Fast density peaks clustering algorithm based on improved mutual K-nearest-neighbor and sub-cluster merging

Density peaks clustering (DPC) has had an impact in many fields, as it can quickly select centers and effectively process complex data. However, it also has low operational efficiency and a “Domino” effect. To solve these defects, we propose a fast density peaks clustering algorithm based on improve...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information sciences Ročník 647; s. 119470
Hlavní autori: Li, Chao, Ding, Shifei, Xu, Xiao, Hou, Haiwei, Ding, Ling
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.11.2023
Predmet:
ISSN:0020-0255
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Density peaks clustering (DPC) has had an impact in many fields, as it can quickly select centers and effectively process complex data. However, it also has low operational efficiency and a “Domino” effect. To solve these defects, we propose a fast density peaks clustering algorithm based on improved mutual K-nearest-neighbor and sub-cluster merging (KS-FDPC). The new algorithm adopts a partitioning-merging strategy. By dividing the data into multiple sub-clusters, the impact range of high-density points on subsequent allocation points can be reduced. And the fast nearest neighbors search improves the speed of DPC. In the experiment, KS-FDPC is used to compare with eight improved DPC algorithms on eight synthetic data and eight UCI data. The results indicate that the overall clustering performance of KS-FDPC is superior to other algorithms. Moreover, KS-FDPC runs faster than other algorithms. Therefore, KS-FDPC is an effective improvement of DPC.
AbstractList Density peaks clustering (DPC) has had an impact in many fields, as it can quickly select centers and effectively process complex data. However, it also has low operational efficiency and a “Domino” effect. To solve these defects, we propose a fast density peaks clustering algorithm based on improved mutual K-nearest-neighbor and sub-cluster merging (KS-FDPC). The new algorithm adopts a partitioning-merging strategy. By dividing the data into multiple sub-clusters, the impact range of high-density points on subsequent allocation points can be reduced. And the fast nearest neighbors search improves the speed of DPC. In the experiment, KS-FDPC is used to compare with eight improved DPC algorithms on eight synthetic data and eight UCI data. The results indicate that the overall clustering performance of KS-FDPC is superior to other algorithms. Moreover, KS-FDPC runs faster than other algorithms. Therefore, KS-FDPC is an effective improvement of DPC.
ArticleNumber 119470
Author Xu, Xiao
Li, Chao
Ding, Ling
Ding, Shifei
Hou, Haiwei
Author_xml – sequence: 1
  givenname: Chao
  surname: Li
  fullname: Li, Chao
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 2
  givenname: Shifei
  surname: Ding
  fullname: Ding, Shifei
  email: dingsf@cumt.edu.cn
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 3
  givenname: Xiao
  surname: Xu
  fullname: Xu, Xiao
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 4
  givenname: Haiwei
  orcidid: 0000-0003-1580-918X
  surname: Hou
  fullname: Hou, Haiwei
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 5
  givenname: Ling
  orcidid: 0000-0002-3208-2528
  surname: Ding
  fullname: Ding, Ling
  organization: College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
BookMark eNp9kL1OwzAURj0UibbwAGx-gQTb-XEiJlRRQFRigdlynOvUbWJXtlOpb0-qdmLo9N3lHOmeBZpZZwGhJ0pSSmj5vEuNDSkjLEsprXNOZmhOCCMJYUVxjxYh7AghOS_LOdqvZYi4BRtMPOEDyH3Aqh9DBG9sh2XfOW_idsCNDNBiZ7EZDt4dp3sY4yh7_JVYkB5CnNZ028Z5LG2Lw9gkVxEewHeT7QHdadkHeLzuEv2u335WH8nm-_1z9bpJFKt5TNq6oXVWaZBUA5N5rVkOddE0tGiqNuctVZoQylVe8YIDcF3wrGoYZBnluoRsifjFq7wLwYMWykQZjbPRS9MLSsS5k9iJqZM4dxKXThNJ_5EHbwbpTzeZlwsD00tHA14EZcAqaI0HFUXrzA36D5lShys
CitedBy_id crossref_primary_10_1016_j_ins_2024_120858
crossref_primary_10_1049_cit2_70050
crossref_primary_10_1016_j_patcog_2025_112357
crossref_primary_10_1016_j_eswa_2024_125934
crossref_primary_10_3389_fams_2025_1598165
crossref_primary_10_1109_TKDE_2025_3589794
crossref_primary_10_1038_s41598_024_74016_0
crossref_primary_10_1016_j_ins_2024_121211
crossref_primary_10_1016_j_ins_2024_120685
crossref_primary_10_1016_j_ins_2024_121256
crossref_primary_10_1016_j_enbuild_2024_115175
crossref_primary_10_1109_ACCESS_2025_3563990
crossref_primary_10_1109_TPAMI_2025_3535743
crossref_primary_10_1016_j_patcog_2024_110366
crossref_primary_10_1109_TNNLS_2023_3329720
crossref_primary_10_1016_j_patcog_2025_111953
crossref_primary_10_1016_j_patcog_2025_112205
crossref_primary_10_1080_10095020_2024_2343323
crossref_primary_10_1007_s10586_024_04592_3
crossref_primary_10_1007_s11227_024_06559_y
crossref_primary_10_1109_ACCESS_2024_3518497
crossref_primary_10_1016_j_engappai_2025_111981
crossref_primary_10_1016_j_asoc_2024_111779
crossref_primary_10_1016_j_ins_2024_120114
crossref_primary_10_1016_j_ins_2024_120731
crossref_primary_10_1016_j_ins_2024_120811
crossref_primary_10_1016_j_ins_2024_121526
Cites_doi 10.1109/TLA.2021.9475870
10.1002/cpe.5567
10.1109/TII.2016.2628747
10.1155/2020/1731075
10.1016/j.ins.2022.12.078
10.1109/TNNLS.2018.2853710
10.1016/j.knosys.2016.02.001
10.1016/j.neucom.2019.07.048
10.1109/ICCSP48568.2020.9182211
10.1109/TKDE.2019.2954133
10.1109/TKDE.2020.3034611
10.1109/ACCESS.2019.2927308
10.1109/ACCESS.2019.2912332
10.1109/TCYB.2019.2902603
10.1111/j.2517-6161.1977.tb01600.x
10.1109/TKDE.2019.2930056
10.1016/j.ins.2020.11.050
10.1016/j.ins.2016.03.011
10.1109/BigComp.2018.00084
10.1007/s13042-016-0603-2
10.1016/j.knosys.2018.05.034
10.1016/j.patrec.2019.10.019
10.1126/science.1242072
10.1109/TIE.2018.2856200
10.1109/TVCG.2020.3030347
10.1109/IWOBI47054.2019.9114411
10.1016/j.ins.2018.03.031
10.1109/ACCESS.2019.2904254
10.1016/j.ins.2022.11.091
10.1109/TFUZZ.2020.2985004
10.1109/ICECA52323.2021.9675894
10.1007/s00521-020-04754-5
10.1109/ICDM51629.2021.00074
10.1007/s10898-019-00779-w
10.1016/j.patcog.2022.109238
10.1007/s13042-019-01031-3
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright_xml – notice: 2023 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2023.119470
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
ExternalDocumentID 10_1016_j_ins_2023_119470
S0020025523010551
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
ADVLN
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c297t-d9b1938fea1fe2a49f24e95bb15b8d47d1cf0017c48757ee7f5738b2e3317f6e3
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001062207400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 02:44:08 EST 2025
Tue Nov 18 21:38:59 EST 2025
Sat Nov 02 16:00:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Sparse matrix
Sub-cluster merging
Kd-tree
Improved mutual K-nearest-neighbor
Density peaks clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-d9b1938fea1fe2a49f24e95bb15b8d47d1cf0017c48757ee7f5738b2e3317f6e3
ORCID 0000-0002-3208-2528
0000-0003-1580-918X
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2023_119470
crossref_primary_10_1016_j_ins_2023_119470
elsevier_sciencedirect_doi_10_1016_j_ins_2023_119470
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Sieranoja, Fränti (b0165) 2019; 128
Ding, Du, Xu, Shi, Wang, Li (b0100) 2023; 624
International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 2021: 1376–1379.
Wang, Wang, Zhang, Pang, Miao, Tan, Zhou (b0180) 2020; 32
Xu, Ding, Du, Xue (b0075) 2018; 9
Ouyang, Pedrycz, Pizzi (b0065) 2021; 51
Wu, Lee, Isokawa, Yao, Xia (b0185) 2019; 7
Rodriguez, Laio (b0070) 2014; 344
Cheng, Zhu, Huang, Wu, Yang (b0190) 2019; 30
Tobin J, Zhang M. DCF: An Efficient and Robust Density-Based Clustering Method. 2021 IEEE International Conference on Data Mining (ICDM), Auckland, New Zealand, 2021: 629–638.
Qiu, Li (b0150) 2022
Yao, Ge (b0030) 2019; 66
Zhao, Tang, Fan, Li, Xu (b0080) 2020; 32
Yu, Liu, Guo, Liu, Yao (b0120) 2019; 7
Pister, Buono, Fekete, Plaisant, Valdivia (b0015) 2021; 27
Xu, Ding, Shi (b0125) 2018; 158
Chen, Yu (b0105) 2021; 33
Liu, Wang, Yu (b0085) 2018; 450
Fuentealba, López, Ponce (b0005) 2021; 19
Zhu, Zhang, Wen, Liu (b0035) 2019; 363
Wu, Wilamowski (b0160) 2017; 13
Jebari S, Smiti A, Louati A. AF-DBSCAN: An unsupervised Automatic Fuzzy Clustering method based on DBSCAN approach. 2019 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), Budapest, Hungary, 2019: 1–6.
Xu, Ding, Wang, Wang, Jia (b0130) 2021; 554
Lu, Zhao, Tan, Wang (b0170) 2022; 34
Xu X, Ding S, Sun T. A Fast Density Peaks Clustering Algorithm Based on Pre-Screening. 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), Shanghai, China, 2018: 513–516.
Du, Ding, Jia (b0115) 2016; 99
Macqueen J. Some methods for classification and analysis of multivariate observations. Proceedings of the 5
Wang, Wang, Zhou (b0175) 2023; 621
Berkeley symposium on mathematical statistics and probability, San Francisco, USA, 1967: 281–297.
Fan, Jia, Ge (b0110) 2020; 11
Cheng, Zhu, Huang, Wu, Yang (b0155) 2021; 33
Xie, Gao, Xie, Liu, Grant (b0095) 2016; 354
Rudrappa G, Vijapur N. Cloud Classification using K-Means Clustering and Content based Image Retrieval Technique. 2020 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 2020: 0700-0704.
Bian, Chung, Wang (b0135) 2021; 29
Peng M, Hu B, Tan Z. Hierarchical Structure of E-commerce Big Data Clustering Based on Hadoop Platform. 2021 5
Vinh, Epps, Bailey (b0145) 2010; 11
Dempster, Laird, Rubin (b0055) 1977; 39
Sun, Bao, Ci, Zheng, Guo, Luo (b0140) 2019; 7
Li, Xu, Zhang, Zou (b0025) 2020; 76
Ding, Li, Xu, Ding, Zhang, Guo, Shi (b0060) 2023; 136
Diao, Dai, An, Li, Feng, Pan (b0090) 2020; 2020
Xie (10.1016/j.ins.2023.119470_b0095) 2016; 354
Xu (10.1016/j.ins.2023.119470_b0130) 2021; 554
Wu (10.1016/j.ins.2023.119470_b0160) 2017; 13
Ouyang (10.1016/j.ins.2023.119470_b0065) 2021; 51
Wang (10.1016/j.ins.2023.119470_b0175) 2023; 621
Liu (10.1016/j.ins.2023.119470_b0085) 2018; 450
Wang (10.1016/j.ins.2023.119470_b0180) 2020; 32
Yu (10.1016/j.ins.2023.119470_b0120) 2019; 7
Sun (10.1016/j.ins.2023.119470_b0140) 2019; 7
10.1016/j.ins.2023.119470_b0040
Xu (10.1016/j.ins.2023.119470_b0125) 2018; 158
10.1016/j.ins.2023.119470_b0020
10.1016/j.ins.2023.119470_b0045
Dempster (10.1016/j.ins.2023.119470_b0055) 1977; 39
Lu (10.1016/j.ins.2023.119470_b0170) 2022; 34
Pister (10.1016/j.ins.2023.119470_b0015) 2021; 27
Diao (10.1016/j.ins.2023.119470_b0090) 2020; 2020
Yao (10.1016/j.ins.2023.119470_b0030) 2019; 66
Ding (10.1016/j.ins.2023.119470_b0100) 2023; 624
Bian (10.1016/j.ins.2023.119470_b0135) 2021; 29
Li (10.1016/j.ins.2023.119470_b0025) 2020; 76
Vinh (10.1016/j.ins.2023.119470_b0145) 2010; 11
Sieranoja (10.1016/j.ins.2023.119470_b0165) 2019; 128
Ding (10.1016/j.ins.2023.119470_b0060) 2023; 136
Du (10.1016/j.ins.2023.119470_b0115) 2016; 99
Cheng (10.1016/j.ins.2023.119470_b0155) 2021; 33
Zhu (10.1016/j.ins.2023.119470_b0035) 2019; 363
Chen (10.1016/j.ins.2023.119470_b0105) 2021; 33
10.1016/j.ins.2023.119470_b0050
10.1016/j.ins.2023.119470_b0195
10.1016/j.ins.2023.119470_b0010
Fan (10.1016/j.ins.2023.119470_b0110) 2020; 11
Zhao (10.1016/j.ins.2023.119470_b0080) 2020; 32
Fuentealba (10.1016/j.ins.2023.119470_b0005) 2021; 19
Xu (10.1016/j.ins.2023.119470_b0075) 2018; 9
Wu (10.1016/j.ins.2023.119470_b0185) 2019; 7
Rodriguez (10.1016/j.ins.2023.119470_b0070) 2014; 344
Cheng (10.1016/j.ins.2023.119470_b0190) 2019; 30
Qiu (10.1016/j.ins.2023.119470_b0150) 2022
References_xml – volume: 19
  start-page: 1391
  year: 2021
  end-page: 1399
  ident: b0005
  article-title: Effects on time and quality of short text clustering during real-time presentations
  publication-title: IEEE Lat. Am. Trans.
– volume: 66
  start-page: 3681
  year: 2019
  end-page: 3692
  ident: b0030
  article-title: Scalable semisupervised GMM for big data quality prediction in multimode processes
  publication-title: IEEE Trans. Ind. Electron.
– volume: 34
  start-page: 3714
  year: 2022
  end-page: 3726
  ident: b0170
  article-title: Distributed density peaks clustering revisited
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 29
  start-page: 1725
  year: 2021
  end-page: 1738
  ident: b0135
  article-title: Fuzzy density peaks clustering
  publication-title: IEEE Trans. Fuzzy Syst.
– reference: Jebari S, Smiti A, Louati A. AF-DBSCAN: An unsupervised Automatic Fuzzy Clustering method based on DBSCAN approach. 2019 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), Budapest, Hungary, 2019: 1–6.
– volume: 32
  year: 2020
  ident: b0080
  article-title: Density peaks clustering based on circular partition and grid similarity
  publication-title: Concurr Comput: Practice Exp
– volume: 136
  year: 2023
  ident: b0060
  article-title: A sampling-based density peaks clustering algorithm for large-scale data
  publication-title: Pattern Recogn.
– reference: Tobin J, Zhang M. DCF: An Efficient and Robust Density-Based Clustering Method. 2021 IEEE International Conference on Data Mining (ICDM), Auckland, New Zealand, 2021: 629–638.
– volume: 363
  start-page: 149
  year: 2019
  end-page: 170
  ident: b0035
  article-title: Fast and stable clustering analysis based on Grid-mapping K-means algorithm and new clustering validity index
  publication-title: Neurocomputing
– volume: 11
  start-page: 2837
  year: 2010
  end-page: 2854
  ident: b0145
  article-title: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance
  publication-title: J. Mach. Learn. Res.
– volume: 344
  start-page: 1492
  year: 2014
  end-page: 1496
  ident: b0070
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
– reference: Rudrappa G, Vijapur N. Cloud Classification using K-Means Clustering and Content based Image Retrieval Technique. 2020 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 2020: 0700-0704.
– year: 2022
  ident: b0150
  article-title: Fast LDP-MST: an efficient density-peak-based clustering method for large-size datasets
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 33
  start-page: 374
  year: 2021
  end-page: 387
  ident: b0155
  article-title: Clustering with local density peaks-based minimum spanning tree
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 13
  start-page: 1620
  year: 2017
  end-page: 1628
  ident: b0160
  article-title: A fast density and grid based clustering method for data with arbitrary shapes and noise
  publication-title: IEEE Trans. Ind. Inf.
– volume: 7
  start-page: 89427
  year: 2019
  end-page: 89440
  ident: b0140
  article-title: Differential privacy-preserving density peaks clustering based on shared near neighbors similarity
  publication-title: IEEE Access
– volume: 7
  start-page: 34301
  year: 2019
  end-page: 34317
  ident: b0120
  article-title: Density peaks clustering based on weighted local density sequence and nearest neighbor assignment
  publication-title: IEEE Access
– volume: 128
  start-page: 551
  year: 2019
  end-page: 558
  ident: b0165
  article-title: Fast and general density peaks clustering
  publication-title: Pattern Recogn. Lett.
– volume: 27
  start-page: 1775
  year: 2021
  end-page: 1785
  ident: b0015
  article-title: Integrating prior knowledge in mixed-initiative social network clustering
  publication-title: IEEE Trans. Vis. Comput. Graph.
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 17
  ident: b0090
  article-title: Clustering by detecting density peaks and assigning points by similarity-first search based on weighted K-nearest neighbors graph
  publication-title: Complexity
– reference: Berkeley symposium on mathematical statistics and probability, San Francisco, USA, 1967: 281–297.
– volume: 9
  start-page: 743
  year: 2018
  end-page: 754
  ident: b0075
  article-title: DPCG: an efficient density peaks clustering algorithm based on grid
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 33
  start-page: 2310
  year: 2021
  end-page: 2321
  ident: b0105
  article-title: A domain adaptive density clustering algorithm for data with varying density distribution
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 99
  start-page: 135
  year: 2016
  end-page: 145
  ident: b0115
  article-title: Study on density peaks clustering based on k-nearest neighbors and principal component analysis
  publication-title: Knowl.-Based Syst.
– volume: 51
  start-page: 3653
  year: 2021
  end-page: 3663
  ident: b0065
  article-title: Rule-based modeling with DBSCAN-based information granules
  publication-title: IEEE Trans. Cybern.
– reference: International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 2021: 1376–1379.
– volume: 158
  start-page: 65
  year: 2018
  end-page: 74
  ident: b0125
  article-title: An improved density peaks clustering algorithm with fast finding cluster centers
  publication-title: Knowl.-Based Syst.
– reference: Xu X, Ding S, Sun T. A Fast Density Peaks Clustering Algorithm Based on Pre-Screening. 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), Shanghai, China, 2018: 513–516.
– volume: 30
  start-page: 985
  year: 2019
  end-page: 999
  ident: b0190
  article-title: A novel cluster validity index based on local cores
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 11
  start-page: 1179
  year: 2020
  end-page: 1195
  ident: b0110
  article-title: M
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 7
  start-page: 60684
  year: 2019
  end-page: 60696
  ident: b0185
  article-title: Efficient clustering method based on density peaks with symmetric neighborhood relationship
  publication-title: IEEE Access
– volume: 354
  start-page: 19
  year: 2016
  end-page: 40
  ident: b0095
  article-title: Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors
  publication-title: Inf. Sci.
– volume: 554
  start-page: 61
  year: 2021
  end-page: 83
  ident: b0130
  article-title: A fast density peaks clustering algorithm with sparse search
  publication-title: Inf. Sci.
– volume: 624
  start-page: 252
  year: 2023
  end-page: 276
  ident: b0100
  article-title: An improved density peaks clustering algorithm based on natural neighbor with a merging strategy
  publication-title: Inf. Sci.
– volume: 621
  start-page: 627
  year: 2023
  end-page: 651
  ident: b0175
  article-title: VDPC: variational density peaks clustering algorithm
  publication-title: Inf. Sci.
– volume: 76
  start-page: 695
  year: 2020
  end-page: 708
  ident: b0025
  article-title: The seeding algorithms for spherical k-means clustering
  publication-title: J. Glob. Optim.
– volume: 450
  start-page: 200
  year: 2018
  end-page: 226
  ident: b0085
  article-title: Shared-nearest-neighbor-based clustering by fast search and find of density peaks
  publication-title: Inf. Sci.
– volume: 32
  start-page: 13465
  year: 2020
  end-page: 13478
  ident: b0180
  article-title: McDPC: multi-center density peak clustering
  publication-title: Neural Comput. & Applic.
– reference: Peng M, Hu B, Tan Z. Hierarchical Structure of E-commerce Big Data Clustering Based on Hadoop Platform. 2021 5
– reference: Macqueen J. Some methods for classification and analysis of multivariate observations. Proceedings of the 5
– volume: 39
  start-page: 1
  year: 1977
  end-page: 22
  ident: b0055
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 19
  start-page: 1391
  issue: 8
  year: 2021
  ident: 10.1016/j.ins.2023.119470_b0005
  article-title: Effects on time and quality of short text clustering during real-time presentations
  publication-title: IEEE Lat. Am. Trans.
  doi: 10.1109/TLA.2021.9475870
– volume: 32
  issue: 7
  year: 2020
  ident: 10.1016/j.ins.2023.119470_b0080
  article-title: Density peaks clustering based on circular partition and grid similarity
  publication-title: Concurr Comput: Practice Exp
  doi: 10.1002/cpe.5567
– volume: 13
  start-page: 1620
  issue: 4
  year: 2017
  ident: 10.1016/j.ins.2023.119470_b0160
  article-title: A fast density and grid based clustering method for data with arbitrary shapes and noise
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2016.2628747
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.ins.2023.119470_b0090
  article-title: Clustering by detecting density peaks and assigning points by similarity-first search based on weighted K-nearest neighbors graph
  publication-title: Complexity
  doi: 10.1155/2020/1731075
– volume: 624
  start-page: 252
  year: 2023
  ident: 10.1016/j.ins.2023.119470_b0100
  article-title: An improved density peaks clustering algorithm based on natural neighbor with a merging strategy
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.12.078
– volume: 30
  start-page: 985
  issue: 4
  year: 2019
  ident: 10.1016/j.ins.2023.119470_b0190
  article-title: A novel cluster validity index based on local cores
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2018.2853710
– volume: 99
  start-page: 135
  year: 2016
  ident: 10.1016/j.ins.2023.119470_b0115
  article-title: Study on density peaks clustering based on k-nearest neighbors and principal component analysis
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.02.001
– volume: 363
  start-page: 149
  year: 2019
  ident: 10.1016/j.ins.2023.119470_b0035
  article-title: Fast and stable clustering analysis based on Grid-mapping K-means algorithm and new clustering validity index
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.07.048
– ident: 10.1016/j.ins.2023.119470_b0050
– ident: 10.1016/j.ins.2023.119470_b0010
  doi: 10.1109/ICCSP48568.2020.9182211
– volume: 33
  start-page: 2310
  issue: 6
  year: 2021
  ident: 10.1016/j.ins.2023.119470_b0105
  article-title: A domain adaptive density clustering algorithm for data with varying density distribution
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2954133
– volume: 34
  start-page: 3714
  issue: 8
  year: 2022
  ident: 10.1016/j.ins.2023.119470_b0170
  article-title: Distributed density peaks clustering revisited
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2020.3034611
– volume: 7
  start-page: 89427
  year: 2019
  ident: 10.1016/j.ins.2023.119470_b0140
  article-title: Differential privacy-preserving density peaks clustering based on shared near neighbors similarity
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927308
– volume: 7
  start-page: 60684
  year: 2019
  ident: 10.1016/j.ins.2023.119470_b0185
  article-title: Efficient clustering method based on density peaks with symmetric neighborhood relationship
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912332
– volume: 51
  start-page: 3653
  issue: 7
  year: 2021
  ident: 10.1016/j.ins.2023.119470_b0065
  article-title: Rule-based modeling with DBSCAN-based information granules
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2902603
– volume: 11
  start-page: 2837
  year: 2010
  ident: 10.1016/j.ins.2023.119470_b0145
  article-title: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance
  publication-title: J. Mach. Learn. Res.
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.ins.2023.119470_b0055
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 33
  start-page: 374
  issue: 2
  year: 2021
  ident: 10.1016/j.ins.2023.119470_b0155
  article-title: Clustering with local density peaks-based minimum spanning tree
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2930056
– volume: 554
  start-page: 61
  year: 2021
  ident: 10.1016/j.ins.2023.119470_b0130
  article-title: A fast density peaks clustering algorithm with sparse search
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.11.050
– volume: 354
  start-page: 19
  year: 2016
  ident: 10.1016/j.ins.2023.119470_b0095
  article-title: Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.03.011
– ident: 10.1016/j.ins.2023.119470_b0045
  doi: 10.1109/BigComp.2018.00084
– volume: 9
  start-page: 743
  issue: 5
  year: 2018
  ident: 10.1016/j.ins.2023.119470_b0075
  article-title: DPCG: an efficient density peaks clustering algorithm based on grid
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-016-0603-2
– volume: 158
  start-page: 65
  year: 2018
  ident: 10.1016/j.ins.2023.119470_b0125
  article-title: An improved density peaks clustering algorithm with fast finding cluster centers
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.05.034
– volume: 128
  start-page: 551
  year: 2019
  ident: 10.1016/j.ins.2023.119470_b0165
  article-title: Fast and general density peaks clustering
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2019.10.019
– year: 2022
  ident: 10.1016/j.ins.2023.119470_b0150
  article-title: Fast LDP-MST: an efficient density-peak-based clustering method for large-size datasets
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  ident: 10.1016/j.ins.2023.119470_b0070
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 66
  start-page: 3681
  issue: 5
  year: 2019
  ident: 10.1016/j.ins.2023.119470_b0030
  article-title: Scalable semisupervised GMM for big data quality prediction in multimode processes
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2856200
– volume: 27
  start-page: 1775
  issue: 2
  year: 2021
  ident: 10.1016/j.ins.2023.119470_b0015
  article-title: Integrating prior knowledge in mixed-initiative social network clustering
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2020.3030347
– ident: 10.1016/j.ins.2023.119470_b0040
  doi: 10.1109/IWOBI47054.2019.9114411
– volume: 450
  start-page: 200
  year: 2018
  ident: 10.1016/j.ins.2023.119470_b0085
  article-title: Shared-nearest-neighbor-based clustering by fast search and find of density peaks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.03.031
– volume: 7
  start-page: 34301
  year: 2019
  ident: 10.1016/j.ins.2023.119470_b0120
  article-title: Density peaks clustering based on weighted local density sequence and nearest neighbor assignment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2904254
– volume: 621
  start-page: 627
  year: 2023
  ident: 10.1016/j.ins.2023.119470_b0175
  article-title: VDPC: variational density peaks clustering algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.11.091
– volume: 29
  start-page: 1725
  issue: 7
  year: 2021
  ident: 10.1016/j.ins.2023.119470_b0135
  article-title: Fuzzy density peaks clustering
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2020.2985004
– ident: 10.1016/j.ins.2023.119470_b0020
  doi: 10.1109/ICECA52323.2021.9675894
– volume: 32
  start-page: 13465
  issue: 17
  year: 2020
  ident: 10.1016/j.ins.2023.119470_b0180
  article-title: McDPC: multi-center density peak clustering
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-020-04754-5
– ident: 10.1016/j.ins.2023.119470_b0195
  doi: 10.1109/ICDM51629.2021.00074
– volume: 76
  start-page: 695
  issue: 4
  year: 2020
  ident: 10.1016/j.ins.2023.119470_b0025
  article-title: The seeding algorithms for spherical k-means clustering
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-019-00779-w
– volume: 136
  year: 2023
  ident: 10.1016/j.ins.2023.119470_b0060
  article-title: A sampling-based density peaks clustering algorithm for large-scale data
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2022.109238
– volume: 11
  start-page: 1179
  year: 2020
  ident: 10.1016/j.ins.2023.119470_b0110
  article-title: Mk-NNG-DPC: density peaks clustering based on improved mutual K-nearest-neighbor graph
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-019-01031-3
SSID ssj0004766
Score 2.5651746
Snippet Density peaks clustering (DPC) has had an impact in many fields, as it can quickly select centers and effectively process complex data. However, it also has...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119470
SubjectTerms Density peaks clustering
Improved mutual K-nearest-neighbor
Kd-tree
Sparse matrix
Sub-cluster merging
Title Fast density peaks clustering algorithm based on improved mutual K-nearest-neighbor and sub-cluster merging
URI https://dx.doi.org/10.1016/j.ins.2023.119470
Volume 647
WOSCitedRecordID wos001062207400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004766
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbQlgMcEBQQbWnlA-JAFGnzto8VarWlqEKiSLlFftJst9nVJqH9-YxjJ5u2FAESl2w0sp0o37f2jD0PhN5JqqMU3tAnWnI_ljKF_1wY-UxETJNUTIm0xSayszOS5_SLc2Kvu3ICWVWRmxu6-q9QgwzANqGzfwH3MCgI4B5AhyvADtc_Av6Y1Y0njV866NcrxS5rTyxakw-hi0dcfF-uy-biyjPrlzRnBWW3rwD3V20XTHLqVyaxbd3AL5ju3LlZ1i333UCeidns17x57ws_xEF6blkd1PXPpTvZXw56syul8vWi1KrspXlrZHm5aTdbdqIZK69dM7dDAUAHt3YohtCZW56dRk_1jUEznopTm33z3rRudxjmYIuYDOthBBM9jW3BkTvZss3hc2cngWllan-CYbwVZgklE7R1eHKUf9oEzWb2ILt_j_7Iu3P-u_OgXystI0Xk_Dl65iwIfGiRf4EeqWobPR3lldxG-y4aBb_HI1iwm8dfokvDEew4gjuO4A1H8MAR3HEEQ9eeI9hyBN_nCAaO4BFHsOPIK_Tt-Oj848x3VTd8EdKs8SXloNQTrVigVchiqsNY0YTzIOFExpkMhDa6jTCmbqZUppMsIjxUEaiiOlXRazSplpV6g_BUUc5DBguHZLGAgeGbBzDiVIBZzhKxg6b9Zy2ES0lvKqMsit73cF4AEoVBorBI7KAPQ5eVzcfyu8Zxj1XhmG8VxQKI9XC33X_rtoeebNj_Fk2adav20WPxoynr9YGj3088D53b
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+density+peaks+clustering+algorithm+based+on+improved+mutual+K-nearest-neighbor+and+sub-cluster+merging&rft.jtitle=Information+sciences&rft.au=Li%2C+Chao&rft.au=Ding%2C+Shifei&rft.au=Xu%2C+Xiao&rft.au=Hou%2C+Haiwei&rft.date=2023-11-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.volume=647&rft_id=info:doi/10.1016%2Fj.ins.2023.119470&rft.externalDocID=S0020025523010551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon