A scheduling scheme in the cloud computing environment using deep Q-learning

Task scheduling, which plays a vital role in cloud computing, is a critical factor that determines the performance of cloud computing. From the booming economy of information processing to the increasing need of quality of service (QoS) in the business of networking, the dynamic task-scheduling prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences Jg. 512; S. 1170 - 1191
Hauptverfasser: Tong, Zhao, Chen, Hongjian, Deng, Xiaomei, Li, Kenli, Li, Keqin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.02.2020
Schlagworte:
ISSN:0020-0255, 1872-6291
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Task scheduling, which plays a vital role in cloud computing, is a critical factor that determines the performance of cloud computing. From the booming economy of information processing to the increasing need of quality of service (QoS) in the business of networking, the dynamic task-scheduling problem has attracted worldwide attention. Due to its complexity, task scheduling has been defined and classified as an NP-hard problem. Additionally, most dynamic online task scheduling often manages tasks in a complex environment, which makes it even more challenging to balance and satisfy the benefits of each aspect of cloud computing. In this paper, we propose a novel artificial intelligence algorithm, called deep Q-learning task scheduling (DQTS), that combines the advantages of the Q-learning algorithm and a deep neural network. This new approach is aimed at solving the problem of handling directed acyclic graph (DAG) tasks in a cloud computing environment. The essential idea of our approach uses the popular deep Q-learning (DQL) method in task scheduling, where fundamental model learning is primarily inspired by DQL. Based on developments in WorkflowSim, experiments are conducted that comparatively consider the variance of makespan and load balance in task scheduling. Both simulation and real-life experiments are conducted to verify the efficiency of optimization and learning abilities in DQTS. The result shows that when compared with several standard algorithms precoded in WorkflowSim, DQTS has advantages regarding learning ability, containment, and scalability. In this paper, we have successfully developed a new method for task scheduling in cloud computing.
AbstractList Task scheduling, which plays a vital role in cloud computing, is a critical factor that determines the performance of cloud computing. From the booming economy of information processing to the increasing need of quality of service (QoS) in the business of networking, the dynamic task-scheduling problem has attracted worldwide attention. Due to its complexity, task scheduling has been defined and classified as an NP-hard problem. Additionally, most dynamic online task scheduling often manages tasks in a complex environment, which makes it even more challenging to balance and satisfy the benefits of each aspect of cloud computing. In this paper, we propose a novel artificial intelligence algorithm, called deep Q-learning task scheduling (DQTS), that combines the advantages of the Q-learning algorithm and a deep neural network. This new approach is aimed at solving the problem of handling directed acyclic graph (DAG) tasks in a cloud computing environment. The essential idea of our approach uses the popular deep Q-learning (DQL) method in task scheduling, where fundamental model learning is primarily inspired by DQL. Based on developments in WorkflowSim, experiments are conducted that comparatively consider the variance of makespan and load balance in task scheduling. Both simulation and real-life experiments are conducted to verify the efficiency of optimization and learning abilities in DQTS. The result shows that when compared with several standard algorithms precoded in WorkflowSim, DQTS has advantages regarding learning ability, containment, and scalability. In this paper, we have successfully developed a new method for task scheduling in cloud computing.
Author Li, Keqin
Li, Kenli
Deng, Xiaomei
Chen, Hongjian
Tong, Zhao
Author_xml – sequence: 1
  givenname: Zhao
  orcidid: 0000-0002-8624-6364
  surname: Tong
  fullname: Tong, Zhao
  email: tongzhao@hunnu.edu.cn
  organization: College of Information Science and Engineering, Hunan Normal University, Changsha, 410012, China
– sequence: 2
  givenname: Hongjian
  surname: Chen
  fullname: Chen, Hongjian
  organization: College of Information Science and Engineering, Hunan Normal University, Changsha, 410012, China
– sequence: 3
  givenname: Xiaomei
  surname: Deng
  fullname: Deng, Xiaomei
  organization: College of Information Science and Engineering, Hunan Normal University, Changsha, 410012, China
– sequence: 4
  givenname: Kenli
  orcidid: 0000-0002-2635-7716
  surname: Li
  fullname: Li, Kenli
  organization: College of Information Science and Engineering, Hunan University, and National Supercomputing Center in Changsha, Changsha, 410082, China
– sequence: 5
  givenname: Keqin
  surname: Li
  fullname: Li, Keqin
  organization: College of Information Science and Engineering, Hunan University, and National Supercomputing Center in Changsha, Changsha, 410082, China
BookMark eNp9kMFKAzEQhoNUsK0-gLe8wK6T7G62i6dS1AoFEfQcQnZiU3azJckWfHuz1pOHnmbmH77hn39BZm5wSMg9g5wBEw-H3LqQc2BNmnMoqisyZ6uaZ4I3bEbmABwy4FV1QxYhHACgrIWYk92aBr3Hduys-_pte6TW0bhHqrthbKke-uMYpy26k_WD69FFOoZJaRGP9D3rUHmX5ltybVQX8O6vLsnn89PHZpvt3l5eN-tdpnlTx6xNnoxWTEHBlIamakpVV9yUIMqVKfRKIJbIFDIUpkJQAkTyb2plmFC8KpakPt_VfgjBo5HaRhXt4KJXtpMM5BSKPMgUipxCmaQUSiLZP_Loba_890Xm8cxgeulk0cugLTqNrfWoo2wHe4H-AXPnfOM
CitedBy_id crossref_primary_10_1007_s00521_021_06289_9
crossref_primary_10_1002_cpe_7228
crossref_primary_10_1016_j_ins_2021_03_003
crossref_primary_10_1109_ACCESS_2025_3599190
crossref_primary_10_1109_JIOT_2022_3168968
crossref_primary_10_1007_s10462_025_11208_8
crossref_primary_10_1108_K_07_2021_0554
crossref_primary_10_1007_s12652_021_03198_6
crossref_primary_10_3390_app11209360
crossref_primary_10_53370_001c_33767
crossref_primary_10_1016_j_future_2021_05_012
crossref_primary_10_1007_s11042_023_16971_w
crossref_primary_10_1007_s11277_024_10957_z
crossref_primary_10_1016_j_cor_2025_107109
crossref_primary_10_4236_jdaip_2025_133015
crossref_primary_10_1080_15325008_2023_2283562
crossref_primary_10_1016_j_jpdc_2021_05_003
crossref_primary_10_1016_j_eswa_2023_121038
crossref_primary_10_1007_s10586_021_03454_6
crossref_primary_10_3233_JIFS_234054
crossref_primary_10_1007_s11227_024_06668_8
crossref_primary_10_7717_peerj_cs_2120
crossref_primary_10_1007_s11276_025_03954_y
crossref_primary_10_1016_j_eswa_2025_127376
crossref_primary_10_1109_JIOT_2024_3524506
crossref_primary_10_3390_app12178516
crossref_primary_10_1016_j_future_2021_05_026
crossref_primary_10_1016_j_future_2021_11_014
crossref_primary_10_3390_math10071100
crossref_primary_10_1016_j_future_2021_09_043
crossref_primary_10_1109_JSYST_2022_3159840
crossref_primary_10_1007_s12652_020_02884_1
crossref_primary_10_1016_j_eswa_2022_118018
crossref_primary_10_1016_j_jpdc_2020_11_007
crossref_primary_10_1007_s11280_023_01145_3
crossref_primary_10_1051_itmconf_20235401005
crossref_primary_10_1007_s00521_024_09599_w
crossref_primary_10_1109_JSEN_2022_3218840
crossref_primary_10_1080_00207543_2022_2153942
crossref_primary_10_3390_electronics12081810
crossref_primary_10_1109_JSYST_2022_3204748
crossref_primary_10_1016_j_knosys_2024_111366
crossref_primary_10_32604_cmes_2023_024871
crossref_primary_10_1186_s13677_024_00683_z
crossref_primary_10_1016_j_eswa_2024_124845
crossref_primary_10_1109_TSC_2023_3253182
crossref_primary_10_1109_ACCESS_2024_3435914
crossref_primary_10_1109_TII_2023_3242769
crossref_primary_10_1016_j_ins_2021_11_027
crossref_primary_10_1007_s11416_025_00566_0
crossref_primary_10_1016_j_eswa_2024_124606
crossref_primary_10_1016_j_sysarc_2023_102847
crossref_primary_10_1109_JIOT_2023_3234078
crossref_primary_10_1155_2020_8888375
crossref_primary_10_1016_j_ins_2022_06_078
crossref_primary_10_1109_ACCESS_2021_3051672
crossref_primary_10_3390_pr11041162
crossref_primary_10_1007_s11227_023_05489_5
crossref_primary_10_1109_TASE_2021_3093341
crossref_primary_10_1016_j_swevo_2024_101575
crossref_primary_10_1109_TASE_2022_3204313
crossref_primary_10_1108_IJPCC_01_2023_0022
crossref_primary_10_1016_j_ins_2023_119115
crossref_primary_10_1108_K_03_2021_0243
crossref_primary_10_1109_TNSM_2022_3213575
crossref_primary_10_1109_TCC_2024_3449771
crossref_primary_10_1016_j_future_2025_108001
crossref_primary_10_1007_s00500_021_06488_5
crossref_primary_10_1007_s11042_023_16008_2
crossref_primary_10_1038_s41598_025_99837_5
crossref_primary_10_1007_s10489_021_02625_7
crossref_primary_10_1088_1367_2630_ad4629
crossref_primary_10_1016_j_matdes_2025_114798
crossref_primary_10_3390_fi16010019
crossref_primary_10_1109_TPDS_2021_3132422
crossref_primary_10_1007_s10723_023_09673_y
crossref_primary_10_1155_2022_2335313
crossref_primary_10_1016_j_future_2023_10_002
crossref_primary_10_1016_j_ins_2022_06_015
crossref_primary_10_1016_j_ins_2022_08_028
crossref_primary_10_1109_ACCESS_2022_3188645
crossref_primary_10_1007_s12652_022_03885_y
crossref_primary_10_3233_MGS_220217
crossref_primary_10_3233_JIFS_231824
crossref_primary_10_1007_s00607_020_00813_w
crossref_primary_10_1016_j_ins_2021_04_088
crossref_primary_10_1016_j_ins_2022_10_071
crossref_primary_10_1002_advs_202409291
crossref_primary_10_1109_TPDS_2023_3334519
crossref_primary_10_1109_ACCESS_2024_3355092
crossref_primary_10_1016_j_neucom_2021_05_070
crossref_primary_10_1109_TASE_2022_3195958
crossref_primary_10_1016_j_matpr_2020_09_064
crossref_primary_10_1109_ACCESS_2023_3331317
crossref_primary_10_1016_j_neucom_2022_05_084
crossref_primary_10_1007_s10586_023_04006_w
crossref_primary_10_1371_journal_pone_0329669
crossref_primary_10_3390_app11178204
crossref_primary_10_1155_2021_9114113
crossref_primary_10_3389_fenvs_2022_996483
crossref_primary_10_1186_s13677_023_00504_9
crossref_primary_10_1155_2022_8525361
crossref_primary_10_3390_electronics10111320
crossref_primary_10_3390_sym17050679
crossref_primary_10_3390_s21092971
crossref_primary_10_1186_s13677_023_00402_0
crossref_primary_10_1016_j_neucom_2020_10_087
crossref_primary_10_1007_s11831_023_09921_0
crossref_primary_10_1007_s11227_022_04729_4
crossref_primary_10_1016_j_simpat_2023_102858
crossref_primary_10_1016_j_future_2022_11_031
crossref_primary_10_1109_ACCESS_2020_3033557
crossref_primary_10_1109_TII_2025_3528574
crossref_primary_10_1007_s11265_023_01900_9
crossref_primary_10_1016_j_engappai_2021_104288
crossref_primary_10_1109_TPDS_2024_3360448
crossref_primary_10_1109_TNSM_2022_3181145
crossref_primary_10_32604_cmc_2024_049584
crossref_primary_10_1007_s11227_023_05725_y
crossref_primary_10_1007_s11276_021_02868_9
crossref_primary_10_1016_j_ipm_2021_102540
crossref_primary_10_1016_j_jnca_2025_104286
crossref_primary_10_1080_00207543_2022_2148767
crossref_primary_10_37394_232018_2025_13_52
crossref_primary_10_1016_j_future_2025_107883
crossref_primary_10_1109_ACCESS_2024_3488965
crossref_primary_10_1007_s11277_022_09882_w
crossref_primary_10_1093_comjnl_bxac192
crossref_primary_10_1016_j_future_2021_09_007
crossref_primary_10_1109_ACCESS_2020_3019278
crossref_primary_10_1109_ACCESS_2024_3421956
crossref_primary_10_1007_s11277_023_10520_2
crossref_primary_10_1016_j_jmsy_2025_01_010
crossref_primary_10_1038_s41598_025_91140_7
crossref_primary_10_1007_s10586_020_03205_z
crossref_primary_10_1002_ett_4690
crossref_primary_10_1007_s10951_024_00820_1
crossref_primary_10_1016_j_future_2025_107872
crossref_primary_10_1007_s10723_024_09746_6
crossref_primary_10_1016_j_ins_2020_09_031
crossref_primary_10_1016_j_jnca_2022_103520
crossref_primary_10_1007_s11227_024_05990_5
crossref_primary_10_1016_j_asoc_2023_110027
crossref_primary_10_1007_s11831_023_09885_1
crossref_primary_10_1016_j_compeleceng_2023_108652
crossref_primary_10_1109_ACCESS_2020_3026373
crossref_primary_10_1109_TNSM_2021_3137926
crossref_primary_10_1007_s10489_022_03963_w
crossref_primary_10_1002_cpe_7839
crossref_primary_10_1142_S0218126625503633
Cites_doi 10.1007/s10586-013-0325-0
10.1016/j.future.2012.08.015
10.1016/j.ins.2019.05.012
10.1016/j.apenergy.2018.03.072
10.1016/j.sepro.2012.04.008
10.1109/TPDS.2004.1264795
10.1002/cpe.4210
10.1109/TII.2017.2783439
10.1109/ACCESS.2018.2872674
10.1016/0743-7315(92)90012-C
10.1109/TPDS.2013.57
10.1109/TC.2013.205
10.1002/spe.995
10.1016/j.future.2017.05.017
10.1016/j.future.2014.10.008
10.1016/j.future.2016.10.003
10.1109/TCYB.2014.2311578
10.1109/TPDS.2008.260
10.1016/j.ins.2015.02.023
10.1109/TPDS.2017.2735400
10.1016/j.jpdc.2015.04.005
10.1007/s11227-017-2060-4
10.1109/4235.996017
10.1109/71.993206
10.1109/25.790549
10.1038/nature14236
10.1007/s00500-018-3657-0
10.1080/00401706.1995.10484354
10.1016/j.jpdc.2017.06.005
10.1007/s10723-017-9391-5
10.1109/TSUSC.2017.2743704
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2019.10.035
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 1191
ExternalDocumentID 10_1016_j_ins_2019_10_035
S0020025519309971
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-d629fca1a031ac09594a752f40648f3c86ee4e1ae1e6f5e0a606002f7af16a253
ISICitedReferencesCount 163
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000504778300071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 07:25:52 EST 2025
Tue Nov 18 22:12:03 EST 2025
Fri Feb 23 02:45:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Task scheduling
Cloud computing
Directed acyclic graph
WorkflowSim
Deep Q-learning algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-d629fca1a031ac09594a752f40648f3c86ee4e1ae1e6f5e0a606002f7af16a253
ORCID 0000-0002-8624-6364
0000-0002-2635-7716
PageCount 22
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2019_10_035
crossref_primary_10_1016_j_ins_2019_10_035
elsevier_sciencedirect_doi_10_1016_j_ins_2019_10_035
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Bozdag, Ozguner, Catalyurek (bib0022) 2009; 20
Zhao, Sakellariou (bib0026) 2006
Durillo, Prodan (bib0016) 2014; 17
Gerasoulis, Yang (bib0017) 1992; 16
Yang, Hao, Sun, Wang, Fan, Strbac (bib0007) 2018; vol. 18
Jiang, Lin, Xie, Fu, Yang (bib0032) 2017; 15
Chen, Deelman (bib0047) 2013
Tang, Li, Fu (bib0034) 2017; 29
Melo (bib0035) 2001
Zhang, Lin, Yang, Chen, Li (bib0031) 2017; 4
Li, Tang, Veeravalli, Li (bib0013) 2014; 64
Bajaj, Agrawal (bib0018) 2004; 15
Topcuoglu, Hariri, Wu (bib0012) 2002; 13
Xie, Li, Li (bib0019) 2015; 83
Garg, Chli, Vogiatzis (bib0010) 2018
.
Zhou, Qi, Wang, Zheng, Lin (bib0015) 2017; 29
Wang, Wu, Min (bib0009) 2019; 498
Deb, Pratap, Agarwal, Meyarivan (bib0049) 2002; 6
Watkins, Dayan (bib0004) 1992; 8
Tong, Deng, Chen, Mei, Liu (bib0005) 2019
Xu, Huang, Graves, Pedrycz (bib0038) 2014; 44
Silva, Chen, Juve, Vahi, Deelman (bib0044) 2014
Lu, Hong, Zhang (bib0006) 2018; 220
Arabnejad, Barbosa (bib0014) 2014; 25
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (bib0011) 2015; 518
Bharathi, Chervenak, Deelman, Mehta, Su, Vahi (bib0043) 2008
Chen, Zhu, Zhang, Ma, Shen (bib0028) 2017; 73
Cheng, Li, Nazarian (bib0040) 2018
Wang, Zhang, Dong, Luo (bib0024) 2014
Mahadevan, Maggioni (bib0039) 2007; 8
Juve, Chervenak, Deelman, Bharathi, Mehta, Vahi (bib0045) 2013; 29
Wu, Ishikawa, Zhu, Xia, Wen (bib0001) 2017; 28
Baxter (bib0003) 2009; 37
Zhang, Liu, Tang (bib0041) 2017; 14
yenchenlin
Tong, Chen, Deng, Li, Li (bib0020) 2019; 23
Arabnejad, Barbosa (bib0025) 2017; 68
Calheiros, Ranjan, Beloglazov, Rose, Buyya (bib0046) 2010; 41
Taylor, Parr (bib0037) 2009
Holland (bib0002) 1992
Deelman, Vahi, Juve, Rynge, Callaghan, Maechling, Mayani, Chen, Da Silva, Livny (bib0048) 2015; 46
Kanemitsu, Hanada, Nakazato (bib0027) 2017; 109
Zhang, Li, Xu, Mei, Zhang, Li (bib0029) 2015; 319
Teylo, de Paula, Frota, de Oliveira, Drummond (bib0023) 2017; 76
Wei, Pan, Liu, Wu, Meng (bib0030) 2018; 6
Nie, Haykin (bib0036) 1999; 48
Yang, Hao, Wang, Sun, Strbac (bib0008) 2018
Wang, Wei (bib0033) 2012; 5
Liang, Pang (bib0021) 2017; 22
Mnih (10.1016/j.ins.2019.10.035_bib0011) 2015; 518
Mahadevan (10.1016/j.ins.2019.10.035_bib0039) 2007; 8
Xu (10.1016/j.ins.2019.10.035_bib0038) 2014; 44
Zhang (10.1016/j.ins.2019.10.035_bib0031) 2017; 4
Silva (10.1016/j.ins.2019.10.035_bib0044) 2014
Arabnejad (10.1016/j.ins.2019.10.035_bib0025) 2017; 68
Arabnejad (10.1016/j.ins.2019.10.035_bib0014) 2014; 25
Wang (10.1016/j.ins.2019.10.035_bib0009) 2019; 498
Zhang (10.1016/j.ins.2019.10.035_bib0041) 2017; 14
Watkins (10.1016/j.ins.2019.10.035_bib0004) 1992; 8
Yang (10.1016/j.ins.2019.10.035_bib0007) 2018; vol. 18
Garg (10.1016/j.ins.2019.10.035_bib0010) 2018
Chen (10.1016/j.ins.2019.10.035_bib0047) 2013
Wang (10.1016/j.ins.2019.10.035_bib0024) 2014
Tong (10.1016/j.ins.2019.10.035_bib0020) 2019; 23
Deelman (10.1016/j.ins.2019.10.035_bib0048) 2015; 46
Durillo (10.1016/j.ins.2019.10.035_bib0016) 2014; 17
Baxter (10.1016/j.ins.2019.10.035_bib0003) 2009; 37
Tong (10.1016/j.ins.2019.10.035_bib0005) 2019
Bajaj (10.1016/j.ins.2019.10.035_bib0018) 2004; 15
Wei (10.1016/j.ins.2019.10.035_bib0030) 2018; 6
Yang (10.1016/j.ins.2019.10.035_bib0008) 2018
Taylor (10.1016/j.ins.2019.10.035_bib0037) 2009
Lu (10.1016/j.ins.2019.10.035_bib0006) 2018; 220
Wang (10.1016/j.ins.2019.10.035_bib0033) 2012; 5
Zhang (10.1016/j.ins.2019.10.035_bib0029) 2015; 319
Topcuoglu (10.1016/j.ins.2019.10.035_bib0012) 2002; 13
Bozdag (10.1016/j.ins.2019.10.035_bib0022) 2009; 20
Zhou (10.1016/j.ins.2019.10.035_bib0015) 2017; 29
Xie (10.1016/j.ins.2019.10.035_bib0019) 2015; 83
Jiang (10.1016/j.ins.2019.10.035_bib0032) 2017; 15
Liang (10.1016/j.ins.2019.10.035_bib0021) 2017; 22
Holland (10.1016/j.ins.2019.10.035_bib0002) 1992
Kanemitsu (10.1016/j.ins.2019.10.035_bib0027) 2017; 109
Bharathi (10.1016/j.ins.2019.10.035_bib0043) 2008
Li (10.1016/j.ins.2019.10.035_bib0013) 2014; 64
Teylo (10.1016/j.ins.2019.10.035_bib0023) 2017; 76
Chen (10.1016/j.ins.2019.10.035_bib0028) 2017; 73
Wu (10.1016/j.ins.2019.10.035_bib0001) 2017; 28
Melo (10.1016/j.ins.2019.10.035_bib0035) 2001
Calheiros (10.1016/j.ins.2019.10.035_bib0046) 2010; 41
Zhao (10.1016/j.ins.2019.10.035_bib0026) 2006
Cheng (10.1016/j.ins.2019.10.035_bib0040) 2018
Juve (10.1016/j.ins.2019.10.035_bib0045) 2013; 29
Gerasoulis (10.1016/j.ins.2019.10.035_bib0017) 1992; 16
Nie (10.1016/j.ins.2019.10.035_bib0036) 1999; 48
Tang (10.1016/j.ins.2019.10.035_bib0034) 2017; 29
Deb (10.1016/j.ins.2019.10.035_bib0049) 2002; 6
10.1016/j.ins.2019.10.035_bib0042
References_xml – volume: 319
  start-page: 113
  year: 2015
  end-page: 131
  ident: bib0029
  article-title: Maximizing reliability with energy conservation for parallel task scheduling in a heterogeneous cluster
  publication-title: Inf. Sci.
– year: 2001
  ident: bib0035
  article-title: Convergence of Q-learning: A Simple Proof
  publication-title: Tech. Rep.
– start-page: 214
  year: 2018
  end-page: 218
  ident: bib0010
  publication-title: Deep Reinforcement Learning for Autonomous Traffic Light Control
– start-page: 129
  year: 2018
  end-page: 134
  ident: bib0040
  article-title: DRL-cloud: deep reinforcement learning-based resource provisioning and task scheduling for cloud service providers
  publication-title: Proceedings of the 23rd Asia and South Pacific Design Automation Conference
– volume: 20
  start-page: 857
  year: 2009
  end-page: 871
  ident: bib0022
  article-title: Compaction of schedules and a two-stage approach for duplication-based DAG scheduling
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– reference: ).
– year: 1992
  ident: bib0002
  article-title: Adaptation in Natural and Artificial Systems
– volume: 68
  start-page: 211
  year: 2017
  end-page: 221
  ident: bib0025
  article-title: Multi-QoS constrained and profit-aware scheduling approach for concurrent workflows on heterogeneous systems
  publication-title: Future Gener. Comput. Syst.
– volume: 48
  start-page: 1676
  year: 1999
  end-page: 1687
  ident: bib0036
  article-title: A q-learning-based dynamic channel assignment technique for mobile communication systems
  publication-title: IEEE Trans. Veh. Technol.
– volume: 8
  start-page: 279
  year: 1992
  end-page: 292
  ident: bib0004
  article-title: Q-learning
  publication-title: Mach. Learn.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0049
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 37
  start-page: 353
  year: 2009
  ident: bib0003
  article-title: Markov decision processes: discrete stochastic dynamic programming
  publication-title: Technometrics
– volume: 8
  start-page: 2169
  year: 2007
  end-page: 2231
  ident: bib0039
  article-title: Proto-value functions: a Laplacian framework for learning representation and control in Markov decision processes
  publication-title: J. Mach. Learn. Res.
– volume: 220
  start-page: 220
  year: 2018
  end-page: 230
  ident: bib0006
  article-title: A dynamic pricing demand response algorithm for smart grid: reinforcement learning approach
  publication-title: Appl. Energy
– volume: 17
  start-page: 169
  year: 2014
  end-page: 189
  ident: bib0016
  article-title: Multi-objective workflow scheduling in amazon EC2
  publication-title: Cluster Comput.
– volume: 76
  start-page: 1
  year: 2017
  end-page: 17
  ident: bib0023
  article-title: A hybrid evolutionary algorithm for task scheduling and data assignment of data-intensive scientific workflows on clouds
  publication-title: Future Gener. Comput. Syst.
– volume: 4
  start-page: 132
  year: 2017
  end-page: 141
  ident: bib0031
  article-title: Energy-efficient scheduling for real-time systems based on deep q-learning model
  publication-title: IEEE Trans. Sustainable Comput.
– volume: 29
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib0015
  article-title: A list scheduling algorithm for heterogeneous systems based on a critical node cost table and pessimistic cost table
  publication-title: Concurrency Comput. Pract. Experience
– volume: 13
  start-page: 260
  year: 2002
  end-page: 274
  ident: bib0012
  article-title: Performance-effective and low-complexity task scheduling for heterogeneous computing
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 16
  start-page: 276
  year: 1992
  end-page: 291
  ident: bib0017
  article-title: A comparison of clustering heuristics for scheduling directed acyclic graphs on multiprocessors
  publication-title: J. Parallel Distrib. Comput.
– volume: 41
  start-page: 23
  year: 2010
  end-page: C50
  ident: bib0046
  article-title: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms
  publication-title: Softw. Pract. Experience
– start-page: 177
  year: 2014
  end-page: 184
  ident: bib0044
  article-title: Community resources for enabling research in distributed scientific workflows
  publication-title: IEEE International Conference on E-Science
– volume: 22
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib0021
  article-title: A novel, energy-aware task duplication-based scheduling algorithm of parallel tasks on clusters
  publication-title: Math. Comput. Appl.
– volume: 73
  start-page: 4906
  year: 2017
  end-page: 4922
  ident: bib0028
  article-title: Real-time workflows oriented online scheduling in uncertain cloud environment
  publication-title: J. Supercomput.
– volume: 109
  start-page: 155
  year: 2017
  end-page: 177
  ident: bib0027
  article-title: Prior node selection for scheduling workflows in a heterogeneous system
  publication-title: J. Parallel Distrib. Comput.
– volume: 29
  start-page: 682
  year: 2013
  end-page: 692
  ident: bib0045
  article-title: Characterizing and profiling scientific workflows
  publication-title: Future Gener. Comput. Syst.
– start-page: 2136
  year: 2018
  end-page: 2138
  ident: bib0008
  article-title: Recurrent deep multiagent q-learning for autonomous agents in future smart grid
  publication-title: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems
– volume: vol. 18
  start-page: 569
  year: 2018
  end-page: 575
  ident: bib0007
  article-title: Recurrent deep multiagent q-learning for autonomous brokers in smart grid.
  publication-title: International Joint Conference on Artificial Intelligence
– start-page: 14
  year: 2006
  end-page: 20
  ident: bib0026
  article-title: Scheduling multiple dags onto heterogeneous systems
  publication-title: Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International
– volume: 15
  start-page: 435
  year: 2017
  end-page: 456
  ident: bib0032
  article-title: Time and energy optimization algorithms for the static scheduling of multiple workflows in heterogeneous computing system
  publication-title: J. Grid Comput.
– volume: 498
  start-page: 106
  year: 2019
  end-page: 116
  ident: bib0009
  article-title: Data-driven dynamic resource scheduling for network slicing: A Deep reinforcement learning approach
  publication-title: Inf. Sci.
– volume: 5
  start-page: 49
  year: 2012
  end-page: 54
  ident: bib0033
  article-title: Dynamic engineering multi-criteria decision making model optimized by entropy weight for evaluating bid
  publication-title: Syst. Eng. Procedia
– reference: yenchenlin, (
– volume: 15
  start-page: 107
  year: 2004
  end-page: 118
  ident: bib0018
  article-title: Improving scheduling of tasks in a heterogeneous environment
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 29
  start-page: e4210
  year: 2017
  ident: bib0034
  article-title: Budget-constraint stochastic task scheduling on heterogeneous cloud systems
  publication-title: Concurrency Comput.
– volume: 28
  start-page: 3401
  year: 2017
  end-page: 3412
  ident: bib0001
  article-title: Deadline-constrained cost optimization approaches for workflow scheduling in clouds
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  ident: bib0011
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– volume: 6
  start-page: 55112
  year: 2018
  end-page: 55125
  ident: bib0030
  article-title: DRL-Scheduling: an intelligent QoS-aware job scheduling framework for applications in clouds
  publication-title: IEEE Access
– volume: 64
  start-page: 191
  year: 2014
  end-page: 204
  ident: bib0013
  article-title: Scheduling precedence constrained stochastic tasks on heterogeneous cluster systems
  publication-title: IEEE Trans. Comput.
– volume: 25
  start-page: 682
  year: 2014
  end-page: 694
  ident: bib0014
  article-title: List scheduling algorithm for heterogeneous systems by an optimistic cost table
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– start-page: 1017
  year: 2009
  end-page: 1024
  ident: bib0037
  article-title: Kernelized value function approximation for reinforcement learning
  publication-title: International Conference on Machine Learning
– volume: 23
  start-page: 11035
  year: 2019
  end-page: 11054
  ident: bib0020
  article-title: A novel task scheduling scheme in a cloud computing environment using hybrid biogeography-based optimization
  publication-title: Soft Comput.
– start-page: 1
  year: 2008
  end-page: 10
  ident: bib0043
  article-title: Characterization of scientific workflows
  publication-title: Workflows in Support of Large-Scale Science, 2008. WORKS 2008. Third Workshop on
– volume: 83
  start-page: 1
  year: 2015
  end-page: 12
  ident: bib0019
  article-title: Heterogeneity-driven end-to-end synchronized scheduling for precedence constrained tasks and messages on networked embedded systems
  publication-title: J. Parallel Distrib. Comput.
– volume: 14
  start-page: 1666
  year: 2017
  end-page: 1676
  ident: bib0041
  article-title: Learning-based energy-efficient data collection by unmanned vehicles in smart cities
  publication-title: IEEE Transactions on Industrial Informatics
– start-page: 1
  year: 2019
  end-page: 18
  ident: bib0005
  article-title: QL-HEFT: a novel machine learning scheduling scheme base on cloud computing environment
  publication-title: Neural Comput. Appl.
– start-page: 77
  year: 2014
  end-page: 84
  ident: bib0024
  article-title: Data placement and task scheduling optimization for data intensive scientific workflow in multiple data centers environment
  publication-title: Advanced Cloud and Big Data (CBD), 2014 Second International Conference on
– start-page: 1
  year: 2013
  end-page: 8
  ident: bib0047
  article-title: WorkflowSim: a toolkit for simulating scientific workflows in distributed environments
  publication-title: IEEE International Conference on E-Science
– volume: 46
  start-page: 17
  year: 2015
  end-page: 35
  ident: bib0048
  article-title: Pegasus, a workflow management system for science automation
  publication-title: Future Gener. Comput. Syst.
– volume: 44
  start-page: 2613
  year: 2014
  end-page: 2625
  ident: bib0038
  article-title: A clustering-based graph Laplacian framework for value function approximation in reinforcement learning
  publication-title: IEEE Trans. Cybern.
– volume: vol. 18
  start-page: 569
  year: 2018
  ident: 10.1016/j.ins.2019.10.035_bib0007
  article-title: Recurrent deep multiagent q-learning for autonomous brokers in smart grid.
– volume: 17
  start-page: 169
  issue: 2
  year: 2014
  ident: 10.1016/j.ins.2019.10.035_bib0016
  article-title: Multi-objective workflow scheduling in amazon EC2
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-013-0325-0
– volume: 29
  start-page: 682
  issue: 3
  year: 2013
  ident: 10.1016/j.ins.2019.10.035_bib0045
  article-title: Characterizing and profiling scientific workflows
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2012.08.015
– start-page: 1
  year: 2019
  ident: 10.1016/j.ins.2019.10.035_bib0005
  article-title: QL-HEFT: a novel machine learning scheduling scheme base on cloud computing environment
  publication-title: Neural Comput. Appl.
– volume: 8
  start-page: 279
  issue: 3–4
  year: 1992
  ident: 10.1016/j.ins.2019.10.035_bib0004
  article-title: Q-learning
  publication-title: Mach. Learn.
– volume: 498
  start-page: 106
  year: 2019
  ident: 10.1016/j.ins.2019.10.035_bib0009
  article-title: Data-driven dynamic resource scheduling for network slicing: A Deep reinforcement learning approach
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.05.012
– volume: 220
  start-page: 220
  year: 2018
  ident: 10.1016/j.ins.2019.10.035_bib0006
  article-title: A dynamic pricing demand response algorithm for smart grid: reinforcement learning approach
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.03.072
– start-page: 214
  year: 2018
  ident: 10.1016/j.ins.2019.10.035_bib0010
– volume: 5
  start-page: 49
  year: 2012
  ident: 10.1016/j.ins.2019.10.035_bib0033
  article-title: Dynamic engineering multi-criteria decision making model optimized by entropy weight for evaluating bid
  publication-title: Syst. Eng. Procedia
  doi: 10.1016/j.sepro.2012.04.008
– volume: 15
  start-page: 107
  issue: 2
  year: 2004
  ident: 10.1016/j.ins.2019.10.035_bib0018
  article-title: Improving scheduling of tasks in a heterogeneous environment
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2004.1264795
– start-page: 1
  year: 2008
  ident: 10.1016/j.ins.2019.10.035_bib0043
  article-title: Characterization of scientific workflows
– start-page: 129
  year: 2018
  ident: 10.1016/j.ins.2019.10.035_bib0040
  article-title: DRL-cloud: deep reinforcement learning-based resource provisioning and task scheduling for cloud service providers
– year: 2001
  ident: 10.1016/j.ins.2019.10.035_bib0035
  article-title: Convergence of Q-learning: A Simple Proof
– volume: 29
  start-page: e4210
  issue: 19
  year: 2017
  ident: 10.1016/j.ins.2019.10.035_bib0034
  article-title: Budget-constraint stochastic task scheduling on heterogeneous cloud systems
  publication-title: Concurrency Comput.
  doi: 10.1002/cpe.4210
– volume: 14
  start-page: 1666
  issue: 4
  year: 2017
  ident: 10.1016/j.ins.2019.10.035_bib0041
  article-title: Learning-based energy-efficient data collection by unmanned vehicles in smart cities
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2017.2783439
– start-page: 77
  year: 2014
  ident: 10.1016/j.ins.2019.10.035_bib0024
  article-title: Data placement and task scheduling optimization for data intensive scientific workflow in multiple data centers environment
– volume: 6
  start-page: 55112
  year: 2018
  ident: 10.1016/j.ins.2019.10.035_bib0030
  article-title: DRL-Scheduling: an intelligent QoS-aware job scheduling framework for applications in clouds
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2872674
– volume: 8
  start-page: 2169
  issue: Oct
  year: 2007
  ident: 10.1016/j.ins.2019.10.035_bib0039
  article-title: Proto-value functions: a Laplacian framework for learning representation and control in Markov decision processes
  publication-title: J. Mach. Learn. Res.
– volume: 16
  start-page: 276
  issue: 4
  year: 1992
  ident: 10.1016/j.ins.2019.10.035_bib0017
  article-title: A comparison of clustering heuristics for scheduling directed acyclic graphs on multiprocessors
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/0743-7315(92)90012-C
– year: 1992
  ident: 10.1016/j.ins.2019.10.035_bib0002
– volume: 25
  start-page: 682
  issue: 3
  year: 2014
  ident: 10.1016/j.ins.2019.10.035_bib0014
  article-title: List scheduling algorithm for heterogeneous systems by an optimistic cost table
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2013.57
– volume: 64
  start-page: 191
  issue: 1
  year: 2014
  ident: 10.1016/j.ins.2019.10.035_bib0013
  article-title: Scheduling precedence constrained stochastic tasks on heterogeneous cluster systems
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2013.205
– volume: 41
  start-page: 23
  issue: 1
  year: 2010
  ident: 10.1016/j.ins.2019.10.035_bib0046
  article-title: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms
  publication-title: Softw. Pract. Experience
  doi: 10.1002/spe.995
– volume: 76
  start-page: 1
  year: 2017
  ident: 10.1016/j.ins.2019.10.035_bib0023
  article-title: A hybrid evolutionary algorithm for task scheduling and data assignment of data-intensive scientific workflows on clouds
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.05.017
– volume: 46
  start-page: 17
  year: 2015
  ident: 10.1016/j.ins.2019.10.035_bib0048
  article-title: Pegasus, a workflow management system for science automation
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2014.10.008
– start-page: 2136
  year: 2018
  ident: 10.1016/j.ins.2019.10.035_bib0008
  article-title: Recurrent deep multiagent q-learning for autonomous agents in future smart grid
– volume: 68
  start-page: 211
  year: 2017
  ident: 10.1016/j.ins.2019.10.035_bib0025
  article-title: Multi-QoS constrained and profit-aware scheduling approach for concurrent workflows on heterogeneous systems
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2016.10.003
– volume: 44
  start-page: 2613
  issue: 12
  year: 2014
  ident: 10.1016/j.ins.2019.10.035_bib0038
  article-title: A clustering-based graph Laplacian framework for value function approximation in reinforcement learning
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2311578
– volume: 20
  start-page: 857
  issue: 6
  year: 2009
  ident: 10.1016/j.ins.2019.10.035_bib0022
  article-title: Compaction of schedules and a two-stage approach for duplication-based DAG scheduling
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2008.260
– volume: 319
  start-page: 113
  year: 2015
  ident: 10.1016/j.ins.2019.10.035_bib0029
  article-title: Maximizing reliability with energy conservation for parallel task scheduling in a heterogeneous cluster
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.02.023
– start-page: 1
  year: 2013
  ident: 10.1016/j.ins.2019.10.035_bib0047
  article-title: WorkflowSim: a toolkit for simulating scientific workflows in distributed environments
– start-page: 14
  year: 2006
  ident: 10.1016/j.ins.2019.10.035_bib0026
  article-title: Scheduling multiple dags onto heterogeneous systems
– volume: 28
  start-page: 3401
  issue: 12
  year: 2017
  ident: 10.1016/j.ins.2019.10.035_bib0001
  article-title: Deadline-constrained cost optimization approaches for workflow scheduling in clouds
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2017.2735400
– volume: 83
  start-page: 1
  year: 2015
  ident: 10.1016/j.ins.2019.10.035_bib0019
  article-title: Heterogeneity-driven end-to-end synchronized scheduling for precedence constrained tasks and messages on networked embedded systems
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2015.04.005
– volume: 73
  start-page: 4906
  issue: 11
  year: 2017
  ident: 10.1016/j.ins.2019.10.035_bib0028
  article-title: Real-time workflows oriented online scheduling in uncertain cloud environment
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-017-2060-4
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.ins.2019.10.035_bib0049
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 13
  start-page: 260
  issue: 3
  year: 2002
  ident: 10.1016/j.ins.2019.10.035_bib0012
  article-title: Performance-effective and low-complexity task scheduling for heterogeneous computing
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.993206
– volume: 29
  start-page: 1
  issue: 5
  year: 2017
  ident: 10.1016/j.ins.2019.10.035_bib0015
  article-title: A list scheduling algorithm for heterogeneous systems based on a critical node cost table and pessimistic cost table
  publication-title: Concurrency Comput. Pract. Experience
– start-page: 1017
  year: 2009
  ident: 10.1016/j.ins.2019.10.035_bib0037
  article-title: Kernelized value function approximation for reinforcement learning
– ident: 10.1016/j.ins.2019.10.035_bib0042
– volume: 48
  start-page: 1676
  issue: 5
  year: 1999
  ident: 10.1016/j.ins.2019.10.035_bib0036
  article-title: A q-learning-based dynamic channel assignment technique for mobile communication systems
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/25.790549
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 10.1016/j.ins.2019.10.035_bib0011
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 23
  start-page: 11035
  issue: 21
  year: 2019
  ident: 10.1016/j.ins.2019.10.035_bib0020
  article-title: A novel task scheduling scheme in a cloud computing environment using hybrid biogeography-based optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3657-0
– volume: 37
  start-page: 353
  issue: 3
  year: 2009
  ident: 10.1016/j.ins.2019.10.035_bib0003
  article-title: Markov decision processes: discrete stochastic dynamic programming
  publication-title: Technometrics
  doi: 10.1080/00401706.1995.10484354
– volume: 109
  start-page: 155
  year: 2017
  ident: 10.1016/j.ins.2019.10.035_bib0027
  article-title: Prior node selection for scheduling workflows in a heterogeneous system
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2017.06.005
– volume: 15
  start-page: 435
  issue: 4
  year: 2017
  ident: 10.1016/j.ins.2019.10.035_bib0032
  article-title: Time and energy optimization algorithms for the static scheduling of multiple workflows in heterogeneous computing system
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-017-9391-5
– start-page: 177
  year: 2014
  ident: 10.1016/j.ins.2019.10.035_bib0044
  article-title: Community resources for enabling research in distributed scientific workflows
– volume: 22
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.ins.2019.10.035_bib0021
  article-title: A novel, energy-aware task duplication-based scheduling algorithm of parallel tasks on clusters
  publication-title: Math. Comput. Appl.
– volume: 4
  start-page: 132
  issue: 1
  year: 2017
  ident: 10.1016/j.ins.2019.10.035_bib0031
  article-title: Energy-efficient scheduling for real-time systems based on deep q-learning model
  publication-title: IEEE Trans. Sustainable Comput.
  doi: 10.1109/TSUSC.2017.2743704
SSID ssj0004766
Score 2.6308236
Snippet Task scheduling, which plays a vital role in cloud computing, is a critical factor that determines the performance of cloud computing. From the booming economy...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1170
SubjectTerms Cloud computing
Deep Q-learning algorithm
Directed acyclic graph
Task scheduling
WorkflowSim
Title A scheduling scheme in the cloud computing environment using deep Q-learning
URI https://dx.doi.org/10.1016/j.ins.2019.10.035
Volume 512
WOSCitedRecordID wos000504778300071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBej7cP2MNZ2Y93aooeyhwYVW7Et6zFsHd0IZYV0hL0YWZZWh9QJbTL65_f0YVsd3dgGezFGlpxw9_Pp7nQfCB3psrKNrQhPaUUSlkuSx3JIImlKhZijPuuH_Dpm5-f5dMq_eK_SrW0nwJomv7vjy__KahgDZpvU2b9gd_dSGIB7YDpcge1w_SPGjwZgsMIGYvPMze21aoMZ5Xyxtllsy7WNdg6y3AZr6zSolFoOLojvJfE9VF194pLFi983O3184gN7v12JRR8w4CTaGTybBSD8oNzcaS0W16puh8e1TxOa16EnAszO6EFUR5ci8yCCM3ITXS3eE-WkbM4oyahr09WK4dSHUztBahriBJuyKUP3qMB3vocZWCmm9nrMT0yo3jDtd7cu5tAcS1sLClRWky4MJvMmZSkHUbg5-nQ6_dyn0zJ3xN3-8_Yw3IYF_vRDj6szgYoyeYGee9sCjxwmttET1eygZ0HFyR104PNU8Dsc8BN7Cb-LxiPcowc79OC6wYAebNGDO_TgAD3Yogcb9OAePS_R5cfTyfsz4htuEEk5W5EKeKKliAVIeiGNhzgRLKUalL4k10OZZ0olKhYqVplOVSTA-gUqaSZ0nAmaDl-hjWbRqNcIlxXVJQdiG4095ryMNewOtASFV2RVFO2hqKVbIX01etMUZV60YYezAkhdGFKbISD1HjrulixdKZbfTU5aZhT-m3A6YgHI-fWyN_-27C162n8Q-2hjdbNWB2hL_ljVtzeHHl_3QOeVaQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+scheduling+scheme+in+the+cloud+computing+environment+using+deep+Q-learning&rft.jtitle=Information+sciences&rft.au=Tong%2C+Zhao&rft.au=Chen%2C+Hongjian&rft.au=Deng%2C+Xiaomei&rft.au=Li%2C+Kenli&rft.date=2020-02-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=512&rft.spage=1170&rft.epage=1191&rft_id=info:doi/10.1016%2Fj.ins.2019.10.035&rft.externalDocID=S0020025519309971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon