025522006260
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-db83571f3a9622bdae9ee1b8b1b51a1cedb528c2639ce86594c94d67622439643
ISICitedReferencesCount 123
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000864028900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 22:11:33 EST 2025
Sat Nov 29 06:59:40 EST 2025
Fri Feb 23 02:38:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ensemble algorithms
Gradient-based algorithms
Differential algorithms
Feed-forward neural networks
Multi-populations
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-db83571f3a9622bdae9ee1b8b1b51a1cedb528c2639ce86594c94d67622439643
PageCount 19
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2022_06_036
crossref_primary_10_1016_j_ins_2022_06_036
elsevier_sciencedirect_doi_10_1016_j_ins_2022_06_036
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Bottou (b0030) 1998
Neri (b0140) 2019
Ai, Chen, Xie (b0005) 2016; 373
Tieleman, Hinton (b0180) 2017
Xu, Zhang, Zhang, Mandic (b0205) 2021; 139
Peng, Tang, Chen, Yao (b0155) 2010; 14
A. Choromanska, Y. LeCun, G. Ben Arous, Open problem: the landscape of the loss surfaces of multilayer networks, in: P. Grünwald, E. Hazan, S. Kale (Eds.), Proceedings of The 28th Conference on Learning Theory, Vol. 40 of Proceedings of Machine Learning Research, PMLR, Paris, France, 2015, pp. 1756–1760.
Zhao, Feng, Lin, Wei, Wang, Xiao, Cao, Hou (b0250) 2015; 149
Yuan, Ling, Yin (b0235) 2016; 26
Prügel-Bennett (b0165) 2010; 14
Fan, Yu, Dong, Yeh, Hong (b0060) 2021; 73
Zhang, Zhang, Lok, Lyu (b0245) 2007; 185
D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, in: The International Conference on Learning Representations, 2015, p. 13.
A.S. Fukunaga, Genetic algorithm portfolios, in: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 2, IEEE, 2000, pp. 1304–1311.
Iiduka (b0090) 2021
Langdon, Botvinick, Nakahara, Tanaka, Matsumoto, Kanai (b0105) 2022; 145
G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2261–2269.
K. Grauman, T. Darrell, The pyramid match kernel: discriminative classification with sets of image features, in: Tenth IEEE International Conference on Computer Vision, vol. 2, 2005, pp. 1458–1465.
Ma, Bai (b0125) 2020; 50
Piotrowski, Napiorkowski, Napiorkowski, Rowinski (b0160) 2017; 384
Liao (b0120) 2010; 10
Tirumala (b0185) 2020; 32
Amari (b0010) 1993; 5
Weber, Tirronen, Neri (b0200) 2010; 14
S. Ruder, An overview of gradient descent optimization algorithms, arXiv preprint arXiv:1609.04747, 2016.
J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95-international Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948.
Xue, Zhong, Zhuang, Xu (b0225) 2014; 231
Cheng, Zhang, Caraffini, Neri (b0040) 2015; 22
Yang, Tian, He, Zhang, Tan, Jin (b0230) 2021
Xue, Xue, Zhang (b0220) 2019; 13
Cheng, Yen, Zhang (b0035) 2016; 367
Cheng, Zhang, Neri (b0045) 2013; 247
Schmidt, Thierauf (b0175) 2005; 36
García-Ródenas, Linares, López-Gómez (b0070) 2021; 33
H. Li, Z. Xu, G. Taylor, C. Studer, T. Goldstein, Visualizing the loss landscape of neural nets, in: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18. Curran Associates Inc., Red Hook, NY, USA, 2018b, pp. 6391–6401.
G. Iacca, F. Neri, F. Caraffini, P.N. Suganthan, A differential evolution framework with ensemble of parameters and strategies and pool of local search algorithms, in: A.I. Esparcia-Alcázar, A.M. Mora (Eds.), Applications of Evolutionary Computation - 17th European Conference, EvoApplications 2014, Granada, Spain, April 23–25, 2014, vol. 8602 of Lecture Notes in Computer Science, Springer, 2014, pp. 615–626.
Ojha, Abraham, Snášel (b0150) 2017; 60
Varela-Santos, Melin (b0190) 2021; 545
Wang, Li, Huang, Li (b0195) 2014; 18
H. Li, Z. Xu, G. Taylor, C. Studer, T. Goldstein, Visualizing the loss landscape of neural nets, Advances in Neural Information Processing Systems 31 (2018a).
Xue, Jiang, Zhao, Ma (b0210) 2018; 22
Mirjalili (b0130) 2015; 43
J. Moses, K.M. Malan, A.S. Bosman, Analysing the loss landscape features of generative adversarial networks, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2021, pp. 1692–1699.
Xue, Wang, Liang (b0215) 2022
Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B., 2011. Algorithms for hyper-parameter optimization. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K.Q. (Eds.), 25th Annual Conference on Neural Information Processing Systems. Vol. 24. Curran Associates, Inc., pp. 2546–2554.
Apicella, Donnarumma, Isgrò, Prevete (b0020) 2021
Neri, Tirronen (b0145) 2010; 33
Zhang, Cheng, Gheorghe, Meng (b0240) 2013; 13
Amirsadri, Mousavirad, Ebrahimpour-Komleh (b0015) 2018; 30
D. Dua, C. Graff, UCI machine learning repository. Tech. rep., University of California, Irvine, School of Information and Computer Sciences, 2017.
10.1016/j.ins.2022.06.036_b0115
Neri (10.1016/j.ins.2022.06.036_b0140) 2019
Cheng (10.1016/j.ins.2022.06.036_b0035) 2016; 367
Fan (10.1016/j.ins.2022.06.036_b0060) 2021; 73
Xue (10.1016/j.ins.2022.06.036_b0215) 2022
10.1016/j.ins.2022.06.036_b0080
Xue (10.1016/j.ins.2022.06.036_b0210) 2018; 22
Xue (10.1016/j.ins.2022.06.036_b0220) 2019; 13
Zhao (10.1016/j.ins.2022.06.036_b0250) 2015; 149
10.1016/j.ins.2022.06.036_b0085
Zhang (10.1016/j.ins.2022.06.036_b0245) 2007; 185
Yang (10.1016/j.ins.2022.06.036_b0230) 2021
Bottou (10.1016/j.ins.2022.06.036_b0030) 1998
Iiduka (10.1016/j.ins.2022.06.036_b0090) 2021
Mirjalili (10.1016/j.ins.2022.06.036_b0130) 2015; 43
Prügel-Bennett (10.1016/j.ins.2022.06.036_b0165) 2010; 14
Cheng (10.1016/j.ins.2022.06.036_b0040) 2015; 22
10.1016/j.ins.2022.06.036_b0170
10.1016/j.ins.2022.06.036_b0050
10.1016/j.ins.2022.06.036_b0095
Langdon (10.1016/j.ins.2022.06.036_b0105) 2022; 145
Schmidt (10.1016/j.ins.2022.06.036_b0175) 2005; 36
10.1016/j.ins.2022.06.036_b0055
10.1016/j.ins.2022.06.036_b0135
Ojha (10.1016/j.ins.2022.06.036_b0150) 2017; 60
Xue (10.1016/j.ins.2022.06.036_b0225) 2014; 231
Piotrowski (10.1016/j.ins.2022.06.036_b0160) 2017; 384
Cheng (10.1016/j.ins.2022.06.036_b0045) 2013; 247
Peng (10.1016/j.ins.2022.06.036_b0155) 2010; 14
Neri (10.1016/j.ins.2022.06.036_b0145) 2010; 33
Tieleman (10.1016/j.ins.2022.06.036_b0180) 2017
Xu (10.1016/j.ins.2022.06.036_b0205) 2021; 139
10.1016/j.ins.2022.06.036_b0065
Ma (10.1016/j.ins.2022.06.036_b0125) 2020; 50
10.1016/j.ins.2022.06.036_b0100
Tirumala (10.1016/j.ins.2022.06.036_b0185) 2020; 32
Apicella (10.1016/j.ins.2022.06.036_b0020) 2021
10.1016/j.ins.2022.06.036_b0025
Weber (10.1016/j.ins.2022.06.036_b0200) 2010; 14
García-Ródenas (10.1016/j.ins.2022.06.036_b0070) 2021; 33
Liao (10.1016/j.ins.2022.06.036_b0120) 2010; 10
Amari (10.1016/j.ins.2022.06.036_b0010) 1993; 5
Amirsadri (10.1016/j.ins.2022.06.036_b0015) 2018; 30
Wang (10.1016/j.ins.2022.06.036_b0195) 2014; 18
Yuan (10.1016/j.ins.2022.06.036_b0235) 2016; 26
Ai (10.1016/j.ins.2022.06.036_b0005) 2016; 373
Varela-Santos (10.1016/j.ins.2022.06.036_b0190) 2021; 545
10.1016/j.ins.2022.06.036_b0075
10.1016/j.ins.2022.06.036_b0110
Zhang (10.1016/j.ins.2022.06.036_b0240) 2013; 13
References_xml – volume: 13
  start-page: 1528
  year: 2013
  end-page: 1542
  ident: b0240
  article-title: A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems
  publication-title: Appl. Soft Comput.
– reference: K. Grauman, T. Darrell, The pyramid match kernel: discriminative classification with sets of image features, in: Tenth IEEE International Conference on Computer Vision, vol. 2, 2005, pp. 1458–1465.
– volume: 13
  start-page: 1
  year: 2019
  end-page: 27
  ident: b0220
  article-title: Self-adaptive particle swarm optimization for large-scale feature selection in classification
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 367
  start-page: 890
  year: 2016
  end-page: 908
  ident: b0035
  article-title: A grid-based adaptive multi-objective differential evolution algorithm
  publication-title: Inf. Sci.
– volume: 545
  start-page: 403
  year: 2021
  end-page: 414
  ident: b0190
  article-title: A new approach for classifying coronavirus covid-19 based on its manifestation on chest x-rays using texture features and neural networks
  publication-title: Inf. Sci.
– reference: G. Iacca, F. Neri, F. Caraffini, P.N. Suganthan, A differential evolution framework with ensemble of parameters and strategies and pool of local search algorithms, in: A.I. Esparcia-Alcázar, A.M. Mora (Eds.), Applications of Evolutionary Computation - 17th European Conference, EvoApplications 2014, Granada, Spain, April 23–25, 2014, vol. 8602 of Lecture Notes in Computer Science, Springer, 2014, pp. 615–626.
– volume: 32
  start-page: 13051
  year: 2020
  end-page: 13064
  ident: b0185
  article-title: Evolving deep neural networks using coevolutionary algorithms with multi-population strategy
  publication-title: Neural Comput. Appl.
– year: 2022
  ident: b0215
  article-title: A self-adaptive gradient descent search algorithm for fully-connected neural networks
  publication-title: Neurocomputing
– year: 2019
  ident: b0140
  article-title: Linear algebra for computational sciences and engineering
– reference: J. Moses, K.M. Malan, A.S. Bosman, Analysing the loss landscape features of generative adversarial networks, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2021, pp. 1692–1699.
– reference: H. Li, Z. Xu, G. Taylor, C. Studer, T. Goldstein, Visualizing the loss landscape of neural nets, in: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18. Curran Associates Inc., Red Hook, NY, USA, 2018b, pp. 6391–6401.
– start-page: 1
  year: 2021
  end-page: 12
  ident: b0090
  article-title: Appropriate learning rates of adaptive learning rate optimization algorithms for training deep neural networks
  publication-title: IEEE Trans. Cybern.
– volume: 43
  start-page: 150
  year: 2015
  end-page: 161
  ident: b0130
  article-title: How effective is the grey wolf optimizer in training multi-layer perceptrons
  publication-title: Appl. Intell.
– volume: 50
  start-page: 1510
  year: 2020
  end-page: 1526
  ident: b0125
  article-title: A multi-population differential evolution with best-random mutation strategy for large-scale global optimization
  publication-title: Appl. Intell.
– volume: 26
  start-page: 1835
  year: 2016
  end-page: 1854
  ident: b0235
  article-title: On the convergence of decentralized gadient descent
  publication-title: Siam J. Optim.
– start-page: 9
  year: 1998
  end-page: 42
  ident: b0030
  article-title: Online algorithms and stochastic approximations
  publication-title: Online Learning and Neural Networks
– reference: A. Choromanska, Y. LeCun, G. Ben Arous, Open problem: the landscape of the loss surfaces of multilayer networks, in: P. Grünwald, E. Hazan, S. Kale (Eds.), Proceedings of The 28th Conference on Learning Theory, Vol. 40 of Proceedings of Machine Learning Research, PMLR, Paris, France, 2015, pp. 1756–1760.
– volume: 73
  year: 2021
  ident: b0060
  article-title: Forecasting short-term electricity load using hybrid support vector regression with grey catastrophe and random forest modeling
  publication-title: Util. Policy
– volume: 30
  start-page: 3707
  year: 2018
  end-page: 3720
  ident: b0015
  article-title: A levy flight-based grey wolf optimizer combined with back-propagation algorithm for neural network training
  publication-title: Neural Comput. Appl.
– reference: A.S. Fukunaga, Genetic algorithm portfolios, in: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 2, IEEE, 2000, pp. 1304–1311.
– volume: 18
  start-page: 232
  year: 2014
  end-page: 247
  ident: b0195
  article-title: Differential evolution based on covariance matrix learning and bimodal distribution parameter setting
  publication-title: Appl. Soft Comput.
– volume: 14
  start-page: 782
  year: 2010
  end-page: 800
  ident: b0155
  article-title: Population-based algorithm portfolios for numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
– reference: Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B., 2011. Algorithms for hyper-parameter optimization. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K.Q. (Eds.), 25th Annual Conference on Neural Information Processing Systems. Vol. 24. Curran Associates, Inc., pp. 2546–2554.
– volume: 231
  start-page: 329
  year: 2014
  end-page: 346
  ident: b0225
  article-title: An ensemble algorithm with self-adaptive learning techniques for high-dimensional numerical optimization
  publication-title: Appl. Math. Comput.
– volume: 384
  start-page: 34
  year: 2017
  end-page: 85
  ident: b0160
  article-title: Swarm intelligence and evolutionary algorithms: performance versus speed
  publication-title: Inf. Sci.
– volume: 33
  start-page: 2561
  year: 2021
  end-page: 2588
  ident: b0070
  article-title: Memetic algorithms for training feedforward neural networks: an approach based on gravitational search algorithm
  publication-title: Neural Comput. Appl.
– reference: H. Li, Z. Xu, G. Taylor, C. Studer, T. Goldstein, Visualizing the loss landscape of neural nets, Advances in Neural Information Processing Systems 31 (2018a).
– volume: 36
  start-page: 11
  year: 2005
  end-page: 19
  ident: b0175
  article-title: A combined heuristic optimization technique
  publication-title: Adv. Eng. Softw.
– volume: 139
  start-page: 17
  year: 2021
  end-page: 23
  ident: b0205
  article-title: Convergence of the rmsprop deep learning method with penalty for nonconvex optimization
  publication-title: Neural Netw.
– year: 2021
  ident: b0020
  article-title: A survey on modern trainable activation functions
  publication-title: Neural Netw.
– volume: 247
  start-page: 72
  year: 2013
  end-page: 93
  ident: b0045
  article-title: Enhancing distributed differential evolution with multicultural migration for global numerical optimization
  publication-title: Inf. Sci.
– volume: 22
  start-page: 103
  year: 2015
  end-page: 107
  ident: b0040
  article-title: Multicriteria adaptive differential evolution for global numerical optimization
  publication-title: Integr. Comput.-Aided Eng.
– year: 2017
  ident: b0180
  article-title: Divide the gradient by a running average of its recent magnitude. coursera: neural networks for machine learning
– reference: G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2261–2269.
– volume: 5
  start-page: 185
  year: 1993
  end-page: 196
  ident: b0010
  article-title: Backpropagation and stochastic gradient descent method
  publication-title: Neurocomputing
– volume: 60
  start-page: 97
  year: 2017
  end-page: 116
  ident: b0150
  article-title: Metaheuristic design of feedforward neural networks: a review of two decades of research
  publication-title: Eng. Appl. Artif. Intell.
– reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95-international Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948.
– volume: 14
  start-page: 500
  year: 2010
  end-page: 517
  ident: b0165
  article-title: Benefits of a population: five mechanisms that advantage population-based algorithms
  publication-title: IEEE Trans. Evol. Comput.
– volume: 22
  start-page: 2935
  year: 2018
  end-page: 2952
  ident: b0210
  article-title: A self-adaptive artificial bee colony algorithm based on global best for global optimization
  publication-title: Soft. Comput.
– reference: D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, in: The International Conference on Learning Representations, 2015, p. 13.
– volume: 373
  start-page: 404
  year: 2016
  end-page: 418
  ident: b0005
  article-title: A zero-gradient-sum algorithm for distributed cooperative learning using a feedforward neural network with random weights
  publication-title: Inf. Sci.
– volume: 10
  start-page: 1188
  year: 2010
  end-page: 1199
  ident: b0120
  article-title: Two hybrid differential evolution algorithms for engineering design optimization
  publication-title: Appl. Soft Comput.
– reference: S. Ruder, An overview of gradient descent optimization algorithms, arXiv preprint arXiv:1609.04747, 2016.
– volume: 149
  start-page: 29
  year: 2015
  end-page: 38
  ident: b0250
  article-title: Evolved neural network ensemble by multiple heterogeneous swarm intelligence
  publication-title: Neurocomputing
– volume: 14
  start-page: 1187
  year: 2010
  end-page: 1207
  ident: b0200
  article-title: Scale factor inheritance mechanism in distributed differential evolution
  publication-title: Soft. Comput.
– reference: D. Dua, C. Graff, UCI machine learning repository. Tech. rep., University of California, Irvine, School of Information and Computer Sciences, 2017.
– volume: 185
  start-page: 1026
  year: 2007
  end-page: 1037
  ident: b0245
  article-title: A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training
  publication-title: Appl. Math. Comput.
– volume: 145
  start-page: 80
  year: 2022
  end-page: 89
  ident: b0105
  article-title: Meta-learning, social cognition and consciousness in brains and machines
  publication-title: Neural Netw.
– volume: 33
  start-page: 61
  year: 2010
  end-page: 106
  ident: b0145
  article-title: Recent advances in differential evolution: a survey and experimental analysis
  publication-title: Artif. Intell. Rev.
– year: 2021
  ident: b0230
  article-title: A gradient-guided evolutionary approach to training deep neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 139
  start-page: 17
  year: 2021
  ident: 10.1016/j.ins.2022.06.036_b0205
  article-title: Convergence of the rmsprop deep learning method with penalty for nonconvex optimization
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.02.011
– volume: 60
  start-page: 97
  year: 2017
  ident: 10.1016/j.ins.2022.06.036_b0150
  article-title: Metaheuristic design of feedforward neural networks: a review of two decades of research
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.01.013
– volume: 367
  start-page: 890
  year: 2016
  ident: 10.1016/j.ins.2022.06.036_b0035
  article-title: A grid-based adaptive multi-objective differential evolution algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.07.009
– volume: 32
  start-page: 13051
  issue: 16
  year: 2020
  ident: 10.1016/j.ins.2022.06.036_b0185
  article-title: Evolving deep neural networks using coevolutionary algorithms with multi-population strategy
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04749-2
– ident: 10.1016/j.ins.2022.06.036_b0025
– ident: 10.1016/j.ins.2022.06.036_b0115
– volume: 36
  start-page: 11
  issue: 1
  year: 2005
  ident: 10.1016/j.ins.2022.06.036_b0175
  article-title: A combined heuristic optimization technique
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2003.12.001
– volume: 545
  start-page: 403
  year: 2021
  ident: 10.1016/j.ins.2022.06.036_b0190
  article-title: A new approach for classifying coronavirus covid-19 based on its manifestation on chest x-rays using texture features and neural networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.09.041
– ident: 10.1016/j.ins.2022.06.036_b0075
  doi: 10.1109/ICCV.2005.239
– year: 2021
  ident: 10.1016/j.ins.2022.06.036_b0230
  article-title: A gradient-guided evolutionary approach to training deep neural networks
– volume: 13
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.ins.2022.06.036_b0220
  article-title: Self-adaptive particle swarm optimization for large-scale feature selection in classification
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/3340848
– volume: 5
  start-page: 185
  issue: 4–5
  year: 1993
  ident: 10.1016/j.ins.2022.06.036_b0010
  article-title: Backpropagation and stochastic gradient descent method
  publication-title: Neurocomputing
  doi: 10.1016/0925-2312(93)90006-O
– volume: 43
  start-page: 150
  issue: 1
  year: 2015
  ident: 10.1016/j.ins.2022.06.036_b0130
  article-title: How effective is the grey wolf optimizer in training multi-layer perceptrons
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-014-0645-7
– volume: 22
  start-page: 2935
  issue: 9
  year: 2018
  ident: 10.1016/j.ins.2022.06.036_b0210
  article-title: A self-adaptive artificial bee colony algorithm based on global best for global optimization
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-017-2547-1
– start-page: 9
  year: 1998
  ident: 10.1016/j.ins.2022.06.036_b0030
  article-title: Online algorithms and stochastic approximations
– volume: 14
  start-page: 500
  issue: 4
  year: 2010
  ident: 10.1016/j.ins.2022.06.036_b0165
  article-title: Benefits of a population: five mechanisms that advantage population-based algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2039139
– volume: 30
  start-page: 3707
  issue: 12
  year: 2018
  ident: 10.1016/j.ins.2022.06.036_b0015
  article-title: A levy flight-based grey wolf optimizer combined with back-propagation algorithm for neural network training
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2952-5
– ident: 10.1016/j.ins.2022.06.036_b0110
– volume: 33
  start-page: 61
  issue: 1–2
  year: 2010
  ident: 10.1016/j.ins.2022.06.036_b0145
  article-title: Recent advances in differential evolution: a survey and experimental analysis
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-009-9137-2
– year: 2019
  ident: 10.1016/j.ins.2022.06.036_b0140
– volume: 33
  start-page: 2561
  issue: 7
  year: 2021
  ident: 10.1016/j.ins.2022.06.036_b0070
  article-title: Memetic algorithms for training feedforward neural networks: an approach based on gravitational search algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05131-y
– year: 2017
  ident: 10.1016/j.ins.2022.06.036_b0180
– volume: 14
  start-page: 1187
  issue: 11
  year: 2010
  ident: 10.1016/j.ins.2022.06.036_b0200
  article-title: Scale factor inheritance mechanism in distributed differential evolution
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-009-0510-5
– year: 2021
  ident: 10.1016/j.ins.2022.06.036_b0020
  article-title: A survey on modern trainable activation functions
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.01.026
– volume: 13
  start-page: 1528
  issue: 3
  year: 2013
  ident: 10.1016/j.ins.2022.06.036_b0240
  article-title: A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.05.032
– start-page: 1
  year: 2021
  ident: 10.1016/j.ins.2022.06.036_b0090
  article-title: Appropriate learning rates of adaptive learning rate optimization algorithms for training deep neural networks
  publication-title: IEEE Trans. Cybern.
– volume: 26
  start-page: 1835
  issue: 3
  year: 2016
  ident: 10.1016/j.ins.2022.06.036_b0235
  article-title: On the convergence of decentralized gadient descent
  publication-title: Siam J. Optim.
  doi: 10.1137/130943170
– year: 2022
  ident: 10.1016/j.ins.2022.06.036_b0215
  article-title: A self-adaptive gradient descent search algorithm for fully-connected neural networks
  publication-title: Neurocomputing
– ident: 10.1016/j.ins.2022.06.036_b0080
  doi: 10.1109/CVPR.2017.243
– ident: 10.1016/j.ins.2022.06.036_b0100
– volume: 14
  start-page: 782
  issue: 5
  year: 2010
  ident: 10.1016/j.ins.2022.06.036_b0155
  article-title: Population-based algorithm portfolios for numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2040183
– ident: 10.1016/j.ins.2022.06.036_b0050
– ident: 10.1016/j.ins.2022.06.036_b0170
– ident: 10.1016/j.ins.2022.06.036_b0055
– volume: 73
  year: 2021
  ident: 10.1016/j.ins.2022.06.036_b0060
  article-title: Forecasting short-term electricity load using hybrid support vector regression with grey catastrophe and random forest modeling
  publication-title: Util. Policy
  doi: 10.1016/j.jup.2021.101294
– volume: 145
  start-page: 80
  year: 2022
  ident: 10.1016/j.ins.2022.06.036_b0105
  article-title: Meta-learning, social cognition and consciousness in brains and machines
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.10.004
– volume: 18
  start-page: 232
  year: 2014
  ident: 10.1016/j.ins.2022.06.036_b0195
  article-title: Differential evolution based on covariance matrix learning and bimodal distribution parameter setting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.01.038
– volume: 10
  start-page: 1188
  issue: 4
  year: 2010
  ident: 10.1016/j.ins.2022.06.036_b0120
  article-title: Two hybrid differential evolution algorithms for engineering design optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.05.007
– volume: 247
  start-page: 72
  year: 2013
  ident: 10.1016/j.ins.2022.06.036_b0045
  article-title: Enhancing distributed differential evolution with multicultural migration for global numerical optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.06.011
– volume: 50
  start-page: 1510
  issue: 5
  year: 2020
  ident: 10.1016/j.ins.2022.06.036_b0125
  article-title: A multi-population differential evolution with best-random mutation strategy for large-scale global optimization
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-019-01613-2
– ident: 10.1016/j.ins.2022.06.036_b0095
  doi: 10.1109/ICNN.1995.488968
– volume: 22
  start-page: 103
  issue: 2
  year: 2015
  ident: 10.1016/j.ins.2022.06.036_b0040
  article-title: Multicriteria adaptive differential evolution for global numerical optimization
  publication-title: Integr. Comput.-Aided Eng.
  doi: 10.3233/ICA-150481
– volume: 384
  start-page: 34
  year: 2017
  ident: 10.1016/j.ins.2022.06.036_b0160
  article-title: Swarm intelligence and evolutionary algorithms: performance versus speed
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.12.028
– volume: 149
  start-page: 29
  year: 2015
  ident: 10.1016/j.ins.2022.06.036_b0250
  article-title: Evolved neural network ensemble by multiple heterogeneous swarm intelligence
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.12.062
– volume: 185
  start-page: 1026
  issue: 2
  year: 2007
  ident: 10.1016/j.ins.2022.06.036_b0245
  article-title: A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training
  publication-title: Appl. Math. Comput.
– ident: 10.1016/j.ins.2022.06.036_b0085
  doi: 10.1007/978-3-662-45523-4_50
– volume: 231
  start-page: 329
  year: 2014
  ident: 10.1016/j.ins.2022.06.036_b0225
  article-title: An ensemble algorithm with self-adaptive learning techniques for high-dimensional numerical optimization
  publication-title: Appl. Math. Comput.
– volume: 373
  start-page: 404
  year: 2016
  ident: 10.1016/j.ins.2022.06.036_b0005
  article-title: A zero-gradient-sum algorithm for distributed cooperative learning using a feedforward neural network with random weights
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.09.016
– ident: 10.1016/j.ins.2022.06.036_b0065
  doi: 10.1109/CEC.2000.870802
– ident: 10.1016/j.ins.2022.06.036_b0135
  doi: 10.1145/3449726.3463132
SSID ssj0004766
Score 2.6642458
Snippet Adam is an adaptive gradient descent approach that is commonly used in back-propagation (BP) algorithms for training feed-forward neural networks (FFNNs)....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 453
SubjectTerms Differential algorithms
Ensemble algorithms
Feed-forward neural networks
Gradient-based algorithms
Multi-populations
Title An ensemble of differential evolution and Adam for training feed-forward neural networks
URI https://dx.doi.org/10.1016/j.ins.2022.06.036
Volume 608
WOSCitedRecordID wos000864028900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Lb9MwGLdKxwEOCAZoPIZ8QByoLCWOE9vHCG0aO0wchpSdotixpU1dNnVttT-fz682DJgAaZeosmon8vfz9_L3QOijrLpScGVI1mtLGOtyIkvDScW7DOR3wZQSvtkEPzkRTSO_TSY25cKs53wYxO2tvH5QUsMYENulzv4DuTeLwgD8BqLDE8gOz78ifD3MwDQ1lyqEDaYOKEvnGjfr-Gp_Z1D33WUIM4x9ImYWZBmBERdKO3OlLmHOEALFb8ZqbExi8itFGbrRzZuV95GerbYO7MBPzs7nSU5673PIcT80i4Wj7tj9AJZrCn6LPrGUF_NT2KZTQomzVoKUCaxVcEoqGnpzJd5bZWLEPVmoGxwFMQu9WX7h8cHdcAGGiSu3Tqmvv1rcqaftJbS7ifZGE3WOE7DcHqEdysHCmqKd-utBc7zNoOXhVjt9d7r_9pGAd170ew1mpJWcPkfPojmB6wCDF2hihl30dFRkchftx9QU_AmPyIYjU3-JmnrACTD4yuIxYPAGMBgAgx1gMCyBE2DwGDA4AAYnwLxC3w8PTr8ckdhvg2gq-ZL0CtRxntuikxWlqu-MNCZXQuWqzLtcm16VVGgKSq02oiol05L1FYhTONSurttrNB2uBrOHcGlVx5Sl2qqc6bwU0hUNkrnNtC2LsnqDsrSHrY7F6N2nz9sUdXjRwra3bttbF3lZwJTPmynXoRLLfX9miTBtPAZBRWwBRX-e9vb_pr1DT7ZH4z2aLhcrs48e6_Xy_GbxIWLtB4acmCk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ensemble+of+differential+evolution+and+Adam+for+training+feed-forward+neural+networks&rft.jtitle=Information+sciences&rft.au=Xue%2C+Yu&rft.au=Tong%2C+Yiling&rft.au=Neri%2C+Ferrante&rft.date=2022-08-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=608&rft.spage=453&rft.epage=471&rft_id=info:doi/10.1016%2Fj.ins.2022.06.036&rft.externalDocID=S0020025522006260
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon