Output-sensitive modular algorithms for polynomial matrix normal forms

We give modular algorithms to compute row-reduced forms, weak Popov forms, and Popov forms of polynomial matrices, as well as the corresponding unimodular transformation matrices. Our algorithms improve on existing fraction-free algorithms. In each case, we define lucky homomorphisms, determine the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of symbolic computation Ročník 42; číslo 7; s. 733 - 750
Hlavní autori: Cheng, Howard, Labahn, George
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.07.2007
Predmet:
ISSN:0747-7171, 1095-855X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We give modular algorithms to compute row-reduced forms, weak Popov forms, and Popov forms of polynomial matrices, as well as the corresponding unimodular transformation matrices. Our algorithms improve on existing fraction-free algorithms. In each case, we define lucky homomorphisms, determine the appropriate normalization, as well as bound the number of homomorphic images required. The algorithms have the advantage that they are output-sensitive; that is, the number of homomorphic images required depends on the size of the output. Furthermore, there is no need to verify the result by trial division or multiplication. Our algorithms can be used to compute normalized one-sided greatest common divisors and least common multiples of polynomial matrices, along with irreducible matrix-fraction descriptions of matrix rational functions. When our algorithm is used to compute polynomial greatest common divisors, we obtain a new output-sensitive modular algorithm.
AbstractList We give modular algorithms to compute row-reduced forms, weak Popov forms, and Popov forms of polynomial matrices, as well as the corresponding unimodular transformation matrices. Our algorithms improve on existing fraction-free algorithms. In each case, we define lucky homomorphisms, determine the appropriate normalization, as well as bound the number of homomorphic images required. The algorithms have the advantage that they are output-sensitive; that is, the number of homomorphic images required depends on the size of the output. Furthermore, there is no need to verify the result by trial division or multiplication. Our algorithms can be used to compute normalized one-sided greatest common divisors and least common multiples of polynomial matrices, along with irreducible matrix-fraction descriptions of matrix rational functions. When our algorithm is used to compute polynomial greatest common divisors, we obtain a new output-sensitive modular algorithm.
Author Cheng, Howard
Labahn, George
Author_xml – sequence: 1
  givenname: Howard
  surname: Cheng
  fullname: Cheng, Howard
  email: cheng@cs.uleth.ca
  organization: Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Canada
– sequence: 2
  givenname: George
  surname: Labahn
  fullname: Labahn, George
  email: glabahn@uwaterloo.ca
  organization: Symbolic Computation Group, David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
BookMark eNp9kMFKw0AQhhepYFt9AG95gcSZbJPt4kmKVaHQi4K3ZZPM6oYkW3a3xb69KfXkocxhGIbvh_-bscngBmLsHiFDwPKhzdpQZzmAyIBnAHjFpgiySJdF8TlhUxALkQoUeMNmIbQAIBe8mLL1dh93-5gGGoKN9kBJ75p9p32iuy_nbfzuQ2KcT3auOw6ut7pLeh29_UkG5_vxGp99uGXXRneB7v72nH2sn99Xr-lm-_K2etqkdS5FTBuZS01FTsagMFzTsiwNVlVeACFwUxm5FMCxbMiUOs9JLogjCMJxqkLyORPn3Nq7EDwZVduoo3VD9Np2CkGddKhWjTrUSYcCrkYdI4n_yJ23vfbHi8zjmaGx0sGSV6G2NNTUWE91VI2zF-hfNwV8Ug
CitedBy_id crossref_primary_10_1145_1504347_1504353
crossref_primary_10_1007_s11786_019_00412_9
Cites_doi 10.1016/S0747-7171(02)00139-6
10.1145/321662.321664
10.1016/j.jsc.2006.02.001
10.1016/S0377-0427(96)00120-3
10.1016/j.jsc.2005.10.002
10.1137/S0895479897326912
10.1023/A:1009942122633
ContentType Journal Article
Copyright 2007 Elsevier Ltd
Copyright_xml – notice: 2007 Elsevier Ltd
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jsc.2007.03.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1095-855X
EndPage 750
ExternalDocumentID 10_1016_j_jsc_2007_03_001
S0747717107000417
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-d929ae52eff17f3ae866f1bb250e103fbf9870316def6a22e94e3107e1e1eb593
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000248867600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0747-7171
IngestDate Sat Nov 29 02:50:56 EST 2025
Tue Nov 18 21:02:58 EST 2025
Fri Feb 23 02:31:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Popov form
Row-reduced form
Matrices
Weak Popov form
Modular algorithm
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-d929ae52eff17f3ae866f1bb250e103fbf9870316def6a22e94e3107e1e1eb593
OpenAccessLink https://dx.doi.org/10.1016/j.jsc.2007.03.001
PageCount 18
ParticipantIDs crossref_citationtrail_10_1016_j_jsc_2007_03_001
crossref_primary_10_1016_j_jsc_2007_03_001
elsevier_sciencedirect_doi_10_1016_j_jsc_2007_03_001
PublicationCentury 2000
PublicationDate 2007-07-01
PublicationDateYYYYMMDD 2007-07-01
PublicationDate_xml – month: 07
  year: 2007
  text: 2007-07-01
  day: 01
PublicationDecade 2000
PublicationTitle Journal of symbolic computation
PublicationYear 2007
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Storjohann, A., Algorithms for Matrix Canonical Forms. Ph.D. Thesis. Department of Computer Science, Swiss Federal Institute of Technology—ETH, 2000
Geddes, Czapor, Labahn (b15) 1992
Abramov, S., Bronstein, M., Linear algebra for skew-polynomial matrices. Technical Report RR-4420, INRIA. 2002
Cabay (b13) 1971
Beckermann, B., Labahn, G., On the fraction-free computation of column-reduced matrix polynomials via FFFG. Technical Report ANO436, Laboratoire ANO, University of Lille, 2001. Available at
Beckermann, Labahn (b4) 2000; 6
Kailath (b17) 1980
Bareiss (b3) 1968; 22
Beckermann, Labahn (b7) 2000; 22
Mulders, Storjohann (b20) 2003; 35
Li, Nemes (b19) 1997
Beckermann, Labahn, Villard (b11) 2006; 41
Beckermann, Cheng, Labahn (b9) 2002
Giorgi, Jeannerod, Villard (b16) 2003
Brown (b12) 1971; 18
Beckermann, Labahn (b6) 1997; 77
Beckermann, Labahn, Villard (b8) 1999
Beckermann, Cheng, Labahn (b10) 2006; 41
Kaltofen, Monagan (b18) 1999
Abramov, Bronstein (b1) 2001
Cheng, H., Algorithms for Normal Forms for Matrices of Polynomials and Ore Polynomials. Ph.D. Thesis. University of Waterloo, 2003
von zur Gathen, Gerhard (b22) 2002
Beckermann (10.1016/j.jsc.2007.03.001_b11) 2006; 41
10.1016/j.jsc.2007.03.001_b21
Beckermann (10.1016/j.jsc.2007.03.001_b10) 2006; 41
Mulders (10.1016/j.jsc.2007.03.001_b20) 2003; 35
Kaltofen (10.1016/j.jsc.2007.03.001_b18) 1999
10.1016/j.jsc.2007.03.001_b5
Beckermann (10.1016/j.jsc.2007.03.001_b7) 2000; 22
10.1016/j.jsc.2007.03.001_b2
von zur Gathen (10.1016/j.jsc.2007.03.001_b22) 2002
Giorgi (10.1016/j.jsc.2007.03.001_b16) 2003
Geddes (10.1016/j.jsc.2007.03.001_b15) 1992
Beckermann (10.1016/j.jsc.2007.03.001_b6) 1997; 77
Cabay (10.1016/j.jsc.2007.03.001_b13) 1971
Bareiss (10.1016/j.jsc.2007.03.001_b3) 1968; 22
Beckermann (10.1016/j.jsc.2007.03.001_b9) 2002
Beckermann (10.1016/j.jsc.2007.03.001_b8) 1999
Brown (10.1016/j.jsc.2007.03.001_b12) 1971; 18
Li (10.1016/j.jsc.2007.03.001_b19) 1997
Abramov (10.1016/j.jsc.2007.03.001_b1) 2001
10.1016/j.jsc.2007.03.001_b14
Beckermann (10.1016/j.jsc.2007.03.001_b4) 2000; 6
Kailath (10.1016/j.jsc.2007.03.001_b17) 1980
References_xml – start-page: 392
  year: 1971
  end-page: 398
  ident: b13
  article-title: Exact solution of linear equations
  publication-title: Proceedings of the Second Symposium on Symbolic and Algebraic Manipulation
– volume: 77
  start-page: 5
  year: 1997
  end-page: 34
  ident: b6
  article-title: Recursiveness in matrix rational interpolation problems
  publication-title: J. Comput. Appl. Math.
– start-page: 135
  year: 2003
  end-page: 142
  ident: b16
  article-title: On the complexity of polynomial matrix computations
  publication-title: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation
– year: 2002
  ident: b22
  article-title: Modern Computer Algebra
– start-page: 189
  year: 1999
  end-page: 196
  ident: b8
  article-title: Shifted normal forms of polynomial matrices
  publication-title: Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation
– reference: Cheng, H., Algorithms for Normal Forms for Matrices of Polynomials and Ore Polynomials. Ph.D. Thesis. University of Waterloo, 2003
– start-page: 282
  year: 1997
  end-page: 289
  ident: b19
  article-title: A modular algorithm for computing greatest common right divisors of Ore polynomials
  publication-title: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation
– year: 1980
  ident: b17
  article-title: Linear Systems
– reference: Storjohann, A., Algorithms for Matrix Canonical Forms. Ph.D. Thesis. Department of Computer Science, Swiss Federal Institute of Technology—ETH, 2000
– reference: Abramov, S., Bronstein, M., Linear algebra for skew-polynomial matrices. Technical Report RR-4420, INRIA. 2002
– volume: 6
  start-page: 365
  year: 2000
  end-page: 390
  ident: b4
  article-title: Effective computation of rational approximants and interpolants
  publication-title: Reliable Computing
– volume: 22
  start-page: 114
  year: 2000
  end-page: 144
  ident: b7
  article-title: Fraction-free computation of matrix rational interpolants and matrix GCDs
  publication-title: SIAM J. Matrix Anal. and Appl.
– start-page: 8
  year: 2002
  end-page: 15
  ident: b9
  article-title: Fraction-free row reduction of matrices of skew polynomials
  publication-title: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation
– volume: 41
  start-page: 708
  year: 2006
  end-page: 737
  ident: b11
  article-title: Normal forms for general polynomial matrices
  publication-title: J. Symbolic Comput.
– start-page: 59
  year: 1999
  end-page: 66
  ident: b18
  article-title: On the genericity of the modular polynomial GCD algorithm
  publication-title: Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation
– volume: 41
  start-page: 513
  year: 2006
  end-page: 543
  ident: b10
  article-title: Fraction-free row reduction of matrices of Ore polynomials
  publication-title: J. Symbolic Comput.
– volume: 35
  start-page: 377
  year: 2003
  end-page: 401
  ident: b20
  article-title: On lattice reduction for polynomial matrices
  publication-title: J. Symbolic Comput.
– volume: 22
  start-page: 565
  year: 1968
  end-page: 578
  ident: b3
  article-title: Sylvester’s identity and multistep integer-preserving Gaussian elimination
  publication-title: Math. Comp.
– start-page: 1
  year: 2001
  end-page: 6
  ident: b1
  article-title: On solutions of linear functional systems
  publication-title: Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation
– reference: Beckermann, B., Labahn, G., On the fraction-free computation of column-reduced matrix polynomials via FFFG. Technical Report ANO436, Laboratoire ANO, University of Lille, 2001. Available at
– volume: 18
  start-page: 478
  year: 1971
  end-page: 504
  ident: b12
  article-title: On Euclid’s algorithm and the computation of polynomial greatest common divisors
  publication-title: J. ACM
– year: 1992
  ident: b15
  article-title: Algorithms for Computer Algebra
– ident: 10.1016/j.jsc.2007.03.001_b14
– volume: 35
  start-page: 377
  issue: 4
  year: 2003
  ident: 10.1016/j.jsc.2007.03.001_b20
  article-title: On lattice reduction for polynomial matrices
  publication-title: J. Symbolic Comput.
  doi: 10.1016/S0747-7171(02)00139-6
– ident: 10.1016/j.jsc.2007.03.001_b5
– volume: 18
  start-page: 478
  issue: 4
  year: 1971
  ident: 10.1016/j.jsc.2007.03.001_b12
  article-title: On Euclid’s algorithm and the computation of polynomial greatest common divisors
  publication-title: J. ACM
  doi: 10.1145/321662.321664
– volume: 41
  start-page: 708
  issue: 6
  year: 2006
  ident: 10.1016/j.jsc.2007.03.001_b11
  article-title: Normal forms for general polynomial matrices
  publication-title: J. Symbolic Comput.
  doi: 10.1016/j.jsc.2006.02.001
– start-page: 135
  year: 2003
  ident: 10.1016/j.jsc.2007.03.001_b16
  article-title: On the complexity of polynomial matrix computations
– year: 2002
  ident: 10.1016/j.jsc.2007.03.001_b22
– ident: 10.1016/j.jsc.2007.03.001_b2
– volume: 77
  start-page: 5
  year: 1997
  ident: 10.1016/j.jsc.2007.03.001_b6
  article-title: Recursiveness in matrix rational interpolation problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(96)00120-3
– start-page: 8
  year: 2002
  ident: 10.1016/j.jsc.2007.03.001_b9
  article-title: Fraction-free row reduction of matrices of skew polynomials
– volume: 41
  start-page: 513
  issue: 5
  year: 2006
  ident: 10.1016/j.jsc.2007.03.001_b10
  article-title: Fraction-free row reduction of matrices of Ore polynomials
  publication-title: J. Symbolic Comput.
  doi: 10.1016/j.jsc.2005.10.002
– volume: 22
  start-page: 114
  issue: 1
  year: 2000
  ident: 10.1016/j.jsc.2007.03.001_b7
  article-title: Fraction-free computation of matrix rational interpolants and matrix GCDs
  publication-title: SIAM J. Matrix Anal. and Appl.
  doi: 10.1137/S0895479897326912
– start-page: 392
  year: 1971
  ident: 10.1016/j.jsc.2007.03.001_b13
  article-title: Exact solution of linear equations
– start-page: 282
  year: 1997
  ident: 10.1016/j.jsc.2007.03.001_b19
  article-title: A modular algorithm for computing greatest common right divisors of Ore polynomials
– start-page: 1
  year: 2001
  ident: 10.1016/j.jsc.2007.03.001_b1
  article-title: On solutions of linear functional systems
– ident: 10.1016/j.jsc.2007.03.001_b21
– year: 1992
  ident: 10.1016/j.jsc.2007.03.001_b15
– start-page: 59
  year: 1999
  ident: 10.1016/j.jsc.2007.03.001_b18
  article-title: On the genericity of the modular polynomial GCD algorithm
– start-page: 189
  year: 1999
  ident: 10.1016/j.jsc.2007.03.001_b8
  article-title: Shifted normal forms of polynomial matrices
– volume: 22
  start-page: 565
  year: 1968
  ident: 10.1016/j.jsc.2007.03.001_b3
  article-title: Sylvester’s identity and multistep integer-preserving Gaussian elimination
  publication-title: Math. Comp.
– volume: 6
  start-page: 365
  year: 2000
  ident: 10.1016/j.jsc.2007.03.001_b4
  article-title: Effective computation of rational approximants and interpolants
  publication-title: Reliable Computing
  doi: 10.1023/A:1009942122633
– year: 1980
  ident: 10.1016/j.jsc.2007.03.001_b17
SSID ssj0009435
Score 1.7792988
Snippet We give modular algorithms to compute row-reduced forms, weak Popov forms, and Popov forms of polynomial matrices, as well as the corresponding unimodular...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 733
SubjectTerms Matrices
Modular algorithm
Popov form
Row-reduced form
Weak Popov form
Title Output-sensitive modular algorithms for polynomial matrix normal forms
URI https://dx.doi.org/10.1016/j.jsc.2007.03.001
Volume 42
WOSCitedRecordID wos000248867600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-855X
  dateEnd: 20180228
  omitProxy: false
  ssIdentifier: ssj0009435
  issn: 0747-7171
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFLbG5YGXXYAJdpMfeAIFNc7F8SNCoG0PbBIg9S2yY3ulgrRq0qn8-50TO0m5ik2aKkVVFDepz9eTr853vkPIHoBCRUxCBIpEB7HU8JvLdBponqWxYVkobdE0m-BnZ9lwKH76EoKqaSfAyzJbLMT0v4Ya9kGwsXT2L8LdfSjsgPcQdNhC2GH7osD_mNfTeR1UqExvdEE3E91oTeX1r8nsqh45CwZsz3CLNclYPoI-_YuDEvmrq2esniCt1e2NQifhRoo-v_sY_3hkXOJwUtxO6iOVHJX9-vuddQbeaVL94ldbANOrjarG7poH8I_QHWdcDgXWFmRJMlxOsjFbAhNfypjc-WD4my93LrQP8rpbYhgfjqvWdhKNacP-JtZJC8_xkvCKIJehmRhfIWuMJwIy3trRt5Ph996SOXbtV9uv0D7zbtR_9070OGtZYiIXb8lrHw165EL_jrwy5SZ507bnoD5bb5HT-0igHgm0RwKFYNMeCdQhgTok0AYJ2-Ty9OTi-Gvg22YEBRO8DjQwXmkSZqwNuY2kydLUhkoB2TXhILLKigy7FqTa2FQyZkRsgORzE8JLJSJ6T1bLSWl2CNW6CKUBGqVFElsWKjSME4OIRQWPlEp3yaCdlrzwnvLY2uQ6b8WD4xxmEnud8nwQoYByl-x3Q6bOUOW5g-N2rnPPCB3TywEYTw_78G_DPpKNHvifyGo9m5vPZL34XV9Vsy8ePn8AYtyHvA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Output-sensitive+modular+algorithms+for+polynomial+matrix+normal+forms&rft.jtitle=Journal+of+symbolic+computation&rft.au=Cheng%2C+Howard&rft.au=Labahn%2C+George&rft.date=2007-07-01&rft.pub=Elsevier+Ltd&rft.issn=0747-7171&rft.eissn=1095-855X&rft.volume=42&rft.issue=7&rft.spage=733&rft.epage=750&rft_id=info:doi/10.1016%2Fj.jsc.2007.03.001&rft.externalDocID=S0747717107000417
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-7171&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-7171&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-7171&client=summon