Conditional variational autoencoder for query expansion in ad-hoc information retrieval

Query expansion (QE) is commonly used to improve the performance of traditional information retrieval (IR) models. With the adoption of deep learning in IR research, neural QE models have emerged in recent years. Many of these models focus on learning embeddings by leveraging query-document relevanc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information sciences Ročník 652; s. 119764
Hlavní autori: Ou, Wei, Huynh, Van-Nam
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.01.2024
Predmet:
ISSN:0020-0255, 1872-6291
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Query expansion (QE) is commonly used to improve the performance of traditional information retrieval (IR) models. With the adoption of deep learning in IR research, neural QE models have emerged in recent years. Many of these models focus on learning embeddings by leveraging query-document relevance. These embedding models allow computing semantic similarities between queries and documents to generate expansion terms. However, existing models often ignore query-document interactions. This research aims to address that gap by proposing a QE model using a conditional variational autoencoder. It first maps a query-document pair into a latent space based on their interaction, then estimates an expansion model from that latent space. The proposed model is trained on relevance feedback data and generates expansions using pseudo-relevance feedback at test time. The proposed model is evaluated on three standard TREC collections for document ranking: AP and Robust 04 and GOV02, and the MS MARCO dataset for passage ranking. Results show the model outperforms state-of-the-art traditional and neural QE models. It also demonstrates higher additivity with neural matching than baselines.
AbstractList Query expansion (QE) is commonly used to improve the performance of traditional information retrieval (IR) models. With the adoption of deep learning in IR research, neural QE models have emerged in recent years. Many of these models focus on learning embeddings by leveraging query-document relevance. These embedding models allow computing semantic similarities between queries and documents to generate expansion terms. However, existing models often ignore query-document interactions. This research aims to address that gap by proposing a QE model using a conditional variational autoencoder. It first maps a query-document pair into a latent space based on their interaction, then estimates an expansion model from that latent space. The proposed model is trained on relevance feedback data and generates expansions using pseudo-relevance feedback at test time. The proposed model is evaluated on three standard TREC collections for document ranking: AP and Robust 04 and GOV02, and the MS MARCO dataset for passage ranking. Results show the model outperforms state-of-the-art traditional and neural QE models. It also demonstrates higher additivity with neural matching than baselines.
ArticleNumber 119764
Author Huynh, Van-Nam
Ou, Wei
Author_xml – sequence: 1
  givenname: Wei
  surname: Ou
  fullname: Ou, Wei
  email: studyouwei@gmail.com
  organization: School of Tourism and Urban-rural Planning, Zhejiang Gongshang University, China
– sequence: 2
  givenname: Van-Nam
  surname: Huynh
  fullname: Huynh, Van-Nam
  organization: the School of Knowledge Science, Japan Advanced Institute of Science and Technology, Japan
BookMark eNp9kMtqwzAQRUVJoUnaD-jOP2B3JNuSTVcl9AWBbgJdClkaUQVHSiUnNH9f57Hqoqu5MHOGmTMjEx88EnJPoaBA-cO6cD4VDFhZUNoKXl2RKW0Eyzlr6YRMARjkwOr6hsxSWgNAJTifks9F8MYNLnjVZ3sVnbpktRsCeh0MxsyGmH3vMB4y_Nkqn8aJzPlMmfwr6DGN_c2JyyIO0eFe9bfk2qo-4d2lzsnq5Xm1eMuXH6_vi6dlrlkrhtxwpoSFTpWirS0zlutGVdCgrjtOmUXWVHVjjBWlNV3Z0QYroUtFLWDXQjkn4rxWx5BSRCu1G06nDFG5XlKQRz1yLUc98qhHnvWMJP1DbqPbqHj4l3k8Mzh-tHcYZdJulITGRdSDNMH9Q_8CeICCZA
CitedBy_id crossref_primary_10_1016_j_ins_2024_120704
crossref_primary_10_1016_j_eswa_2025_128846
crossref_primary_10_1109_ACCESS_2025_3533656
crossref_primary_10_3390_electronics14142900
Cites_doi 10.1561/2200000056
10.1145/2071389.2071390
10.1016/j.ipm.2019.102182
10.1145/366836.366860
10.1145/3196826
10.1109/TASLP.2016.2520371
10.1016/j.ipm.2020.102342
10.1613/jair.1.11259
10.1145/3486250
10.1016/j.ipm.2019.05.009
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright_xml – notice: 2023 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2023.119764
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
ExternalDocumentID 10_1016_j_ins_2023_119764
S002002552301349X
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-d62a7f0ba3795f2df6c8a408ec5b612fe28458ddf73fdb3b18e47c3a1f0eb903
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001101826500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 07:30:50 EST 2025
Tue Nov 18 22:19:47 EST 2025
Fri Feb 23 02:36:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Conditional variational autoencoder
Information retrieval
Query expansion
Relevance language model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-d62a7f0ba3795f2df6c8a408ec5b612fe28458ddf73fdb3b18e47c3a1f0eb903
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2023_119764
crossref_primary_10_1016_j_ins_2023_119764
elsevier_sciencedirect_doi_10_1016_j_ins_2023_119764
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kingma, Welling (br0110) 2019; 12
Imani, Vakili, Montazer, Shakery (br0190) 2019
Nguyen, Rosenberg, Song, Gao, Tiwary, Majumder, Deng (br0440) 2016
Devlin, Chang, Lee, Toutanova (br0230) 2019
Li, Yates, MacAvaney, He, Sun (br0330) Aug. 2020
Sohn, Lee, Yan (br0370) 2015
Naseri, Dalton, Yates, Allan (br0270) Mar. 2021
Yi, Allan (br0420) 2009
Mikolov, Sutskever, Chen, Corrado, Dean (br0410) 2013
Miao, Huang, Ye (br0120) 2012
Jagerman, Zhuang, Qin, Wang, Bendersky (br0280) May 2023
Roy, Paul, Mitra, Garain (br0070) Jun. 2016
Zamani, Croft (br0180) 2016
Palangi, Deng, Shen, Gao, He, Chen, Song, Ward (br0350) 2016; 24
Lavrenko, Croft, Croft (br0030) 2001
Zamani, Croft (br0060) 2017
Wu, Gan, Chen, Wan, Lin (br0290) Mar. 2023
Kuzi, Shtok, Kurland (br0050) 2016
Huang, He, Gao, Deng, Acero, Heck (br0340) 2013
Azad, Deepak (br0090) 2019; 56
Camacho-Collados, Pilehvar (br0170) 2018; 63
Wang, Pan, He, Huang, Wang, Tu (br0240) 2020; 57
Latiri, Yahia, Chevallet, Jaoua (br0140) 2003
Akkalyoncu Yilmaz, Yang, Zhang, Lin (br0320) 2019
Diaz, Mitra, Craswell (br0200) 2016
Gysel, De Rijke, Kanoulas (br0210) 2018; 36
Hambarde, Proenca (br0100) Jan. 2023
Zheng, Hui, He, Han, Sun, Yates (br0250) 2020
Mitra, Diaz, Craswell (br0300) 2017
Rocchio (br0020) 1971
Yang, Lu, Yang, Lin (br0040) 2019
C. Zhai, J. Lafferty, Model-based Feedback in the Language Modeling Approach to Information Retrieval 8.
Church, Hanks (br0130) 1990; 16
Carpineto, de Mori, Romano, Bigi (br0160) 2001; 19
Wang, Luo, Li, He, Sun, Yu, Sun (br0220) 2020; 57
Shen, He, Gao, Deng, Mesnil (br0360) 2014
Carpineto, Romano (br0010) 2012; 44
Akkalyoncu Yilmaz, Wang, Yang, Zhang, Lin (br0430) 2019
Santhanam, Khattab, Saad-Falcon, Potts, Zaharia (br0390) Jul. 2022
Nogueira, Yang, Lin, Cho (br0260) 2019
Guo, Cai, Fan, Sun, Zhang, Cheng (br0380) 2022; 40
Nogueira, Cho (br0310) 2019
Guo, Fan, Ai, Croft (br0080) 2016
Doersch (br0400) Jan. 2021
Kuzi (10.1016/j.ins.2023.119764_br0050) 2016
Church (10.1016/j.ins.2023.119764_br0130) 1990; 16
Mikolov (10.1016/j.ins.2023.119764_br0410) 2013
Devlin (10.1016/j.ins.2023.119764_br0230) 2019
Camacho-Collados (10.1016/j.ins.2023.119764_br0170) 2018; 63
Miao (10.1016/j.ins.2023.119764_br0120) 2012
Akkalyoncu Yilmaz (10.1016/j.ins.2023.119764_br0320) 2019
Yi (10.1016/j.ins.2023.119764_br0420) 2009
Gysel (10.1016/j.ins.2023.119764_br0210) 2018; 36
Diaz (10.1016/j.ins.2023.119764_br0200) 2016
Nogueira (10.1016/j.ins.2023.119764_br0310)
Roy (10.1016/j.ins.2023.119764_br0070)
Mitra (10.1016/j.ins.2023.119764_br0300) 2017
Zheng (10.1016/j.ins.2023.119764_br0250) 2020
Carpineto (10.1016/j.ins.2023.119764_br0010) 2012; 44
Lavrenko (10.1016/j.ins.2023.119764_br0030) 2001
Kingma (10.1016/j.ins.2023.119764_br0110) 2019; 12
Wang (10.1016/j.ins.2023.119764_br0220) 2020; 57
Guo (10.1016/j.ins.2023.119764_br0080) 2016
Azad (10.1016/j.ins.2023.119764_br0090) 2019; 56
Li (10.1016/j.ins.2023.119764_br0330)
Jagerman (10.1016/j.ins.2023.119764_br0280)
Huang (10.1016/j.ins.2023.119764_br0340) 2013
Latiri (10.1016/j.ins.2023.119764_br0140) 2003
Palangi (10.1016/j.ins.2023.119764_br0350) 2016; 24
Wu (10.1016/j.ins.2023.119764_br0290)
Yang (10.1016/j.ins.2023.119764_br0040) 2019
Zamani (10.1016/j.ins.2023.119764_br0180) 2016
Sohn (10.1016/j.ins.2023.119764_br0370) 2015
Rocchio (10.1016/j.ins.2023.119764_br0020) 1971
Hambarde (10.1016/j.ins.2023.119764_br0100)
Nguyen (10.1016/j.ins.2023.119764_br0440)
Zamani (10.1016/j.ins.2023.119764_br0060) 2017
Wang (10.1016/j.ins.2023.119764_br0240) 2020; 57
Shen (10.1016/j.ins.2023.119764_br0360) 2014
10.1016/j.ins.2023.119764_br0150
Nogueira (10.1016/j.ins.2023.119764_br0260)
Akkalyoncu Yilmaz (10.1016/j.ins.2023.119764_br0430) 2019
Santhanam (10.1016/j.ins.2023.119764_br0390)
Naseri (10.1016/j.ins.2023.119764_br0270)
Doersch (10.1016/j.ins.2023.119764_br0400)
Carpineto (10.1016/j.ins.2023.119764_br0160) 2001; 19
Imani (10.1016/j.ins.2023.119764_br0190) 2019
Guo (10.1016/j.ins.2023.119764_br0380) 2022; 40
References_xml – volume: 40
  start-page: 1
  year: 2022
  end-page: 42
  ident: br0380
  article-title: Semantic models for the first-stage retrieval: a comprehensive review
  publication-title: ACM Trans. Inf. Syst.
– volume: 57
  year: 2020
  ident: br0240
  article-title: A pseudo-relevance feedback framework combining relevance matching and semantic matching for information retrieval
  publication-title: Inf. Process. Manag.
– year: Mar. 2021
  ident: br0270
  article-title: CEQE: contextualized embeddings for query expansion
– start-page: 3483
  year: 2015
  end-page: 3491
  ident: br0370
  article-title: Learning structured output representation using deep conditional generative models
  publication-title: Advances in Neural Information Processing Systems
– start-page: 203
  year: 2019
  end-page: 210
  ident: br0190
  article-title: Deep neural networks for query expansion using word embeddings
  publication-title: Advances in Information Retrieval, Lecture Notes in Computer Science
– volume: 56
  start-page: 1698
  year: 2019
  end-page: 1735
  ident: br0090
  article-title: Query expansion techniques for information retrieval: a survey
  publication-title: Inf. Process. Manag.
– start-page: 505
  year: 2017
  end-page: 514
  ident: br0060
  article-title: Relevance-based word embedding
  publication-title: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval
– year: Jan. 2023
  ident: br0100
  article-title: Information retrieval: recent advances and beyond
– year: Jan. 2021
  ident: br0400
  article-title: Tutorial on variational autoencoders
– volume: 16
  start-page: 22
  year: 1990
  end-page: 29
  ident: br0130
  article-title: Word association norms, mutual information, and lexicography
  publication-title: Comput. Linguist.
– year: Aug. 2020
  ident: br0330
  article-title: PARADE: passage representation aggregation for document reranking
– start-page: 29
  year: 2009
  end-page: 41
  ident: br0420
  article-title: A comparative study of utilizing topic models for information retrieval
  publication-title: European Conference on Information Retrieval
– start-page: 1291
  year: 2017
  end-page: 1299
  ident: br0300
  article-title: Learning to match using local and distributed representations of text for web search
  publication-title: Proceedings of the 26th International Conference on World Wide Web - WWW '17
– year: Jul. 2022
  ident: br0390
  article-title: ColBERTv2: effective and efficient retrieval via lightweight late interaction
– volume: 36
  start-page: 1
  year: 2018
  end-page: 25
  ident: br0210
  article-title: Neural vector spaces for unsupervised information retrieval
  publication-title: ACM Trans. Inf. Syst.
– year: 2019
  ident: br0260
  article-title: Document expansion by query prediction
– start-page: 367
  year: 2016
  end-page: 377
  ident: br0200
  article-title: Query expansion with locally-trained word embeddings
  publication-title: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
– start-page: 4718
  year: 2020
  end-page: 4728
  ident: br0250
  article-title: BERT-QE: contextualized query expansion for document re-ranking
  publication-title: Findings of the Association for Computational Linguistics: EMNLP 2020
– start-page: 2333
  year: 2013
  end-page: 2338
  ident: br0340
  article-title: Learning deep structured semantic models for web search using clickthrough data
  publication-title: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management
– volume: 57
  year: 2020
  ident: br0220
  article-title: An end-to-end pseudo relevance feedback framework for neural document retrieval
  publication-title: Inf. Process. Manag.
– start-page: 55
  year: 2016
  end-page: 64
  ident: br0080
  article-title: A deep relevance matching model for ad-hoc retrieval
  publication-title: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management
– start-page: 1129
  year: 2019
  end-page: 1132
  ident: br0040
  article-title: Critically examining the “neural hype”: weak baselines and the additivity of effectiveness gains from neural ranking models
  publication-title: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval
– start-page: 19
  year: 2019
  end-page: 24
  ident: br0430
  article-title: Applying BERT to document retrieval with Birch
  publication-title: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations
– reference: C. Zhai, J. Lafferty, Model-based Feedback in the Language Modeling Approach to Information Retrieval 8.
– start-page: 313
  year: 1971
  end-page: 323
  ident: br0020
  article-title: Relevance feedback in information retrieval
  publication-title: The Smart Retrieval System-Experiments in Automatic Document Processing
– year: May 2023
  ident: br0280
  article-title: Query expansion by prompting large language models
– volume: 24
  start-page: 694
  year: 2016
  end-page: 707
  ident: br0350
  article-title: Deep sentence embedding using long short-term memory networks: analysis and application to information retrieval
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
– volume: 19
  start-page: 1
  year: 2001
  end-page: 27
  ident: br0160
  article-title: An information-theoretic approach to automatic query expansion
  publication-title: ACM Trans. Inf. Syst.
– start-page: 3490
  year: 2019
  end-page: 3496
  ident: br0320
  article-title: Cross-domain modeling of sentence-level evidence for document retrieval
  publication-title: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
– start-page: 3111
  year: 2013
  end-page: 3119
  ident: br0410
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: Advances in Neural Information Processing Systems
– start-page: 535
  year: 2012
  ident: br0120
  article-title: Proximity-based Rocchio's model for pseudo relevance
  publication-title: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval
– year: 2003
  ident: br0140
  article-title: Query expansion using fuzzy association rules between terms
  publication-title: Proceedings of JIM
– start-page: 147
  year: 2016
  end-page: 156
  ident: br0180
  article-title: Embedding-based query language models
  publication-title: Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval
– year: 2019
  ident: br0310
  article-title: Passage re-ranking with BERT
– start-page: 120
  year: 2001
  end-page: 127
  ident: br0030
  article-title: Relevance-based language models
  publication-title: Proceedings on the 24th Annual International ACM SIGIR Conference
– year: Mar. 2023
  ident: br0290
  article-title: AI-generated content (AIGC): a survey
– year: 2016
  ident: br0440
  article-title: MS MARCO: a human-generated machine reading comprehension dataset
– volume: 63
  start-page: 743
  year: 2018
  end-page: 788
  ident: br0170
  article-title: From word to sense embeddings: a survey on vector representations of meaning
  publication-title: J. Artif. Intell. Res.
– volume: 44
  start-page: 1
  year: 2012
  end-page: 50
  ident: br0010
  article-title: A survey of automatic query expansion in information retrieval
  publication-title: ACM Comput. Surv.
– year: Jun. 2016
  ident: br0070
  article-title: Using word embeddings for automatic query expansion
– volume: 12
  start-page: 307
  year: 2019
  end-page: 392
  ident: br0110
  article-title: An introduction to variational autoencoders
  publication-title: Found. Trends Mach. Learn.
– start-page: 373
  year: 2014
  end-page: 374
  ident: br0360
  article-title: Learning semantic representations using convolutional neural networks for web search
  publication-title: Proceedings of the 23rd International Conference on World Wide Web
– start-page: 1929
  year: 2016
  end-page: 1932
  ident: br0050
  article-title: Query expansion using word embeddings
  publication-title: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management
– start-page: 4171
  year: 2019
  end-page: 4186
  ident: br0230
  article-title: BERT: pre-training of deep bidirectional transformers for language understanding
  publication-title: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
– ident: 10.1016/j.ins.2023.119764_br0100
– start-page: 4171
  year: 2019
  ident: 10.1016/j.ins.2023.119764_br0230
  article-title: BERT: pre-training of deep bidirectional transformers for language understanding
– start-page: 3490
  year: 2019
  ident: 10.1016/j.ins.2023.119764_br0320
  article-title: Cross-domain modeling of sentence-level evidence for document retrieval
– ident: 10.1016/j.ins.2023.119764_br0270
– ident: 10.1016/j.ins.2023.119764_br0330
– start-page: 29
  year: 2009
  ident: 10.1016/j.ins.2023.119764_br0420
  article-title: A comparative study of utilizing topic models for information retrieval
– volume: 12
  start-page: 307
  issue: 4
  year: 2019
  ident: 10.1016/j.ins.2023.119764_br0110
  article-title: An introduction to variational autoencoders
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000056
– volume: 44
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.ins.2023.119764_br0010
  article-title: A survey of automatic query expansion in information retrieval
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2071389.2071390
– volume: 57
  issue: 2
  year: 2020
  ident: 10.1016/j.ins.2023.119764_br0220
  article-title: An end-to-end pseudo relevance feedback framework for neural document retrieval
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2019.102182
– ident: 10.1016/j.ins.2023.119764_br0390
– ident: 10.1016/j.ins.2023.119764_br0280
– ident: 10.1016/j.ins.2023.119764_br0440
– ident: 10.1016/j.ins.2023.119764_br0400
– volume: 16
  start-page: 22
  issue: 1
  year: 1990
  ident: 10.1016/j.ins.2023.119764_br0130
  article-title: Word association norms, mutual information, and lexicography
  publication-title: Comput. Linguist.
– start-page: 19
  year: 2019
  ident: 10.1016/j.ins.2023.119764_br0430
  article-title: Applying BERT to document retrieval with Birch
– start-page: 2333
  year: 2013
  ident: 10.1016/j.ins.2023.119764_br0340
  article-title: Learning deep structured semantic models for web search using clickthrough data
– start-page: 505
  year: 2017
  ident: 10.1016/j.ins.2023.119764_br0060
  article-title: Relevance-based word embedding
– start-page: 1291
  year: 2017
  ident: 10.1016/j.ins.2023.119764_br0300
  article-title: Learning to match using local and distributed representations of text for web search
– volume: 19
  start-page: 1
  issue: 1
  year: 2001
  ident: 10.1016/j.ins.2023.119764_br0160
  article-title: An information-theoretic approach to automatic query expansion
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/366836.366860
– start-page: 313
  year: 1971
  ident: 10.1016/j.ins.2023.119764_br0020
  article-title: Relevance feedback in information retrieval
– ident: 10.1016/j.ins.2023.119764_br0290
– start-page: 535
  year: 2012
  ident: 10.1016/j.ins.2023.119764_br0120
  article-title: Proximity-based Rocchio's model for pseudo relevance
– ident: 10.1016/j.ins.2023.119764_br0310
– start-page: 203
  year: 2019
  ident: 10.1016/j.ins.2023.119764_br0190
  article-title: Deep neural networks for query expansion using word embeddings
– volume: 36
  start-page: 1
  issue: 4
  year: 2018
  ident: 10.1016/j.ins.2023.119764_br0210
  article-title: Neural vector spaces for unsupervised information retrieval
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/3196826
– ident: 10.1016/j.ins.2023.119764_br0260
– start-page: 1929
  year: 2016
  ident: 10.1016/j.ins.2023.119764_br0050
  article-title: Query expansion using word embeddings
– start-page: 373
  year: 2014
  ident: 10.1016/j.ins.2023.119764_br0360
  article-title: Learning semantic representations using convolutional neural networks for web search
– start-page: 55
  year: 2016
  ident: 10.1016/j.ins.2023.119764_br0080
  article-title: A deep relevance matching model for ad-hoc retrieval
– ident: 10.1016/j.ins.2023.119764_br0150
– year: 2003
  ident: 10.1016/j.ins.2023.119764_br0140
  article-title: Query expansion using fuzzy association rules between terms
– start-page: 120
  year: 2001
  ident: 10.1016/j.ins.2023.119764_br0030
  article-title: Relevance-based language models
– ident: 10.1016/j.ins.2023.119764_br0070
– volume: 24
  start-page: 694
  issue: 4
  year: 2016
  ident: 10.1016/j.ins.2023.119764_br0350
  article-title: Deep sentence embedding using long short-term memory networks: analysis and application to information retrieval
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2016.2520371
– start-page: 367
  year: 2016
  ident: 10.1016/j.ins.2023.119764_br0200
  article-title: Query expansion with locally-trained word embeddings
– volume: 57
  issue: 6
  year: 2020
  ident: 10.1016/j.ins.2023.119764_br0240
  article-title: A pseudo-relevance feedback framework combining relevance matching and semantic matching for information retrieval
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2020.102342
– start-page: 4718
  year: 2020
  ident: 10.1016/j.ins.2023.119764_br0250
  article-title: BERT-QE: contextualized query expansion for document re-ranking
– start-page: 1129
  year: 2019
  ident: 10.1016/j.ins.2023.119764_br0040
  article-title: Critically examining the “neural hype”: weak baselines and the additivity of effectiveness gains from neural ranking models
– start-page: 3483
  year: 2015
  ident: 10.1016/j.ins.2023.119764_br0370
  article-title: Learning structured output representation using deep conditional generative models
– volume: 63
  start-page: 743
  year: 2018
  ident: 10.1016/j.ins.2023.119764_br0170
  article-title: From word to sense embeddings: a survey on vector representations of meaning
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.1.11259
– start-page: 147
  year: 2016
  ident: 10.1016/j.ins.2023.119764_br0180
  article-title: Embedding-based query language models
– volume: 40
  start-page: 1
  issue: 4
  year: 2022
  ident: 10.1016/j.ins.2023.119764_br0380
  article-title: Semantic models for the first-stage retrieval: a comprehensive review
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/3486250
– start-page: 3111
  year: 2013
  ident: 10.1016/j.ins.2023.119764_br0410
  article-title: Distributed representations of words and phrases and their compositionality
– volume: 56
  start-page: 1698
  issue: 5
  year: 2019
  ident: 10.1016/j.ins.2023.119764_br0090
  article-title: Query expansion techniques for information retrieval: a survey
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2019.05.009
SSID ssj0004766
Score 2.4511247
Snippet Query expansion (QE) is commonly used to improve the performance of traditional information retrieval (IR) models. With the adoption of deep learning in IR...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119764
SubjectTerms Conditional variational autoencoder
Information retrieval
Query expansion
Relevance language model
Title Conditional variational autoencoder for query expansion in ad-hoc information retrieval
URI https://dx.doi.org/10.1016/j.ins.2023.119764
Volume 652
WOSCitedRecordID wos001101826500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZglwMcECwgdmGRD4gDyChx4tg5rlaLgEPhUEFvkZ-i1ZKu-lL59zt-JA3lIUDiElVR3ETzjcbz8jcIPVfSVUyJijChClIWQhEFakzADOam0iqTzIRhE3w0EpNJ_THNbF-GcQK8bcV2W1_9V6jhHoDtj87-Bdz9n8IN-A2gwxVgh-sfAX8-91XomOHbQCTcZfvkejX3rJWePML3FsKG4A_ibsEcLFPDozTky1y_SmSqQTMWYeLWJr101vW97x5IW2jvmn9Yh7Y9O90pzLc25G4-yZaM5NdhnoGWe3mG_gDMd_2Z3tskPiyJ20m0oYJTUtE4hKszslXkqf3BYMfcwQyiDM-dTovXvqwZec33eLB9WTlEQBA0eU7FyU10SDmrwZQdnr27mLzfHYflsUTdfVtXzA5tfXsv-rk7MnAxxvfQ3RQb4LOI6X10w7ZH6M6AMfIInaZzJvgFHoCAk4V-gD4P0McD9PEAfQzrcEAf9-jjaYsj-niAPu7Rf4jGby7G529Jmp1BNK35ipiKSu4yJQteM0eNq7SQZSasZgqcWmfBLWHCGMcLZ1ShcmFLrguZu8yqOiseoYN23trHCJeVq6XRFoSmyjpnkuUKzA91XIG3b9QxyjoJNjrxyvvxJpdN10A4a0DojRd6E4V-jF72S64iqcrvHi47WJqk0tHba0CHfr3s5N-WPUG3d8r_FB2sFmt7im7pzWq6XDxLmnYNKSmJKg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conditional+variational+autoencoder+for+query+expansion+in+ad-hoc+information+retrieval&rft.jtitle=Information+sciences&rft.au=Ou%2C+Wei&rft.au=Huynh%2C+Van-Nam&rft.date=2024-01-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=652&rft_id=info:doi/10.1016%2Fj.ins.2023.119764&rft.externalDocID=S002002552301349X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon