A scheduling scheme in the cloud computing environment using deep Q-learning
Task scheduling, which plays a vital role in cloud computing, is a critical factor that determines the performance of cloud computing. From the booming economy of information processing to the increasing need of quality of service (QoS) in the business of networking, the dynamic task-scheduling prob...
Saved in:
| Published in: | Information sciences Vol. 512; pp. 1170 - 1191 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.02.2020
|
| Subjects: | |
| ISSN: | 0020-0255, 1872-6291 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Task scheduling, which plays a vital role in cloud computing, is a critical factor that determines the performance of cloud computing. From the booming economy of information processing to the increasing need of quality of service (QoS) in the business of networking, the dynamic task-scheduling problem has attracted worldwide attention. Due to its complexity, task scheduling has been defined and classified as an NP-hard problem. Additionally, most dynamic online task scheduling often manages tasks in a complex environment, which makes it even more challenging to balance and satisfy the benefits of each aspect of cloud computing. In this paper, we propose a novel artificial intelligence algorithm, called deep Q-learning task scheduling (DQTS), that combines the advantages of the Q-learning algorithm and a deep neural network. This new approach is aimed at solving the problem of handling directed acyclic graph (DAG) tasks in a cloud computing environment. The essential idea of our approach uses the popular deep Q-learning (DQL) method in task scheduling, where fundamental model learning is primarily inspired by DQL. Based on developments in WorkflowSim, experiments are conducted that comparatively consider the variance of makespan and load balance in task scheduling. Both simulation and real-life experiments are conducted to verify the efficiency of optimization and learning abilities in DQTS. The result shows that when compared with several standard algorithms precoded in WorkflowSim, DQTS has advantages regarding learning ability, containment, and scalability. In this paper, we have successfully developed a new method for task scheduling in cloud computing. |
|---|---|
| AbstractList | Task scheduling, which plays a vital role in cloud computing, is a critical factor that determines the performance of cloud computing. From the booming economy of information processing to the increasing need of quality of service (QoS) in the business of networking, the dynamic task-scheduling problem has attracted worldwide attention. Due to its complexity, task scheduling has been defined and classified as an NP-hard problem. Additionally, most dynamic online task scheduling often manages tasks in a complex environment, which makes it even more challenging to balance and satisfy the benefits of each aspect of cloud computing. In this paper, we propose a novel artificial intelligence algorithm, called deep Q-learning task scheduling (DQTS), that combines the advantages of the Q-learning algorithm and a deep neural network. This new approach is aimed at solving the problem of handling directed acyclic graph (DAG) tasks in a cloud computing environment. The essential idea of our approach uses the popular deep Q-learning (DQL) method in task scheduling, where fundamental model learning is primarily inspired by DQL. Based on developments in WorkflowSim, experiments are conducted that comparatively consider the variance of makespan and load balance in task scheduling. Both simulation and real-life experiments are conducted to verify the efficiency of optimization and learning abilities in DQTS. The result shows that when compared with several standard algorithms precoded in WorkflowSim, DQTS has advantages regarding learning ability, containment, and scalability. In this paper, we have successfully developed a new method for task scheduling in cloud computing. |
| Author | Li, Keqin Li, Kenli Deng, Xiaomei Chen, Hongjian Tong, Zhao |
| Author_xml | – sequence: 1 givenname: Zhao orcidid: 0000-0002-8624-6364 surname: Tong fullname: Tong, Zhao email: tongzhao@hunnu.edu.cn organization: College of Information Science and Engineering, Hunan Normal University, Changsha, 410012, China – sequence: 2 givenname: Hongjian surname: Chen fullname: Chen, Hongjian organization: College of Information Science and Engineering, Hunan Normal University, Changsha, 410012, China – sequence: 3 givenname: Xiaomei surname: Deng fullname: Deng, Xiaomei organization: College of Information Science and Engineering, Hunan Normal University, Changsha, 410012, China – sequence: 4 givenname: Kenli orcidid: 0000-0002-2635-7716 surname: Li fullname: Li, Kenli organization: College of Information Science and Engineering, Hunan University, and National Supercomputing Center in Changsha, Changsha, 410082, China – sequence: 5 givenname: Keqin surname: Li fullname: Li, Keqin organization: College of Information Science and Engineering, Hunan University, and National Supercomputing Center in Changsha, Changsha, 410082, China |
