A distributed adaptive optimization spiking neural P system for approximately solving combinatorial optimization problems

•Proposes a distributed adaptive optimization spiking neural P system with a distributed population structure and a new adaptive learning rate considering population diversity.•Extensive experiments on knapsack problems show that DAOSNPS gains much better and more stable solutions than OSNPS, AOSNPS...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 596; s. 1 - 14
Hlavní autoři: Dong, Jianping, Zhang, Gexiang, Luo, Biao, Yang, Qiang, Guo, Dequan, Rong, Haina, Zhu, Ming, Zhou, Kang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.06.2022
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:•Proposes a distributed adaptive optimization spiking neural P system with a distributed population structure and a new adaptive learning rate considering population diversity.•Extensive experiments on knapsack problems show that DAOSNPS gains much better and more stable solutions than OSNPS, AOSNPS and other two optimization algorithms. An optimization spiking neural P system (OSNPS) aims to obtain the approximate solutions of combinatorial optimization problems without the aid of evolutionary operators of evolutionary algorithms or swarm intelligence algorithms. To develop the promising and significant research direction, this paper proposes a distributed adaptive optimization spiking neural P system (DAOSNPS) with a distributed population structure and a new adaptive learning rate considering population diversity. Extensive experiments on knapsack problems show that DAOSNPS gains much better solutions than OSNPS, adaptive optimization spiking neural P system, genetic quantum algorithm and novel quantum evolutionary algorithm. Population diversity and convergence analysis indicate that DAOSNPS achieves a better balance between exploration and exploitation than OSNPS and AOSNPS.
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2022.03.007