Output-sensitive modular algorithms for polynomial matrix normal forms
We give modular algorithms to compute row-reduced forms, weak Popov forms, and Popov forms of polynomial matrices, as well as the corresponding unimodular transformation matrices. Our algorithms improve on existing fraction-free algorithms. In each case, we define lucky homomorphisms, determine the...
Uložené v:
| Vydané v: | Journal of symbolic computation Ročník 42; číslo 7; s. 733 - 750 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.07.2007
|
| Predmet: | |
| ISSN: | 0747-7171, 1095-855X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We give modular algorithms to compute row-reduced forms, weak Popov forms, and Popov forms of polynomial matrices, as well as the corresponding unimodular transformation matrices. Our algorithms improve on existing fraction-free algorithms. In each case, we define lucky homomorphisms, determine the appropriate normalization, as well as bound the number of homomorphic images required. The algorithms have the advantage that they are output-sensitive; that is, the number of homomorphic images required depends on the size of the output. Furthermore, there is no need to verify the result by trial division or multiplication. Our algorithms can be used to compute normalized one-sided greatest common divisors and least common multiples of polynomial matrices, along with irreducible matrix-fraction descriptions of matrix rational functions. When our algorithm is used to compute polynomial greatest common divisors, we obtain a new output-sensitive modular algorithm. |
|---|---|
| AbstractList | We give modular algorithms to compute row-reduced forms, weak Popov forms, and Popov forms of polynomial matrices, as well as the corresponding unimodular transformation matrices. Our algorithms improve on existing fraction-free algorithms. In each case, we define lucky homomorphisms, determine the appropriate normalization, as well as bound the number of homomorphic images required. The algorithms have the advantage that they are output-sensitive; that is, the number of homomorphic images required depends on the size of the output. Furthermore, there is no need to verify the result by trial division or multiplication. Our algorithms can be used to compute normalized one-sided greatest common divisors and least common multiples of polynomial matrices, along with irreducible matrix-fraction descriptions of matrix rational functions. When our algorithm is used to compute polynomial greatest common divisors, we obtain a new output-sensitive modular algorithm. |
| Author | Cheng, Howard Labahn, George |
| Author_xml | – sequence: 1 givenname: Howard surname: Cheng fullname: Cheng, Howard email: cheng@cs.uleth.ca organization: Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Canada – sequence: 2 givenname: George surname: Labahn fullname: Labahn, George email: glabahn@uwaterloo.ca organization: Symbolic Computation Group, David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada |
| BookMark | eNp9kMFKw0AQhhepYFt9AG95gcSZbJPt4kmKVaHQi4K3ZZPM6oYkW3a3xb69KfXkocxhGIbvh_-bscngBmLsHiFDwPKhzdpQZzmAyIBnAHjFpgiySJdF8TlhUxALkQoUeMNmIbQAIBe8mLL1dh93-5gGGoKN9kBJ75p9p32iuy_nbfzuQ2KcT3auOw6ut7pLeh29_UkG5_vxGp99uGXXRneB7v72nH2sn99Xr-lm-_K2etqkdS5FTBuZS01FTsagMFzTsiwNVlVeACFwUxm5FMCxbMiUOs9JLogjCMJxqkLyORPn3Nq7EDwZVduoo3VD9Np2CkGddKhWjTrUSYcCrkYdI4n_yJ23vfbHi8zjmaGx0sGSV6G2NNTUWE91VI2zF-hfNwV8Ug |
| CitedBy_id | crossref_primary_10_1145_1504347_1504353 crossref_primary_10_1007_s11786_019_00412_9 |
| Cites_doi | 10.1016/S0747-7171(02)00139-6 10.1145/321662.321664 10.1016/j.jsc.2006.02.001 10.1016/S0377-0427(96)00120-3 10.1016/j.jsc.2005.10.002 10.1137/S0895479897326912 10.1023/A:1009942122633 |
| ContentType | Journal Article |
| Copyright | 2007 Elsevier Ltd |
| Copyright_xml | – notice: 2007 Elsevier Ltd |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.jsc.2007.03.001 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1095-855X |
| EndPage | 750 |
| ExternalDocumentID | 10_1016_j_jsc_2007_03_001 S0747717107000417 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 6OB 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE IXB J1W KOM LG5 M25 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSV SSW SSZ T5K TN5 UPT WUQ XPP YQT ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-d929ae52eff17f3ae866f1bb250e103fbf9870316def6a22e94e3107e1e1eb593 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000248867600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0747-7171 |
| IngestDate | Sat Nov 29 02:50:56 EST 2025 Tue Nov 18 21:02:58 EST 2025 Fri Feb 23 02:31:33 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Popov form Row-reduced form Matrices Weak Popov form Modular algorithm |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-d929ae52eff17f3ae866f1bb250e103fbf9870316def6a22e94e3107e1e1eb593 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.jsc.2007.03.001 |
| PageCount | 18 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_jsc_2007_03_001 crossref_primary_10_1016_j_jsc_2007_03_001 elsevier_sciencedirect_doi_10_1016_j_jsc_2007_03_001 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-07-01 |
| PublicationDateYYYYMMDD | 2007-07-01 |
| PublicationDate_xml | – month: 07 year: 2007 text: 2007-07-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationTitle | Journal of symbolic computation |
| PublicationYear | 2007 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Storjohann, A., Algorithms for Matrix Canonical Forms. Ph.D. Thesis. Department of Computer Science, Swiss Federal Institute of Technology—ETH, 2000 Geddes, Czapor, Labahn (b15) 1992 Abramov, S., Bronstein, M., Linear algebra for skew-polynomial matrices. Technical Report RR-4420, INRIA. 2002 Cabay (b13) 1971 Beckermann, B., Labahn, G., On the fraction-free computation of column-reduced matrix polynomials via FFFG. Technical Report ANO436, Laboratoire ANO, University of Lille, 2001. Available at Beckermann, Labahn (b4) 2000; 6 Kailath (b17) 1980 Bareiss (b3) 1968; 22 Beckermann, Labahn (b7) 2000; 22 Mulders, Storjohann (b20) 2003; 35 Li, Nemes (b19) 1997 Beckermann, Labahn, Villard (b11) 2006; 41 Beckermann, Cheng, Labahn (b9) 2002 Giorgi, Jeannerod, Villard (b16) 2003 Brown (b12) 1971; 18 Beckermann, Labahn (b6) 1997; 77 Beckermann, Labahn, Villard (b8) 1999 Beckermann, Cheng, Labahn (b10) 2006; 41 Kaltofen, Monagan (b18) 1999 Abramov, Bronstein (b1) 2001 Cheng, H., Algorithms for Normal Forms for Matrices of Polynomials and Ore Polynomials. Ph.D. Thesis. University of Waterloo, 2003 von zur Gathen, Gerhard (b22) 2002 Beckermann (10.1016/j.jsc.2007.03.001_b11) 2006; 41 10.1016/j.jsc.2007.03.001_b21 Beckermann (10.1016/j.jsc.2007.03.001_b10) 2006; 41 Mulders (10.1016/j.jsc.2007.03.001_b20) 2003; 35 Kaltofen (10.1016/j.jsc.2007.03.001_b18) 1999 10.1016/j.jsc.2007.03.001_b5 Beckermann (10.1016/j.jsc.2007.03.001_b7) 2000; 22 10.1016/j.jsc.2007.03.001_b2 von zur Gathen (10.1016/j.jsc.2007.03.001_b22) 2002 Giorgi (10.1016/j.jsc.2007.03.001_b16) 2003 Geddes (10.1016/j.jsc.2007.03.001_b15) 1992 Beckermann (10.1016/j.jsc.2007.03.001_b6) 1997; 77 Cabay (10.1016/j.jsc.2007.03.001_b13) 1971 Bareiss (10.1016/j.jsc.2007.03.001_b3) 1968; 22 Beckermann (10.1016/j.jsc.2007.03.001_b9) 2002 Beckermann (10.1016/j.jsc.2007.03.001_b8) 1999 Brown (10.1016/j.jsc.2007.03.001_b12) 1971; 18 Li (10.1016/j.jsc.2007.03.001_b19) 1997 Abramov (10.1016/j.jsc.2007.03.001_b1) 2001 10.1016/j.jsc.2007.03.001_b14 Beckermann (10.1016/j.jsc.2007.03.001_b4) 2000; 6 Kailath (10.1016/j.jsc.2007.03.001_b17) 1980 |
| References_xml | – start-page: 392 year: 1971 end-page: 398 ident: b13 article-title: Exact solution of linear equations publication-title: Proceedings of the Second Symposium on Symbolic and Algebraic Manipulation – volume: 77 start-page: 5 year: 1997 end-page: 34 ident: b6 article-title: Recursiveness in matrix rational interpolation problems publication-title: J. Comput. Appl. Math. – start-page: 135 year: 2003 end-page: 142 ident: b16 article-title: On the complexity of polynomial matrix computations publication-title: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation – year: 2002 ident: b22 article-title: Modern Computer Algebra – start-page: 189 year: 1999 end-page: 196 ident: b8 article-title: Shifted normal forms of polynomial matrices publication-title: Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation – reference: Cheng, H., Algorithms for Normal Forms for Matrices of Polynomials and Ore Polynomials. Ph.D. Thesis. University of Waterloo, 2003 – start-page: 282 year: 1997 end-page: 289 ident: b19 article-title: A modular algorithm for computing greatest common right divisors of Ore polynomials publication-title: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation – year: 1980 ident: b17 article-title: Linear Systems – reference: Storjohann, A., Algorithms for Matrix Canonical Forms. Ph.D. Thesis. Department of Computer Science, Swiss Federal Institute of Technology—ETH, 2000 – reference: Abramov, S., Bronstein, M., Linear algebra for skew-polynomial matrices. Technical Report RR-4420, INRIA. 2002 – volume: 6 start-page: 365 year: 2000 end-page: 390 ident: b4 article-title: Effective computation of rational approximants and interpolants publication-title: Reliable Computing – volume: 22 start-page: 114 year: 2000 end-page: 144 ident: b7 article-title: Fraction-free computation of matrix rational interpolants and matrix GCDs publication-title: SIAM J. Matrix Anal. and Appl. – start-page: 8 year: 2002 end-page: 15 ident: b9 article-title: Fraction-free row reduction of matrices of skew polynomials publication-title: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation – volume: 41 start-page: 708 year: 2006 end-page: 737 ident: b11 article-title: Normal forms for general polynomial matrices publication-title: J. Symbolic Comput. – start-page: 59 year: 1999 end-page: 66 ident: b18 article-title: On the genericity of the modular polynomial GCD algorithm publication-title: Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation – volume: 41 start-page: 513 year: 2006 end-page: 543 ident: b10 article-title: Fraction-free row reduction of matrices of Ore polynomials publication-title: J. Symbolic Comput. – volume: 35 start-page: 377 year: 2003 end-page: 401 ident: b20 article-title: On lattice reduction for polynomial matrices publication-title: J. Symbolic Comput. – volume: 22 start-page: 565 year: 1968 end-page: 578 ident: b3 article-title: Sylvester’s identity and multistep integer-preserving Gaussian elimination publication-title: Math. Comp. – start-page: 1 year: 2001 end-page: 6 ident: b1 article-title: On solutions of linear functional systems publication-title: Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation – reference: Beckermann, B., Labahn, G., On the fraction-free computation of column-reduced matrix polynomials via FFFG. Technical Report ANO436, Laboratoire ANO, University of Lille, 2001. Available at – volume: 18 start-page: 478 year: 1971 end-page: 504 ident: b12 article-title: On Euclid’s algorithm and the computation of polynomial greatest common divisors publication-title: J. ACM – year: 1992 ident: b15 article-title: Algorithms for Computer Algebra – ident: 10.1016/j.jsc.2007.03.001_b14 – volume: 35 start-page: 377 issue: 4 year: 2003 ident: 10.1016/j.jsc.2007.03.001_b20 article-title: On lattice reduction for polynomial matrices publication-title: J. Symbolic Comput. doi: 10.1016/S0747-7171(02)00139-6 – ident: 10.1016/j.jsc.2007.03.001_b5 – volume: 18 start-page: 478 issue: 4 year: 1971 ident: 10.1016/j.jsc.2007.03.001_b12 article-title: On Euclid’s algorithm and the computation of polynomial greatest common divisors publication-title: J. ACM doi: 10.1145/321662.321664 – volume: 41 start-page: 708 issue: 6 year: 2006 ident: 10.1016/j.jsc.2007.03.001_b11 article-title: Normal forms for general polynomial matrices publication-title: J. Symbolic Comput. doi: 10.1016/j.jsc.2006.02.001 – start-page: 135 year: 2003 ident: 10.1016/j.jsc.2007.03.001_b16 article-title: On the complexity of polynomial matrix computations – year: 2002 ident: 10.1016/j.jsc.2007.03.001_b22 – ident: 10.1016/j.jsc.2007.03.001_b2 – volume: 77 start-page: 5 year: 1997 ident: 10.1016/j.jsc.2007.03.001_b6 article-title: Recursiveness in matrix rational interpolation problems publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(96)00120-3 – start-page: 8 year: 2002 ident: 10.1016/j.jsc.2007.03.001_b9 article-title: Fraction-free row reduction of matrices of skew polynomials – volume: 41 start-page: 513 issue: 5 year: 2006 ident: 10.1016/j.jsc.2007.03.001_b10 article-title: Fraction-free row reduction of matrices of Ore polynomials publication-title: J. Symbolic Comput. doi: 10.1016/j.jsc.2005.10.002 – volume: 22 start-page: 114 issue: 1 year: 2000 ident: 10.1016/j.jsc.2007.03.001_b7 article-title: Fraction-free computation of matrix rational interpolants and matrix GCDs publication-title: SIAM J. Matrix Anal. and Appl. doi: 10.1137/S0895479897326912 – start-page: 392 year: 1971 ident: 10.1016/j.jsc.2007.03.001_b13 article-title: Exact solution of linear equations – start-page: 282 year: 1997 ident: 10.1016/j.jsc.2007.03.001_b19 article-title: A modular algorithm for computing greatest common right divisors of Ore polynomials – start-page: 1 year: 2001 ident: 10.1016/j.jsc.2007.03.001_b1 article-title: On solutions of linear functional systems – ident: 10.1016/j.jsc.2007.03.001_b21 – year: 1992 ident: 10.1016/j.jsc.2007.03.001_b15 – start-page: 59 year: 1999 ident: 10.1016/j.jsc.2007.03.001_b18 article-title: On the genericity of the modular polynomial GCD algorithm – start-page: 189 year: 1999 ident: 10.1016/j.jsc.2007.03.001_b8 article-title: Shifted normal forms of polynomial matrices – volume: 22 start-page: 565 year: 1968 ident: 10.1016/j.jsc.2007.03.001_b3 article-title: Sylvester’s identity and multistep integer-preserving Gaussian elimination publication-title: Math. Comp. – volume: 6 start-page: 365 year: 2000 ident: 10.1016/j.jsc.2007.03.001_b4 article-title: Effective computation of rational approximants and interpolants publication-title: Reliable Computing doi: 10.1023/A:1009942122633 – year: 1980 ident: 10.1016/j.jsc.2007.03.001_b17 |
| SSID | ssj0009435 |
| Score | 1.7792988 |
| Snippet | We give modular algorithms to compute row-reduced forms, weak Popov forms, and Popov forms of polynomial matrices, as well as the corresponding unimodular... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 733 |
| SubjectTerms | Matrices Modular algorithm Popov form Row-reduced form Weak Popov form |
| Title | Output-sensitive modular algorithms for polynomial matrix normal forms |
| URI | https://dx.doi.org/10.1016/j.jsc.2007.03.001 |
| Volume | 42 |
| WOSCitedRecordID | wos000248867600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-855X dateEnd: 20180228 omitProxy: false ssIdentifier: ssj0009435 issn: 0747-7171 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFLbG5YGXXYAJdpMfeAIFNc7F8SNCoG0PbBIg9S2yY3ulgrRq0qn8-50TO0m5ik2aKkVVFDepz9eTr853vkPIHoBCRUxCBIpEB7HU8JvLdBponqWxYVkobdE0m-BnZ9lwKH76EoKqaSfAyzJbLMT0v4Ya9kGwsXT2L8LdfSjsgPcQdNhC2GH7osD_mNfTeR1UqExvdEE3E91oTeX1r8nsqh45CwZsz3CLNclYPoI-_YuDEvmrq2esniCt1e2NQifhRoo-v_sY_3hkXOJwUtxO6iOVHJX9-vuddQbeaVL94ldbANOrjarG7poH8I_QHWdcDgXWFmRJMlxOsjFbAhNfypjc-WD4my93LrQP8rpbYhgfjqvWdhKNacP-JtZJC8_xkvCKIJehmRhfIWuMJwIy3trRt5Ph996SOXbtV9uv0D7zbtR_9070OGtZYiIXb8lrHw165EL_jrwy5SZ507bnoD5bb5HT-0igHgm0RwKFYNMeCdQhgTok0AYJ2-Ty9OTi-Gvg22YEBRO8DjQwXmkSZqwNuY2kydLUhkoB2TXhILLKigy7FqTa2FQyZkRsgORzE8JLJSJ6T1bLSWl2CNW6CKUBGqVFElsWKjSME4OIRQWPlEp3yaCdlrzwnvLY2uQ6b8WD4xxmEnud8nwQoYByl-x3Q6bOUOW5g-N2rnPPCB3TywEYTw_78G_DPpKNHvifyGo9m5vPZL34XV9Vsy8ePn8AYtyHvA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Output-sensitive+modular+algorithms+for+polynomial+matrix+normal+forms&rft.jtitle=Journal+of+symbolic+computation&rft.au=Cheng%2C+Howard&rft.au=Labahn%2C+George&rft.date=2007-07-01&rft.pub=Elsevier+Ltd&rft.issn=0747-7171&rft.eissn=1095-855X&rft.volume=42&rft.issue=7&rft.spage=733&rft.epage=750&rft_id=info:doi/10.1016%2Fj.jsc.2007.03.001&rft.externalDocID=S0747717107000417 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-7171&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-7171&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-7171&client=summon |