| BookMark | eNp9kMFKAzEQhoNUsK0-gLe8wK6T7G62i6dS1AoFEfQcQnZiU3azJckWfHuz1pOHnmbmH77hn39BZm5wSMg9g5wBEw-H3LqQc2BNmnMoqisyZ6uaZ4I3bEbmABwy4FV1QxYhHACgrIWYk92aBr3Hduys-_pte6TW0bhHqrthbKke-uMYpy26k_WD69FFOoZJaRGP9D3rUHmX5ltybVQX8O6vLsnn89PHZpvt3l5eN-tdpnlTx6xNnoxWTEHBlIamakpVV9yUIMqVKfRKIJbIFDIUpkJQAkTyb2plmFC8KpakPt_VfgjBo5HaRhXt4KJXtpMM5BSKPMgUipxCmaQUSiLZP_Loba_890Xm8cxgeulk0cugLTqNrfWoo2wHe4H-AXPnfOM |
| CitedBy_id | crossref_primary_10_1007_s00521_021_06289_9 crossref_primary_10_1002_cpe_7228 crossref_primary_10_1016_j_ins_2021_03_003 crossref_primary_10_1109_ACCESS_2025_3599190 crossref_primary_10_1109_JIOT_2022_3168968 crossref_primary_10_1007_s10462_025_11208_8 crossref_primary_10_1108_K_07_2021_0554 crossref_primary_10_1007_s12652_021_03198_6 crossref_primary_10_3390_app11209360 crossref_primary_10_53370_001c_33767 crossref_primary_10_1016_j_future_2021_05_012 crossref_primary_10_1007_s11042_023_16971_w crossref_primary_10_1007_s11277_024_10957_z crossref_primary_10_1016_j_cor_2025_107109 crossref_primary_10_4236_jdaip_2025_133015 crossref_primary_10_1080_15325008_2023_2283562 crossref_primary_10_1016_j_jpdc_2021_05_003 crossref_primary_10_1016_j_eswa_2023_121038 crossref_primary_10_1007_s10586_021_03454_6 crossref_primary_10_3233_JIFS_234054 crossref_primary_10_1007_s11227_024_06668_8 crossref_primary_10_7717_peerj_cs_2120 crossref_primary_10_1007_s11276_025_03954_y crossref_primary_10_1016_j_eswa_2025_127376 crossref_primary_10_1109_JIOT_2024_3524506 crossref_primary_10_3390_app12178516 crossref_primary_10_1016_j_future_2021_05_026 crossref_primary_10_1016_j_future_2021_11_014 crossref_primary_10_3390_math10071100 crossref_primary_10_1016_j_future_2021_09_043 crossref_primary_10_1109_JSYST_2022_3159840 crossref_primary_10_1007_s12652_020_02884_1 crossref_primary_10_1016_j_eswa_2022_118018 crossref_primary_10_1016_j_jpdc_2020_11_007 crossref_primary_10_1007_s11280_023_01145_3 crossref_primary_10_1051_itmconf_20235401005 crossref_primary_10_1007_s00521_024_09599_w crossref_primary_10_1109_JSEN_2022_3218840 crossref_primary_10_1080_00207543_2022_2153942 crossref_primary_10_3390_electronics12081810 crossref_primary_10_1109_JSYST_2022_3204748 crossref_primary_10_1016_j_knosys_2024_111366 crossref_primary_10_32604_cmes_2023_024871 crossref_primary_10_1186_s13677_024_00683_z crossref_primary_10_1016_j_eswa_2024_124845 crossref_primary_10_1109_TSC_2023_3253182 crossref_primary_10_1109_ACCESS_2024_3435914 crossref_primary_10_1109_TII_2023_3242769 crossref_primary_10_1016_j_ins_2021_11_027 crossref_primary_10_1007_s11416_025_00566_0 crossref_primary_10_1016_j_eswa_2024_124606 crossref_primary_10_1016_j_sysarc_2023_102847 crossref_primary_10_1109_JIOT_2023_3234078 crossref_primary_10_1155_2020_8888375 crossref_primary_10_1016_j_ins_2022_06_078 crossref_primary_10_1109_ACCESS_2021_3051672 crossref_primary_10_3390_pr11041162 crossref_primary_10_1007_s11227_023_05489_5 crossref_primary_10_1109_TASE_2021_3093341 crossref_primary_10_1016_j_swevo_2024_101575 crossref_primary_10_1109_TASE_2022_3204313 crossref_primary_10_1108_IJPCC_01_2023_0022 crossref_primary_10_1016_j_ins_2023_119115 crossref_primary_10_1108_K_03_2021_0243 crossref_primary_10_1109_TNSM_2022_3213575 crossref_primary_10_1109_TCC_2024_3449771 crossref_primary_10_1016_j_future_2025_108001 crossref_primary_10_1007_s00500_021_06488_5 crossref_primary_10_1007_s11042_023_16008_2 crossref_primary_10_1038_s41598_025_99837_5 crossref_primary_10_1007_s10489_021_02625_7 crossref_primary_10_1088_1367_2630_ad4629 crossref_primary_10_1016_j_matdes_2025_114798 crossref_primary_10_3390_fi16010019 crossref_primary_10_1109_TPDS_2021_3132422 crossref_primary_10_1007_s10723_023_09673_y crossref_primary_10_1155_2022_2335313 crossref_primary_10_1016_j_future_2023_10_002 crossref_primary_10_1016_j_ins_2022_06_015 crossref_primary_10_1016_j_ins_2022_08_028 crossref_primary_10_1109_ACCESS_2022_3188645 crossref_primary_10_1007_s12652_022_03885_y crossref_primary_10_3233_MGS_220217 crossref_primary_10_3233_JIFS_231824 crossref_primary_10_1007_s00607_020_00813_w crossref_primary_10_1016_j_ins_2021_04_088 crossref_primary_10_1016_j_ins_2022_10_071 crossref_primary_10_1002_advs_202409291 crossref_primary_10_1109_TPDS_2023_3334519 crossref_primary_10_1109_ACCESS_2024_3355092 crossref_primary_10_1016_j_neucom_2021_05_070 crossref_primary_10_1109_TASE_2022_3195958 crossref_primary_10_1016_j_matpr_2020_09_064 crossref_primary_10_1109_ACCESS_2023_3331317 crossref_primary_10_1016_j_neucom_2022_05_084 crossref_primary_10_1007_s10586_023_04006_w crossref_primary_10_1371_journal_pone_0329669 crossref_primary_10_3390_app11178204 crossref_primary_10_1155_2021_9114113 crossref_primary_10_3389_fenvs_2022_996483 crossref_primary_10_1186_s13677_023_00504_9 crossref_primary_10_1155_2022_8525361 crossref_primary_10_3390_electronics10111320 crossref_primary_10_3390_sym17050679 crossref_primary_10_3390_s21092971 crossref_primary_10_1186_s13677_023_00402_0 crossref_primary_10_1016_j_neucom_2020_10_087 crossref_primary_10_1007_s11831_023_09921_0 crossref_primary_10_1007_s11227_022_04729_4 crossref_primary_10_1016_j_simpat_2023_102858 crossref_primary_10_1016_j_future_2022_11_031 crossref_primary_10_1109_ACCESS_2020_3033557 crossref_primary_10_1109_TII_2025_3528574 crossref_primary_10_1007_s11265_023_01900_9 crossref_primary_10_1016_j_engappai_2021_104288 crossref_primary_10_1109_TPDS_2024_3360448 crossref_primary_10_1109_TNSM_2022_3181145 crossref_primary_10_32604_cmc_2024_049584 crossref_primary_10_1007_s11227_023_05725_y crossref_primary_10_1007_s11276_021_02868_9 crossref_primary_10_1016_j_ipm_2021_102540 crossref_primary_10_1016_j_jnca_2025_104286 crossref_primary_10_1080_00207543_2022_2148767 crossref_primary_10_37394_232018_2025_13_52 crossref_primary_10_1016_j_future_2025_107883 crossref_primary_10_1109_ACCESS_2024_3488965 crossref_primary_10_1007_s11277_022_09882_w crossref_primary_10_1093_comjnl_bxac192 crossref_primary_10_1016_j_future_2021_09_007 crossref_primary_10_1109_ACCESS_2020_3019278 crossref_primary_10_1109_ACCESS_2024_3421956 crossref_primary_10_1007_s11277_023_10520_2 crossref_primary_10_1016_j_jmsy_2025_01_010 crossref_primary_10_1038_s41598_025_91140_7 crossref_primary_10_1007_s10586_020_03205_z crossref_primary_10_1002_ett_4690 crossref_primary_10_1007_s10951_024_00820_1 crossref_primary_10_1016_j_future_2025_107872 crossref_primary_10_1007_s10723_024_09746_6 crossref_primary_10_1016_j_ins_2020_09_031 crossref_primary_10_1016_j_jnca_2022_103520 crossref_primary_10_1007_s11227_024_05990_5 crossref_primary_10_1016_j_asoc_2023_110027 crossref_primary_10_1007_s11831_023_09885_1 crossref_primary_10_1016_j_compeleceng_2023_108652 crossref_primary_10_1109_ACCESS_2020_3026373 crossref_primary_10_1109_TNSM_2021_3137926 crossref_primary_10_1007_s10489_022_03963_w crossref_primary_10_1002_cpe_7839 crossref_primary_10_1142_S0218126625503633 |
| Cites_doi | 10.1007/s10586-013-0325-0 10.1016/j.future.2012.08.015 10.1016/j.ins.2019.05.012 10.1016/j.apenergy.2018.03.072 10.1016/j.sepro.2012.04.008 10.1109/TPDS.2004.1264795 10.1002/cpe.4210 10.1109/TII.2017.2783439 10.1109/ACCESS.2018.2872674 10.1016/0743-7315(92)90012-C 10.1109/TPDS.2013.57 10.1109/TC.2013.205 10.1002/spe.995 10.1016/j.future.2017.05.017 10.1016/j.future.2014.10.008 10.1016/j.future.2016.10.003 10.1109/TCYB.2014.2311578 10.1109/TPDS.2008.260 10.1016/j.ins.2015.02.023 10.1109/TPDS.2017.2735400 10.1016/j.jpdc.2015.04.005 10.1007/s11227-017-2060-4 10.1109/4235.996017 10.1109/71.993206 10.1109/25.790549 10.1038/nature14236 10.1007/s00500-018-3657-0 10.1080/00401706.1995.10484354 10.1016/j.jpdc.2017.06.005 10.1007/s10723-017-9391-5 10.1109/TSUSC.2017.2743704 |
| ContentType | Journal Article |
| Copyright | 2019 |
| Copyright_xml | – notice: 2019 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2019.10.035 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 1191 |
| ExternalDocumentID | 10_1016_j_ins_2019_10_035 S0020025519309971 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-d629fca1a031ac09594a752f40648f3c86ee4e1ae1e6f5e0a606002f7af16a253 |
| ISICitedReferencesCount | 163 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000504778300071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Sat Nov 29 07:25:52 EST 2025 Tue Nov 18 22:12:03 EST 2025 Fri Feb 23 02:45:38 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Task scheduling Cloud computing Directed acyclic graph WorkflowSim Deep Q-learning algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-d629fca1a031ac09594a752f40648f3c86ee4e1ae1e6f5e0a606002f7af16a253 |
| ORCID | 0000-0002-8624-6364 0000-0002-2635-7716 |
| PageCount | 22 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2019_10_035 crossref_primary_10_1016_j_ins_2019_10_035 elsevier_sciencedirect_doi_10_1016_j_ins_2019_10_035 |
| PublicationCentury | 2000 |
| PublicationDate | February 2020 2020-02-00 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2020 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Bozdag, Ozguner, Catalyurek (bib0022) 2009; 20 Zhao, Sakellariou (bib0026) 2006 Durillo, Prodan (bib0016) 2014; 17 Gerasoulis, Yang (bib0017) 1992; 16 Yang, Hao, Sun, Wang, Fan, Strbac (bib0007) 2018; vol. 18 Jiang, Lin, Xie, Fu, Yang (bib0032) 2017; 15 Chen, Deelman (bib0047) 2013 Tang, Li, Fu (bib0034) 2017; 29 Melo (bib0035) 2001 Zhang, Lin, Yang, Chen, Li (bib0031) 2017; 4 Li, Tang, Veeravalli, Li (bib0013) 2014; 64 Bajaj, Agrawal (bib0018) 2004; 15 Topcuoglu, Hariri, Wu (bib0012) 2002; 13 Xie, Li, Li (bib0019) 2015; 83 Garg, Chli, Vogiatzis (bib0010) 2018 . Zhou, Qi, Wang, Zheng, Lin (bib0015) 2017; 29 Wang, Wu, Min (bib0009) 2019; 498 Deb, Pratap, Agarwal, Meyarivan (bib0049) 2002; 6 Watkins, Dayan (bib0004) 1992; 8 Tong, Deng, Chen, Mei, Liu (bib0005) 2019 Xu, Huang, Graves, Pedrycz (bib0038) 2014; 44 Silva, Chen, Juve, Vahi, Deelman (bib0044) 2014 Lu, Hong, Zhang (bib0006) 2018; 220 Arabnejad, Barbosa (bib0014) 2014; 25 Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (bib0011) 2015; 518 Bharathi, Chervenak, Deelman, Mehta, Su, Vahi (bib0043) 2008 Chen, Zhu, Zhang, Ma, Shen (bib0028) 2017; 73 Cheng, Li, Nazarian (bib0040) 2018 Wang, Zhang, Dong, Luo (bib0024) 2014 Mahadevan, Maggioni (bib0039) 2007; 8 Juve, Chervenak, Deelman, Bharathi, Mehta, Vahi (bib0045) 2013; 29 Wu, Ishikawa, Zhu, Xia, Wen (bib0001) 2017; 28 Baxter (bib0003) 2009; 37 Zhang, Liu, Tang (bib0041) 2017; 14 yenchenlin Tong, Chen, Deng, Li, Li (bib0020) 2019; 23 Arabnejad, Barbosa (bib0025) 2017; 68 Calheiros, Ranjan, Beloglazov, Rose, Buyya (bib0046) 2010; 41 Taylor, Parr (bib0037) 2009 Holland (bib0002) 1992 Deelman, Vahi, Juve, Rynge, Callaghan, Maechling, Mayani, Chen, Da Silva, Livny (bib0048) 2015; 46 Kanemitsu, Hanada, Nakazato (bib0027) 2017; 109 Zhang, Li, Xu, Mei, Zhang, Li (bib0029) 2015; 319 Teylo, de Paula, Frota, de Oliveira, Drummond (bib0023) 2017; 76 Wei, Pan, Liu, Wu, Meng (bib0030) 2018; 6 Nie, Haykin (bib0036) 1999; 48 Yang, Hao, Wang, Sun, Strbac (bib0008) 2018 Wang, Wei (bib0033) 2012; 5 Liang, Pang (bib0021) 2017; 22 Mnih (10.1016/j.ins.2019.10.035_bib0011) 2015; 518 Mahadevan (10.1016/j.ins.2019.10.035_bib0039) 2007; 8 Xu (10.1016/j.ins.2019.10.035_bib0038) 2014; 44 Zhang (10.1016/j.ins.2019.10.035_bib0031) 2017; 4 Silva (10.1016/j.ins.2019.10.035_bib0044) 2014 Arabnejad (10.1016/j.ins.2019.10.035_bib0025) 2017; 68 Arabnejad (10.1016/j.ins.2019.10.035_bib0014) 2014; 25 Wang (10.1016/j.ins.2019.10.035_bib0009) 2019; 498 Zhang (10.1016/j.ins.2019.10.035_bib0041) 2017; 14 Watkins (10.1016/j.ins.2019.10.035_bib0004) 1992; 8 Yang (10.1016/j.ins.2019.10.035_bib0007) 2018; vol. 18 Garg (10.1016/j.ins.2019.10.035_bib0010) 2018 Chen (10.1016/j.ins.2019.10.035_bib0047) 2013 Wang (10.1016/j.ins.2019.10.035_bib0024) 2014 Tong (10.1016/j.ins.2019.10.035_bib0020) 2019; 23 Deelman (10.1016/j.ins.2019.10.035_bib0048) 2015; 46 Durillo (10.1016/j.ins.2019.10.035_bib0016) 2014; 17 Baxter (10.1016/j.ins.2019.10.035_bib0003) 2009; 37 Tong (10.1016/j.ins.2019.10.035_bib0005) 2019 Bajaj (10.1016/j.ins.2019.10.035_bib0018) 2004; 15 Wei (10.1016/j.ins.2019.10.035_bib0030) 2018; 6 Yang (10.1016/j.ins.2019.10.035_bib0008) 2018 Taylor (10.1016/j.ins.2019.10.035_bib0037) 2009 Lu (10.1016/j.ins.2019.10.035_bib0006) 2018; 220 Wang (10.1016/j.ins.2019.10.035_bib0033) 2012; 5 Zhang (10.1016/j.ins.2019.10.035_bib0029) 2015; 319 Topcuoglu (10.1016/j.ins.2019.10.035_bib0012) 2002; 13 Bozdag (10.1016/j.ins.2019.10.035_bib0022) 2009; 20 Zhou (10.1016/j.ins.2019.10.035_bib0015) 2017; 29 Xie (10.1016/j.ins.2019.10.035_bib0019) 2015; 83 Jiang (10.1016/j.ins.2019.10.035_bib0032) 2017; 15 Liang (10.1016/j.ins.2019.10.035_bib0021) 2017; 22 Holland (10.1016/j.ins.2019.10.035_bib0002) 1992 Kanemitsu (10.1016/j.ins.2019.10.035_bib0027) 2017; 109 Bharathi (10.1016/j.ins.2019.10.035_bib0043) 2008 Li (10.1016/j.ins.2019.10.035_bib0013) 2014; 64 Teylo (10.1016/j.ins.2019.10.035_bib0023) 2017; 76 Chen (10.1016/j.ins.2019.10.035_bib0028) 2017; 73 Wu (10.1016/j.ins.2019.10.035_bib0001) 2017; 28 Melo (10.1016/j.ins.2019.10.035_bib0035) 2001 Calheiros (10.1016/j.ins.2019.10.035_bib0046) 2010; 41 Zhao (10.1016/j.ins.2019.10.035_bib0026) 2006 Cheng (10.1016/j.ins.2019.10.035_bib0040) 2018 Juve (10.1016/j.ins.2019.10.035_bib0045) 2013; 29 Gerasoulis (10.1016/j.ins.2019.10.035_bib0017) 1992; 16 Nie (10.1016/j.ins.2019.10.035_bib0036) 1999; 48 Tang (10.1016/j.ins.2019.10.035_bib0034) 2017; 29 Deb (10.1016/j.ins.2019.10.035_bib0049) 2002; 6 10.1016/j.ins.2019.10.035_bib0042 |
| References_xml | – volume: 319 start-page: 113 year: 2015 end-page: 131 ident: bib0029 article-title: Maximizing reliability with energy conservation for parallel task scheduling in a heterogeneous cluster publication-title: Inf. Sci. – year: 2001 ident: bib0035 article-title: Convergence of Q-learning: A Simple Proof publication-title: Tech. Rep. – start-page: 214 year: 2018 end-page: 218 ident: bib0010 publication-title: Deep Reinforcement Learning for Autonomous Traffic Light Control – start-page: 129 year: 2018 end-page: 134 ident: bib0040 article-title: DRL-cloud: deep reinforcement learning-based resource provisioning and task scheduling for cloud service providers publication-title: Proceedings of the 23rd Asia and South Pacific Design Automation Conference – volume: 20 start-page: 857 year: 2009 end-page: 871 ident: bib0022 article-title: Compaction of schedules and a two-stage approach for duplication-based DAG scheduling publication-title: IEEE Trans. Parallel Distrib. Syst. – reference: ). – year: 1992 ident: bib0002 article-title: Adaptation in Natural and Artificial Systems – volume: 68 start-page: 211 year: 2017 end-page: 221 ident: bib0025 article-title: Multi-QoS constrained and profit-aware scheduling approach for concurrent workflows on heterogeneous systems publication-title: Future Gener. Comput. Syst. – volume: 48 start-page: 1676 year: 1999 end-page: 1687 ident: bib0036 article-title: A q-learning-based dynamic channel assignment technique for mobile communication systems publication-title: IEEE Trans. Veh. Technol. – volume: 8 start-page: 279 year: 1992 end-page: 292 ident: bib0004 article-title: Q-learning publication-title: Mach. Learn. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib0049 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 37 start-page: 353 year: 2009 ident: bib0003 article-title: Markov decision processes: discrete stochastic dynamic programming publication-title: Technometrics – volume: 8 start-page: 2169 year: 2007 end-page: 2231 ident: bib0039 article-title: Proto-value functions: a Laplacian framework for learning representation and control in Markov decision processes publication-title: J. Mach. Learn. Res. – volume: 220 start-page: 220 year: 2018 end-page: 230 ident: bib0006 article-title: A dynamic pricing demand response algorithm for smart grid: reinforcement learning approach publication-title: Appl. Energy – volume: 17 start-page: 169 year: 2014 end-page: 189 ident: bib0016 article-title: Multi-objective workflow scheduling in amazon EC2 publication-title: Cluster Comput. – volume: 76 start-page: 1 year: 2017 end-page: 17 ident: bib0023 article-title: A hybrid evolutionary algorithm for task scheduling and data assignment of data-intensive scientific workflows on clouds publication-title: Future Gener. Comput. Syst. – volume: 4 start-page: 132 year: 2017 end-page: 141 ident: bib0031 article-title: Energy-efficient scheduling for real-time systems based on deep q-learning model publication-title: IEEE Trans. Sustainable Comput. – volume: 29 start-page: 1 year: 2017 end-page: 11 ident: bib0015 article-title: A list scheduling algorithm for heterogeneous systems based on a critical node cost table and pessimistic cost table publication-title: Concurrency Comput. Pract. Experience – volume: 13 start-page: 260 year: 2002 end-page: 274 ident: bib0012 article-title: Performance-effective and low-complexity task scheduling for heterogeneous computing publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 16 start-page: 276 year: 1992 end-page: 291 ident: bib0017 article-title: A comparison of clustering heuristics for scheduling directed acyclic graphs on multiprocessors publication-title: J. Parallel Distrib. Comput. – volume: 41 start-page: 23 year: 2010 end-page: C50 ident: bib0046 article-title: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms publication-title: Softw. Pract. Experience – start-page: 177 year: 2014 end-page: 184 ident: bib0044 article-title: Community resources for enabling research in distributed scientific workflows publication-title: IEEE International Conference on E-Science – volume: 22 start-page: 1 year: 2017 end-page: 12 ident: bib0021 article-title: A novel, energy-aware task duplication-based scheduling algorithm of parallel tasks on clusters publication-title: Math. Comput. Appl. – volume: 73 start-page: 4906 year: 2017 end-page: 4922 ident: bib0028 article-title: Real-time workflows oriented online scheduling in uncertain cloud environment publication-title: J. Supercomput. – volume: 109 start-page: 155 year: 2017 end-page: 177 ident: bib0027 article-title: Prior node selection for scheduling workflows in a heterogeneous system publication-title: J. Parallel Distrib. Comput. – volume: 29 start-page: 682 year: 2013 end-page: 692 ident: bib0045 article-title: Characterizing and profiling scientific workflows publication-title: Future Gener. Comput. Syst. – start-page: 2136 year: 2018 end-page: 2138 ident: bib0008 article-title: Recurrent deep multiagent q-learning for autonomous agents in future smart grid publication-title: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems – volume: vol. 18 start-page: 569 year: 2018 end-page: 575 ident: bib0007 article-title: Recurrent deep multiagent q-learning for autonomous brokers in smart grid. publication-title: International Joint Conference on Artificial Intelligence – start-page: 14 year: 2006 end-page: 20 ident: bib0026 article-title: Scheduling multiple dags onto heterogeneous systems publication-title: Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International – volume: 15 start-page: 435 year: 2017 end-page: 456 ident: bib0032 article-title: Time and energy optimization algorithms for the static scheduling of multiple workflows in heterogeneous computing system publication-title: J. Grid Comput. – volume: 498 start-page: 106 year: 2019 end-page: 116 ident: bib0009 article-title: Data-driven dynamic resource scheduling for network slicing: A Deep reinforcement learning approach publication-title: Inf. Sci. – volume: 5 start-page: 49 year: 2012 end-page: 54 ident: bib0033 article-title: Dynamic engineering multi-criteria decision making model optimized by entropy weight for evaluating bid publication-title: Syst. Eng. Procedia – reference: yenchenlin, ( – volume: 15 start-page: 107 year: 2004 end-page: 118 ident: bib0018 article-title: Improving scheduling of tasks in a heterogeneous environment publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 29 start-page: e4210 year: 2017 ident: bib0034 article-title: Budget-constraint stochastic task scheduling on heterogeneous cloud systems publication-title: Concurrency Comput. – volume: 28 start-page: 3401 year: 2017 end-page: 3412 ident: bib0001 article-title: Deadline-constrained cost optimization approaches for workflow scheduling in clouds publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 518 start-page: 529 year: 2015 end-page: 533 ident: bib0011 article-title: Human-level control through deep reinforcement learning publication-title: Nature – volume: 6 start-page: 55112 year: 2018 end-page: 55125 ident: bib0030 article-title: DRL-Scheduling: an intelligent QoS-aware job scheduling framework for applications in clouds publication-title: IEEE Access – volume: 64 start-page: 191 year: 2014 end-page: 204 ident: bib0013 article-title: Scheduling precedence constrained stochastic tasks on heterogeneous cluster systems publication-title: IEEE Trans. Comput. – volume: 25 start-page: 682 year: 2014 end-page: 694 ident: bib0014 article-title: List scheduling algorithm for heterogeneous systems by an optimistic cost table publication-title: IEEE Trans. Parallel Distrib. Syst. – start-page: 1017 year: 2009 end-page: 1024 ident: bib0037 article-title: Kernelized value function approximation for reinforcement learning publication-title: International Conference on Machine Learning – volume: 23 start-page: 11035 year: 2019 end-page: 11054 ident: bib0020 article-title: A novel task scheduling scheme in a cloud computing environment using hybrid biogeography-based optimization publication-title: Soft Comput. – start-page: 1 year: 2008 end-page: 10 ident: bib0043 article-title: Characterization of scientific workflows publication-title: Workflows in Support of Large-Scale Science, 2008. WORKS 2008. Third Workshop on – volume: 83 start-page: 1 year: 2015 end-page: 12 ident: bib0019 article-title: Heterogeneity-driven end-to-end synchronized scheduling for precedence constrained tasks and messages on networked embedded systems publication-title: J. Parallel Distrib. Comput. – volume: 14 start-page: 1666 year: 2017 end-page: 1676 ident: bib0041 article-title: Learning-based energy-efficient data collection by unmanned vehicles in smart cities publication-title: IEEE Transactions on Industrial Informatics – start-page: 1 year: 2019 end-page: 18 ident: bib0005 article-title: QL-HEFT: a novel machine learning scheduling scheme base on cloud computing environment publication-title: Neural Comput. Appl. – start-page: 77 year: 2014 end-page: 84 ident: bib0024 article-title: Data placement and task scheduling optimization for data intensive scientific workflow in multiple data centers environment publication-title: Advanced Cloud and Big Data (CBD), 2014 Second International Conference on – start-page: 1 year: 2013 end-page: 8 ident: bib0047 article-title: WorkflowSim: a toolkit for simulating scientific workflows in distributed environments publication-title: IEEE International Conference on E-Science – volume: 46 start-page: 17 year: 2015 end-page: 35 ident: bib0048 article-title: Pegasus, a workflow management system for science automation publication-title: Future Gener. Comput. Syst. – volume: 44 start-page: 2613 year: 2014 end-page: 2625 ident: bib0038 article-title: A clustering-based graph Laplacian framework for value function approximation in reinforcement learning publication-title: IEEE Trans. Cybern. – volume: vol. 18 start-page: 569 year: 2018 ident: 10.1016/j.ins.2019.10.035_bib0007 article-title: Recurrent deep multiagent q-learning for autonomous brokers in smart grid. – volume: 17 start-page: 169 issue: 2 year: 2014 ident: 10.1016/j.ins.2019.10.035_bib0016 article-title: Multi-objective workflow scheduling in amazon EC2 publication-title: Cluster Comput. doi: 10.1007/s10586-013-0325-0 – volume: 29 start-page: 682 issue: 3 year: 2013 ident: 10.1016/j.ins.2019.10.035_bib0045 article-title: Characterizing and profiling scientific workflows publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2012.08.015 – start-page: 1 year: 2019 ident: 10.1016/j.ins.2019.10.035_bib0005 article-title: QL-HEFT: a novel machine learning scheduling scheme base on cloud computing environment publication-title: Neural Comput. Appl. – volume: 8 start-page: 279 issue: 3–4 year: 1992 ident: 10.1016/j.ins.2019.10.035_bib0004 article-title: Q-learning publication-title: Mach. Learn. – volume: 498 start-page: 106 year: 2019 ident: 10.1016/j.ins.2019.10.035_bib0009 article-title: Data-driven dynamic resource scheduling for network slicing: A Deep reinforcement learning approach publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.05.012 – volume: 220 start-page: 220 year: 2018 ident: 10.1016/j.ins.2019.10.035_bib0006 article-title: A dynamic pricing demand response algorithm for smart grid: reinforcement learning approach publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.03.072 – start-page: 214 year: 2018 ident: 10.1016/j.ins.2019.10.035_bib0010 – volume: 5 start-page: 49 year: 2012 ident: 10.1016/j.ins.2019.10.035_bib0033 article-title: Dynamic engineering multi-criteria decision making model optimized by entropy weight for evaluating bid publication-title: Syst. Eng. Procedia doi: 10.1016/j.sepro.2012.04.008 – volume: 15 start-page: 107 issue: 2 year: 2004 ident: 10.1016/j.ins.2019.10.035_bib0018 article-title: Improving scheduling of tasks in a heterogeneous environment publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2004.1264795 – start-page: 1 year: 2008 ident: 10.1016/j.ins.2019.10.035_bib0043 article-title: Characterization of scientific workflows – start-page: 129 year: 2018 ident: 10.1016/j.ins.2019.10.035_bib0040 article-title: DRL-cloud: deep reinforcement learning-based resource provisioning and task scheduling for cloud service providers – year: 2001 ident: 10.1016/j.ins.2019.10.035_bib0035 article-title: Convergence of Q-learning: A Simple Proof – volume: 29 start-page: e4210 issue: 19 year: 2017 ident: 10.1016/j.ins.2019.10.035_bib0034 article-title: Budget-constraint stochastic task scheduling on heterogeneous cloud systems publication-title: Concurrency Comput. doi: 10.1002/cpe.4210 – volume: 14 start-page: 1666 issue: 4 year: 2017 ident: 10.1016/j.ins.2019.10.035_bib0041 article-title: Learning-based energy-efficient data collection by unmanned vehicles in smart cities publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2017.2783439 – start-page: 77 year: 2014 ident: 10.1016/j.ins.2019.10.035_bib0024 article-title: Data placement and task scheduling optimization for data intensive scientific workflow in multiple data centers environment – volume: 6 start-page: 55112 year: 2018 ident: 10.1016/j.ins.2019.10.035_bib0030 article-title: DRL-Scheduling: an intelligent QoS-aware job scheduling framework for applications in clouds publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2872674 – volume: 8 start-page: 2169 issue: Oct year: 2007 ident: 10.1016/j.ins.2019.10.035_bib0039 article-title: Proto-value functions: a Laplacian framework for learning representation and control in Markov decision processes publication-title: J. Mach. Learn. Res. – volume: 16 start-page: 276 issue: 4 year: 1992 ident: 10.1016/j.ins.2019.10.035_bib0017 article-title: A comparison of clustering heuristics for scheduling directed acyclic graphs on multiprocessors publication-title: J. Parallel Distrib. Comput. doi: 10.1016/0743-7315(92)90012-C – year: 1992 ident: 10.1016/j.ins.2019.10.035_bib0002 – volume: 25 start-page: 682 issue: 3 year: 2014 ident: 10.1016/j.ins.2019.10.035_bib0014 article-title: List scheduling algorithm for heterogeneous systems by an optimistic cost table publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2013.57 – volume: 64 start-page: 191 issue: 1 year: 2014 ident: 10.1016/j.ins.2019.10.035_bib0013 article-title: Scheduling precedence constrained stochastic tasks on heterogeneous cluster systems publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2013.205 – volume: 41 start-page: 23 issue: 1 year: 2010 ident: 10.1016/j.ins.2019.10.035_bib0046 article-title: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms publication-title: Softw. Pract. Experience doi: 10.1002/spe.995 – volume: 76 start-page: 1 year: 2017 ident: 10.1016/j.ins.2019.10.035_bib0023 article-title: A hybrid evolutionary algorithm for task scheduling and data assignment of data-intensive scientific workflows on clouds publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.05.017 – volume: 46 start-page: 17 year: 2015 ident: 10.1016/j.ins.2019.10.035_bib0048 article-title: Pegasus, a workflow management system for science automation publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2014.10.008 – start-page: 2136 year: 2018 ident: 10.1016/j.ins.2019.10.035_bib0008 article-title: Recurrent deep multiagent q-learning for autonomous agents in future smart grid – volume: 68 start-page: 211 year: 2017 ident: 10.1016/j.ins.2019.10.035_bib0025 article-title: Multi-QoS constrained and profit-aware scheduling approach for concurrent workflows on heterogeneous systems publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2016.10.003 – volume: 44 start-page: 2613 issue: 12 year: 2014 ident: 10.1016/j.ins.2019.10.035_bib0038 article-title: A clustering-based graph Laplacian framework for value function approximation in reinforcement learning publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2311578 – volume: 20 start-page: 857 issue: 6 year: 2009 ident: 10.1016/j.ins.2019.10.035_bib0022 article-title: Compaction of schedules and a two-stage approach for duplication-based DAG scheduling publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2008.260 – volume: 319 start-page: 113 year: 2015 ident: 10.1016/j.ins.2019.10.035_bib0029 article-title: Maximizing reliability with energy conservation for parallel task scheduling in a heterogeneous cluster publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.02.023 – start-page: 1 year: 2013 ident: 10.1016/j.ins.2019.10.035_bib0047 article-title: WorkflowSim: a toolkit for simulating scientific workflows in distributed environments – start-page: 14 year: 2006 ident: 10.1016/j.ins.2019.10.035_bib0026 article-title: Scheduling multiple dags onto heterogeneous systems – volume: 28 start-page: 3401 issue: 12 year: 2017 ident: 10.1016/j.ins.2019.10.035_bib0001 article-title: Deadline-constrained cost optimization approaches for workflow scheduling in clouds publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2017.2735400 – volume: 83 start-page: 1 year: 2015 ident: 10.1016/j.ins.2019.10.035_bib0019 article-title: Heterogeneity-driven end-to-end synchronized scheduling for precedence constrained tasks and messages on networked embedded systems publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2015.04.005 – volume: 73 start-page: 4906 issue: 11 year: 2017 ident: 10.1016/j.ins.2019.10.035_bib0028 article-title: Real-time workflows oriented online scheduling in uncertain cloud environment publication-title: J. Supercomput. doi: 10.1007/s11227-017-2060-4 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.ins.2019.10.035_bib0049 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 13 start-page: 260 issue: 3 year: 2002 ident: 10.1016/j.ins.2019.10.035_bib0012 article-title: Performance-effective and low-complexity task scheduling for heterogeneous computing publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/71.993206 – volume: 29 start-page: 1 issue: 5 year: 2017 ident: 10.1016/j.ins.2019.10.035_bib0015 article-title: A list scheduling algorithm for heterogeneous systems based on a critical node cost table and pessimistic cost table publication-title: Concurrency Comput. Pract. Experience – start-page: 1017 year: 2009 ident: 10.1016/j.ins.2019.10.035_bib0037 article-title: Kernelized value function approximation for reinforcement learning – ident: 10.1016/j.ins.2019.10.035_bib0042 – volume: 48 start-page: 1676 issue: 5 year: 1999 ident: 10.1016/j.ins.2019.10.035_bib0036 article-title: A q-learning-based dynamic channel assignment technique for mobile communication systems publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/25.790549 – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 10.1016/j.ins.2019.10.035_bib0011 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 23 start-page: 11035 issue: 21 year: 2019 ident: 10.1016/j.ins.2019.10.035_bib0020 article-title: A novel task scheduling scheme in a cloud computing environment using hybrid biogeography-based optimization publication-title: Soft Comput. doi: 10.1007/s00500-018-3657-0 – volume: 37 start-page: 353 issue: 3 year: 2009 ident: 10.1016/j.ins.2019.10.035_bib0003 article-title: Markov decision processes: discrete stochastic dynamic programming publication-title: Technometrics doi: 10.1080/00401706.1995.10484354 – volume: 109 start-page: 155 year: 2017 ident: 10.1016/j.ins.2019.10.035_bib0027 article-title: Prior node selection for scheduling workflows in a heterogeneous system publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2017.06.005 – volume: 15 start-page: 435 issue: 4 year: 2017 ident: 10.1016/j.ins.2019.10.035_bib0032 article-title: Time and energy optimization algorithms for the static scheduling of multiple workflows in heterogeneous computing system publication-title: J. Grid Comput. doi: 10.1007/s10723-017-9391-5 – start-page: 177 year: 2014 ident: 10.1016/j.ins.2019.10.035_bib0044 article-title: Community resources for enabling research in distributed scientific workflows – volume: 22 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.ins.2019.10.035_bib0021 article-title: A novel, energy-aware task duplication-based scheduling algorithm of parallel tasks on clusters publication-title: Math. Comput. Appl. – volume: 4 start-page: 132 issue: 1 year: 2017 ident: 10.1016/j.ins.2019.10.035_bib0031 article-title: Energy-efficient scheduling for real-time systems based on deep q-learning model publication-title: IEEE Trans. Sustainable Comput. doi: 10.1109/TSUSC.2017.2743704 |
| SSID | ssj0004766 |
| Score | 2.6308236 |
| Snippet | Task scheduling, which plays a vital role in cloud computing, is a critical factor that determines the performance of cloud computing. From the booming economy... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1170 |
| SubjectTerms | Cloud computing Deep Q-learning algorithm Directed acyclic graph Task scheduling WorkflowSim |
| Title | A scheduling scheme in the cloud computing environment using deep Q-learning |
| URI | https://dx.doi.org/10.1016/j.ins.2019.10.035 |
| Volume | 512 |
| WOSCitedRecordID | wos000504778300071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbQxgM8IBggBhvyA-KBylPixEn8WLFNA1UTSAVVvESue2GpurTaWrQ_f-cfSbxpQ4DESxS5dlv5Pp_v7PvuCHnHIxBFVimGAgeWJjBlEncFpmeGB6J4ldliMN9H-elpMZnIL_5U6dKWE8ibpri6kqv_KmpsQ2Eb6uxfiLv7UmzAdxQ6PlHs-PwjwQ8H6LDiBmJ55ub1HNpgRr1YbiyLbbWx0c4By22wsYcGM4DV4CvztSR-hqarJy5ZvPh9s7PHxz6w98eZWvYBA06jneBn8wCEh-D6Tmq1PIe6bR7Vnia0qMOTCHQ7oxtRHR1F5kYEZ-Q6uly8B-C0bJFzlnFXpqtVw8KHUztFagriBJuySUN3p8J3Zw9z9FJM7vVYHphQvUT0u1sXc2iupa0HhSaroQujy7zNcyFRFW4PPx1NPvd02txdcbf_vL0Mt2GBt37obnMmMFHGT8kT71vQocPEM_IAmh3yOMg4uUP2PU-FvqeBPKnX8M_JaEh79FCHHlo3FNFDLXpohx4aoIda9FCDHtqj5wX5dnw0_njCfMENprnM12yGMqm0ihVqeqXNCXGqcsErNPrSokp0kQGkECuIIasERAq9X5ylKldVnCkukpdkq1k28IpQk4lQFbj0QcapVqnkepokYsq1SDTIapdE7byV2mejN0VRFmUbdjgvcapLM9WmCad6l3zohqxcKpbfdU5bYZR-TTgbsUTk3D_s9b8Ne0Me9Qtij2ytLzawTx7qX-v68uKtx9c1qXKWrg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+scheduling+scheme+in+the+cloud+computing+environment+using+deep+Q-learning&rft.jtitle=Information+sciences&rft.au=Tong%2C+Zhao&rft.au=Chen%2C+Hongjian&rft.au=Deng%2C+Xiaomei&rft.au=Li%2C+Kenli&rft.date=2020-02-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=512&rft.spage=1170&rft.epage=1191&rft_id=info:doi/10.1016%2Fj.ins.2019.10.035&rft.externalDocID=S0020025519309971 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |