Nitrogen in bio-oil produced from hydrothermal liquefaction of biomass: A review
[Display omitted] •20–40% of the N in biomass feedstock would distribute into bio-oil during the HTL.•Effects of biomass and HTL processing parameters on bio-oil N were overviewed.•Pretreatment and co-HTL of biomass are effective to mediate bio-oil N.•High bio-oil yield is accompanied by high bio-oi...
Uložené v:
| Vydané v: | Chemical engineering journal (Lausanne, Switzerland : 1996) Ročník 401; s. 126030 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.12.2020
|
| Predmet: | |
| ISSN: | 1385-8947, 1873-3212 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | [Display omitted]
•20–40% of the N in biomass feedstock would distribute into bio-oil during the HTL.•Effects of biomass and HTL processing parameters on bio-oil N were overviewed.•Pretreatment and co-HTL of biomass are effective to mediate bio-oil N.•High bio-oil yield is accompanied by high bio-oil N content.•Bio-oil extraction solvent & procedure are decisive to bio-oil N.
Hydrothermal liquefaction (HTL) of biomass, especially that of high moisture such as microalgae, macroalgae, sludge, manure, and food waste, for the production of bio-oil has been widely concerned worldwide. However, the contents of nitrogen (N) in these biomasses are commonly high, and 20–40% of the N in the raw biomasses would distribute into bio-oil during the HTL process, resulting in a high content of N in bio-oil, sometimes up to 10 wt%. The combustion of N-rich bio-oil will probably induce massive emission of nitrogen oxides. The transformation behavior of N has not yet been fully understood, and the denitrogenation is a critical issue during bio-oil production and upgrading. This review comprehensively summarized the effects of the type, composition, and pretreatment of biomass and HTL processing parameters, such as temperature, residence time, solid loading, reaction solvent, extraction solvent/procedure, and catalyst, on the N content of bio-oil. The N conversion mechanisms in the HTL process were also clarified. Research gaps were identified, and future research directions were finally proposed to achieve the production of bio-oil with low N content. |
|---|---|
| AbstractList | [Display omitted]
•20–40% of the N in biomass feedstock would distribute into bio-oil during the HTL.•Effects of biomass and HTL processing parameters on bio-oil N were overviewed.•Pretreatment and co-HTL of biomass are effective to mediate bio-oil N.•High bio-oil yield is accompanied by high bio-oil N content.•Bio-oil extraction solvent & procedure are decisive to bio-oil N.
Hydrothermal liquefaction (HTL) of biomass, especially that of high moisture such as microalgae, macroalgae, sludge, manure, and food waste, for the production of bio-oil has been widely concerned worldwide. However, the contents of nitrogen (N) in these biomasses are commonly high, and 20–40% of the N in the raw biomasses would distribute into bio-oil during the HTL process, resulting in a high content of N in bio-oil, sometimes up to 10 wt%. The combustion of N-rich bio-oil will probably induce massive emission of nitrogen oxides. The transformation behavior of N has not yet been fully understood, and the denitrogenation is a critical issue during bio-oil production and upgrading. This review comprehensively summarized the effects of the type, composition, and pretreatment of biomass and HTL processing parameters, such as temperature, residence time, solid loading, reaction solvent, extraction solvent/procedure, and catalyst, on the N content of bio-oil. The N conversion mechanisms in the HTL process were also clarified. Research gaps were identified, and future research directions were finally proposed to achieve the production of bio-oil with low N content. |
| ArticleNumber | 126030 |
| Author | Jiang, Shaojian Leng, Lijian Li, Hailong Peng, Haoyi Zhang, Weijin Huang, Huajun |
| Author_xml | – sequence: 1 givenname: Lijian surname: Leng fullname: Leng, Lijian email: lljchs@126.com organization: School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China – sequence: 2 givenname: Weijin surname: Zhang fullname: Zhang, Weijin organization: School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China – sequence: 3 givenname: Haoyi surname: Peng fullname: Peng, Haoyi organization: School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China – sequence: 4 givenname: Hailong surname: Li fullname: Li, Hailong email: hailongli18@gmail.com organization: School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China – sequence: 5 givenname: Shaojian surname: Jiang fullname: Jiang, Shaojian organization: School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China – sequence: 6 givenname: Huajun surname: Huang fullname: Huang, Huajun email: huanghuajun2004@126.com organization: School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China |
| BookMark | eNp9kMtKAzEUQINUsK1-gLv8wNQ85tHoqhRfUNSFrkMmc2MzzExqkir9ezPUlYuucsPlXDhnhiaDGwCha0oWlNDypl1oaBeMsPRnJeHkDE3psuIZZ5RN0syXRbYUeXWBZiG0hJBSUDFFby82evcJA7YDrq3LnO3wzrtmr6HBxrsebw-Nd3ELvlcd7uzXHozS0boBOzMivQrhFq-wh28LP5fo3KguwNXfO0cfD_fv66ds8_r4vF5tMs1EFbMmV1ooXitRVrwWwEBoKIpGKw6C50VamZywiotccQY5Z8JQxXRdsWQFJZ8jeryrvQvBg5E7b3vlD5ISOSaRrUxJ5JhEHpMkpvrHaBvVqBK9st1J8u5IQlJKml4GbWFIjawHHWXj7An6F89Wfdc |
| CitedBy_id | crossref_primary_10_1007_s13399_021_01447_4 crossref_primary_10_1016_j_jece_2025_115722 crossref_primary_10_1016_j_cej_2023_146999 crossref_primary_10_1007_s13399_023_04553_7 crossref_primary_10_1016_j_algal_2023_103187 crossref_primary_10_1016_j_fuel_2021_121235 crossref_primary_10_3389_fmicb_2022_835131 crossref_primary_10_1016_j_fuel_2021_121198 crossref_primary_10_1002_er_8201 crossref_primary_10_1016_j_algal_2021_102240 crossref_primary_10_1016_j_scitotenv_2023_165327 crossref_primary_10_1039_D5SE00227C crossref_primary_10_1016_j_renene_2024_120236 crossref_primary_10_1016_j_cherd_2023_06_018 crossref_primary_10_1016_j_jaap_2025_107045 crossref_primary_10_3390_en16155852 crossref_primary_10_1016_j_cej_2024_149862 crossref_primary_10_1016_j_biombioe_2022_106570 crossref_primary_10_1016_j_jece_2021_105247 crossref_primary_10_1016_j_biortech_2020_124081 crossref_primary_10_1016_j_biortech_2025_132556 crossref_primary_10_1002_slct_202300800 crossref_primary_10_1016_j_enconman_2023_117392 crossref_primary_10_1016_j_cej_2023_141330 crossref_primary_10_1016_j_fuel_2021_122616 crossref_primary_10_1080_10643389_2020_1849893 crossref_primary_10_1016_j_biombioe_2025_107891 crossref_primary_10_1016_j_jwpe_2024_105096 crossref_primary_10_1007_s11356_025_36375_7 crossref_primary_10_1016_j_cej_2021_130576 crossref_primary_10_1016_j_conbuildmat_2023_132103 crossref_primary_10_1016_j_jece_2024_113538 crossref_primary_10_1016_j_renene_2025_122411 crossref_primary_10_1016_j_scitotenv_2020_142944 crossref_primary_10_1016_j_biortech_2022_127348 crossref_primary_10_1016_j_dyepig_2023_111516 crossref_primary_10_1016_j_fuel_2022_126388 crossref_primary_10_1016_j_jece_2025_118848 crossref_primary_10_1007_s11356_024_32981_z crossref_primary_10_1016_j_biombioe_2022_106468 crossref_primary_10_1016_j_cej_2024_155981 crossref_primary_10_1016_j_biortech_2022_126923 crossref_primary_10_1016_j_fuel_2023_128949 crossref_primary_10_1016_j_biombioe_2023_106963 crossref_primary_10_1016_j_rser_2023_113408 crossref_primary_10_1016_j_rser_2025_116086 crossref_primary_10_1016_j_fuel_2022_126945 crossref_primary_10_1016_j_fuel_2022_126948 crossref_primary_10_1016_j_jece_2025_119091 crossref_primary_10_1016_j_energy_2020_119670 crossref_primary_10_1038_s41598_023_45957_9 crossref_primary_10_1007_s11244_025_02160_6 crossref_primary_10_1016_j_isci_2025_112734 crossref_primary_10_1016_j_ecmx_2025_101097 crossref_primary_10_1016_j_jece_2024_114010 crossref_primary_10_1016_j_fuel_2021_120249 crossref_primary_10_1007_s11244_025_02103_1 crossref_primary_10_1016_j_jaap_2023_106086 crossref_primary_10_1016_j_rser_2023_113976 crossref_primary_10_1016_j_fuel_2023_129023 crossref_primary_10_1016_j_bcab_2021_102045 crossref_primary_10_1016_j_jece_2022_107361 crossref_primary_10_1016_j_jhazmat_2025_139292 crossref_primary_10_1007_s13399_022_03006_x crossref_primary_10_1016_j_enconman_2021_113855 crossref_primary_10_1016_j_fuel_2022_126995 crossref_primary_10_1039_D0SE01857K crossref_primary_10_1016_j_fuel_2022_123644 crossref_primary_10_1016_j_cej_2025_162789 crossref_primary_10_1016_j_energy_2022_126247 crossref_primary_10_1007_s42773_024_00303_8 crossref_primary_10_3390_en15093057 crossref_primary_10_1016_j_fuel_2022_123528 crossref_primary_10_1016_j_biortech_2022_128182 crossref_primary_10_4491_eer_2022_211 crossref_primary_10_1016_j_supflu_2023_105867 crossref_primary_10_1016_j_biombioe_2025_108164 crossref_primary_10_1016_j_supflu_2022_105689 crossref_primary_10_1016_j_cej_2022_139293 crossref_primary_10_3390_fermentation8100554 crossref_primary_10_1016_j_biortech_2021_126011 crossref_primary_10_1016_j_jhazmat_2021_126961 crossref_primary_10_1016_j_cclet_2023_109142 crossref_primary_10_1016_j_fuel_2023_129016 crossref_primary_10_1016_j_algal_2024_103613 crossref_primary_10_1016_j_jece_2021_106762 crossref_primary_10_1016_j_fuel_2022_126249 crossref_primary_10_1016_j_ecolind_2020_107065 crossref_primary_10_3390_molecules27154669 crossref_primary_10_1002_eng2_70145 crossref_primary_10_1016_j_jclepro_2024_142719 crossref_primary_10_1016_j_jclepro_2024_143808 crossref_primary_10_1016_j_jaap_2022_105514 crossref_primary_10_1016_j_cej_2021_130649 crossref_primary_10_1016_j_joei_2021_11_008 crossref_primary_10_1016_j_wasman_2023_06_009 crossref_primary_10_1016_j_cjche_2024_09_002 crossref_primary_10_1016_j_scitotenv_2023_168232 crossref_primary_10_1016_j_biteb_2021_100694 crossref_primary_10_1016_j_seppur_2025_132053 crossref_primary_10_3389_fenvs_2022_996353 crossref_primary_10_1016_j_biortech_2022_127791 crossref_primary_10_1016_j_biombioe_2024_107106 crossref_primary_10_1016_j_biortech_2020_123900 crossref_primary_10_1016_j_biortech_2021_125008 crossref_primary_10_32604_jrm_2022_017483 crossref_primary_10_1016_j_scitotenv_2024_173939 crossref_primary_10_1016_j_susmat_2022_e00533 crossref_primary_10_3390_catal12121621 crossref_primary_10_1016_j_biombioe_2025_108270 crossref_primary_10_1016_j_cej_2023_148333 crossref_primary_10_1016_j_fuproc_2022_107323 crossref_primary_10_1016_j_jhazmat_2021_126154 crossref_primary_10_1016_j_jaap_2020_104996 crossref_primary_10_1016_j_cattod_2025_115496 crossref_primary_10_1016_j_joei_2022_05_009 crossref_primary_10_1016_j_watres_2024_121446 crossref_primary_10_1016_j_biteb_2024_101898 crossref_primary_10_1016_j_energy_2024_130361 crossref_primary_10_1016_j_cej_2023_145696 crossref_primary_10_1016_j_chemosphere_2021_130557 crossref_primary_10_3390_pr11072092 crossref_primary_10_1016_j_jclepro_2021_127811 crossref_primary_10_1016_j_jece_2024_113737 crossref_primary_10_1016_j_scitotenv_2023_169835 crossref_primary_10_1016_j_algal_2020_102157 crossref_primary_10_1016_j_cej_2022_137971 crossref_primary_10_1016_j_algal_2023_103012 crossref_primary_10_1016_j_fuel_2022_123351 crossref_primary_10_1016_j_scitotenv_2020_143679 crossref_primary_10_1016_j_cej_2022_134581 crossref_primary_10_1016_j_fuel_2022_126981 crossref_primary_10_1016_j_enconman_2021_114764 crossref_primary_10_1016_j_fuel_2022_125135 crossref_primary_10_1016_j_indcrop_2022_116017 crossref_primary_10_1016_j_jaap_2025_107094 crossref_primary_10_1016_j_chemosphere_2023_138606 crossref_primary_10_1016_j_scitotenv_2024_174081 crossref_primary_10_1016_j_fuel_2022_125931 crossref_primary_10_1002_bbb_70004 crossref_primary_10_3390_en17122814 crossref_primary_10_1016_j_jclepro_2022_132981 crossref_primary_10_1016_j_fuel_2023_130383 crossref_primary_10_1016_j_wasman_2022_07_034 crossref_primary_10_1002_aic_70086 crossref_primary_10_1016_j_jaap_2024_106843 crossref_primary_10_1016_j_scitotenv_2023_168177 crossref_primary_10_1016_j_fuproc_2021_107055 crossref_primary_10_1016_j_cej_2020_126847 crossref_primary_10_1016_j_jclepro_2021_126238 crossref_primary_10_1007_s12155_022_10500_7 crossref_primary_10_1016_j_renene_2023_01_064 crossref_primary_10_1016_j_jece_2023_110217 crossref_primary_10_1016_j_biortech_2022_128547 crossref_primary_10_1016_j_wasman_2025_115013 crossref_primary_10_1016_j_scitotenv_2020_144204 crossref_primary_10_1016_j_jaap_2023_105907 crossref_primary_10_1016_j_fuel_2022_123327 crossref_primary_10_1016_j_jaap_2025_107146 crossref_primary_10_1016_j_algal_2022_102759 crossref_primary_10_1016_j_scitotenv_2020_142383 crossref_primary_10_1016_j_cej_2021_128465 crossref_primary_10_1016_j_fuel_2023_130298 crossref_primary_10_1016_j_biortech_2025_132456 crossref_primary_10_1007_s13399_025_06495_8 crossref_primary_10_1016_j_jaap_2022_105562 crossref_primary_10_1016_j_chemosphere_2023_140140 crossref_primary_10_1016_j_jaap_2023_106032 crossref_primary_10_1021_acs_energyfuels_5c01433 crossref_primary_10_1016_j_algal_2021_102596 crossref_primary_10_1016_j_energy_2023_127967 crossref_primary_10_1016_j_algal_2022_102888 crossref_primary_10_1016_j_indcrop_2023_116815 crossref_primary_10_1016_j_jfueco_2024_100113 crossref_primary_10_1016_j_scitotenv_2022_161354 crossref_primary_10_1016_j_enconman_2022_115330 crossref_primary_10_1007_s13399_022_03223_4 crossref_primary_10_1007_s13399_024_05977_5 crossref_primary_10_3390_pr9030491 crossref_primary_10_1007_s13399_021_02176_4 crossref_primary_10_1016_j_cej_2022_140240 crossref_primary_10_1016_j_fuel_2025_135532 crossref_primary_10_1016_j_jhazmat_2024_133946 crossref_primary_10_1016_j_scitotenv_2024_170779 |
| Cites_doi | 10.1016/j.algal.2014.08.008 10.1016/j.biortech.2019.03.076 10.1016/j.apenergy.2018.10.120 10.1016/j.rser.2016.09.120 10.1016/j.pecs.2017.05.004 10.1016/j.biortech.2015.03.093 10.1016/j.fuel.2018.10.124 10.1016/j.biortech.2009.12.058 10.1016/j.biortech.2020.123232 10.1016/j.supflu.2015.11.021 10.1016/j.ijhydene.2019.08.182 10.1021/ef300954e 10.1021/acssuschemeng.8b03810 10.1021/acs.energyfuels.5b00321 10.1016/j.apenergy.2016.03.093 10.1039/C6GC03294J 10.1021/acssuschemeng.6b01857 10.1016/j.biombioe.2017.10.010 10.1016/j.biortech.2017.08.195 10.1016/S0960-8524(97)00079-5 10.1016/j.energy.2018.05.023 10.1016/j.apenergy.2018.12.084 10.1016/j.biortech.2015.11.076 10.1016/j.energy.2018.04.087 10.1039/c1ee01541a 10.1021/ef501040j 10.1016/j.biortech.2017.12.018 10.1016/j.pecs.2015.01.003 10.1016/j.energy.2011.03.013 10.1016/j.jaap.2014.06.015 10.1016/j.energy.2018.07.117 10.1016/j.fuel.2016.07.117 10.1016/j.biortech.2019.122502 10.1016/j.energy.2019.02.091 10.1016/j.biortech.2011.04.038 10.1016/j.biortech.2012.08.106 10.1016/j.apenergy.2019.05.033 10.1016/j.joei.2019.06.007 10.1016/j.jclepro.2020.120660 10.1016/j.fuel.2019.116628 10.1016/j.biortech.2010.12.113 10.1039/b810100k 10.1007/s11814-019-0345-4 10.1016/j.biortech.2009.11.106 10.1016/j.biortech.2019.03.136 10.1016/j.renene.2019.04.003 10.1016/j.fuel.2018.11.136 10.1016/S0961-9534(97)00017-2 10.1021/ef201417e 10.1007/s00253-008-1681-1 10.1016/j.biortech.2019.122286 10.1016/j.biortech.2018.01.121 10.1016/j.rser.2018.11.037 10.1016/j.algal.2015.06.023 10.1016/j.energy.2018.06.191 10.1016/j.biortech.2017.07.046 10.1016/j.energy.2018.11.003 10.1021/acs.energyfuels.9b01434 10.1016/j.jece.2018.07.053 10.1016/j.biortech.2018.03.019 10.1016/j.renene.2019.02.020 10.1016/j.renene.2017.04.019 10.1016/j.cej.2020.124397 10.1016/S0961-9534(99)00003-3 10.1016/j.biortech.2013.04.123 10.1016/j.enconman.2017.11.018 10.1016/j.apenergy.2020.114550 10.1016/j.apenergy.2014.04.068 10.1016/j.watres.2019.114912 10.1016/j.biortech.2015.04.027 10.1016/j.apenergy.2018.10.035 10.1016/j.biortech.2019.01.061 10.1016/j.rser.2017.09.107 10.1016/j.supflu.2018.04.011 10.1007/s12155-017-9859-y 10.1016/j.biortech.2013.07.123 10.1016/j.biortech.2015.07.020 10.1016/j.apenergy.2018.06.142 10.1016/j.enconman.2016.12.052 10.1039/C5GC00574D 10.1016/j.biortech.2016.08.110 10.13031/2013.3087 10.1016/j.biombioe.2012.08.009 10.1016/0016-2361(95)80001-X 10.1016/j.biortech.2017.02.087 10.1016/j.fuel.2016.06.013 10.1016/j.apenergy.2019.113679 10.1016/j.wasman.2016.07.019 10.1016/j.biortech.2018.11.102 10.1016/j.biortech.2017.01.056 10.1016/j.enconman.2016.03.029 10.1016/j.biortech.2013.01.069 10.1016/j.algal.2017.05.022 10.1016/j.procbio.2018.03.018 10.1016/j.scitotenv.2018.07.402 10.1016/j.algal.2016.06.009 10.1016/j.fuel.2015.04.019 10.1021/ie020338x 10.1016/j.jaap.2018.07.008 10.1186/s13068-015-0345-5 10.1039/C4RA11662C 10.1021/ef201415s 10.1016/j.energy.2011.09.031 10.1016/j.watres.2020.115626 10.1016/j.enconman.2010.08.028 10.1021/acssuschemeng.7b04359 10.1016/j.chroma.2016.07.009 10.1016/j.biortech.2019.03.125 10.1016/j.pecs.2019.100819 10.1016/j.biortech.2016.08.053 10.1016/j.biortech.2010.06.028 10.1016/S0165-2370(03)00052-4 10.1039/C5RA24760H 10.1016/j.enconman.2018.11.054 10.1016/j.fuel.2017.06.021 10.1016/j.algal.2015.11.009 10.1016/j.biortech.2011.02.057 10.1016/j.energy.2013.04.065 10.1016/j.ijhydene.2015.05.072 10.1016/j.scitotenv.2019.06.312 10.1021/ef502773w 10.1016/j.biortech.2014.04.059 10.1016/j.enconman.2018.06.023 10.1016/j.biortech.2014.01.010 10.1252/jcej.21.288 10.1016/j.biortech.2011.06.041 10.1016/j.biortech.2011.01.031 10.1016/j.biortech.2017.03.165 10.1016/j.energy.2019.116645 10.1016/j.jclepro.2018.11.027 10.1016/j.enconman.2019.112312 10.1016/j.fuel.2019.116884 10.1016/j.apenergy.2018.03.008 10.1016/j.rser.2014.07.030 10.1039/C5GC02953H 10.1039/C7SE00104E 10.1016/j.biortech.2015.10.040 10.1016/j.algal.2014.12.010 10.1016/j.fuproc.2013.03.005 10.1016/j.jaap.2019.02.013 10.1016/j.biortech.2012.01.047 10.1021/ie100758s 10.1016/j.watres.2007.11.007 10.1016/j.biortech.2013.12.083 10.1016/j.rser.2018.08.042 10.1016/j.rser.2015.04.049 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cej.2020.126030 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-3212 |
| ExternalDocumentID | 10_1016_j_cej_2020_126030 S1385894720321586 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- 9DU AATTM AAXKI AAYWO AAYXX ABXDB ACLOT ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP CITATION EFKBS EJD FEDTE FGOYB HVGLF HZ~ R2- SEW ZY4 ~HD |
| ID | FETCH-LOGICAL-c297t-d4ac9a3ba9673b9e2e9ce55dca3e9345a3bf4027394a32e4329f1a2cb72873e63 |
| ISICitedReferencesCount | 214 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000569903200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1385-8947 |
| IngestDate | Tue Nov 18 21:35:25 EST 2025 Sat Nov 29 07:00:01 EST 2025 Fri Feb 23 02:46:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sub-/super-critical water gasification Hydrothermal liquefaction Biocrude oil Aqueous phase Bio-oil Nitrogen migration and transformation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-d4ac9a3ba9673b9e2e9ce55dca3e9345a3bf4027394a32e4329f1a2cb72873e63 |
| ParticipantIDs | crossref_primary_10_1016_j_cej_2020_126030 crossref_citationtrail_10_1016_j_cej_2020_126030 elsevier_sciencedirect_doi_10_1016_j_cej_2020_126030 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 2020-12-00 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Leng, Han, Yuan, Li, Zhou (b0685) 2018; 153 Lu, Zhang, Zhu, Zhang, Zhao, Li, Watson, Li, Liu (b0295) 2017; 134 J. Yang, Q. (Sophia) He, H. Niu, K. Corscadden, T. Astatkie, Hydrothermal liquefaction of biomass model components for product yield prediction and reaction pathways exploration, Appl. Energy. 228 (2018) 1618–1628. https://doi.org/10.1016/j.apenergy.2018.06.142. Durak, Aysu (b0650) 2016; 111 Chen, Peng, Ma, Wang (b0110) 2019; 284 Lemoine, Maupin, Lemée, Lavoie, Lemberton, Pouilloux, Pinard (b0705) 2013; 142 Posmanik, Martinez, Cantero-Tubilla, Cantero, Sills, Cocero, Tester (b0315) 2018; 6 Zhang, Tang, Sheng, Yang (b0095) 2016; 18 Malins, Kampars, Brinks, Neibolte, Murnieks, Kampare (b0270) 2015; 187 Leng, Yuan, Shao, Huang, Wang, Li, Chen, Zeng (b0505) 2016; 200 Li, Teng, Li, Liu (b0280) 2019; 33 Obeid, Lewis, Smith, Hall, van Eyk (b0430) 2020; 389 Fullana, Conesa, Font, Martín-Gullón (b0525) 2003; 68–69 Köchermann, Görsch, Wirth, Mühlenberg, Klemm (b0720) 2018; 6 Zhang, Chen, Kandasamy, He (b0125) 2020; 193 Huang, Yuan, Li, Xiao, Zeng (b0260) 2014; 109 Mujahid, Riaz, Insyani, Kim (b0230) 2020; 262 Cao, Zhang, Hao, Luo, Zhang, Chen (b0565) 2016; 220 Anastasakis, Ross (b0190) 2011; 102 Biller, Madsen, Klemmer, Becker, Iversen, Glasius (b0725) 2016; 220 Jena, Das, Kastner (b0065) 2011; 102 Leng, Chen, Leng, Li, Huang, Li, Yuan, Li, Zhou (b0395) 2019; 210 Zhou, Li, Min, Hu, Chen, Ruan (b0535) 2011; 102 Yuan, Wang, Zeng, Huang, Pei, Li, Liu, Cong (b0690) 2011; 36 Dote, Inoue, Ogi, Yokoyama (b0540) 1998; 64 Leng, Li, Yuan, Zhou, Huang (b0045) 2018; 161 Cao, Luo, Zhang, Chen (b0390) 2016; 6 Jazrawi, Biller, He, Montoya, Ross, Maschmeyer, Haynes (b0400) 2015; 8 Biller, Ross (b0135) 2011; 102 Xu, Lin, Liu, Wang, Jing, Wang (b0255) 2018; 159 Biswas, Kumar, Fernandes, Saini, Negi, Muraleedharan, Bhaskar (b0550) 2020; 307 Li, Pan, Zhu, Yu, Wang, Yang, Yuan, Liu, Li, Zhang (b0520) 2019; 163 Y. Hu, S. Feng, C. (Charles) Xu, A. Bassi, Production of low-nitrogen bio-crude oils from microalgae pre-treated with pre-cooled NaOH/urea solution, Fuel. 206 (2017) 300–306. https://doi.org/10.1016/j.fuel.2017.06.021. Prapaiwatcharapan, Sunphorka, Kuchonthara, Kangvansaichol, Hinchiranan (b0585) 2015; 191 Huang, Yuan, Zhu, Li, Liu, Wang, Zeng (b0265) 2013; 56 Aida, Nonaka, Fukuda, Kujiraoka, Kumagai, Maruta, Ota, Suzuki, Watanabe, Inomata, Smith (b0595) 2016; 18 Arun, Gopinath, SundarRajan, JoselynMonica, Felix (b0370) 2019; 274 Leng, Li, Wen, Zhou (b0035) 2018; 256 Hietala, Godwin, Cardinale, Savage (b0160) 2019; 235 Duan, Jin, Xu, Yang, Bai, Wang, Zhang, Miao (b0105) 2013; 133 Madsen, Bernberg, Biller, Becker, Iversen, Glasius (b0150) 2017; 1 Shakya, Adhikari, Mahadevan, Shanmugam, Nam, Barbary, Dempster (b0140) 2017; 243 Li, Horsman, Wang, Wu, Lan (b0530) 2008; 81 Martinez-Fernandez, Chen (b0590) 2017; 25 Zhang, Zhang (b0060) 2014; 28 Lu, Li, Zhang, Liu (b0285) 2018; 6 Duan, Chang, Xu, Bai, Wang, Zhang (b0170) 2013; 135 D. López Barreiro, M. Beck, U. Hornung, F. Ronsse, A. Kruse, W. Prins, Suitability of hydrothermal liquefaction as a conversion route to produce biofuels from macroalgae, Algal Res. 11 (2015) 234–241. https://doi.org/10.1016/j.algal.2015.06.023. Biller, Riley, Ross (b0665) 2011; 102 Dandamudi, Muppaneni, Sudasinghe, Schaub, Holguin, Lammers, Deng (b0070) 2017; 236 Phusunti, Phetwarotai, Tirapanampai, Tekasakul (b0570) 2017; 10 Xu, Cheng, He, Wang, Shao, Hu (b0440) 2019; 278 Jena, McCurdy, Warren, Summers, Ledbetter, Hoekman, Seefeldt, Quinn (b0340) 2015; 8 Feng, Wei, Leitch, Xu (b0380) 2018; 155 Chen, Ma, Zeng, Zheng, Lu (b0740) 2020; 262 Xiu, Shahbazi, Wallace, Wang, Cheng (b0300) 2011; 52 P.J. Valdez, M.C. Nelson, H.Y. Wang, X.N. Lin, P.E. Savage, Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions, Biomass and Bioenergy. 46 (2012) 317–331. https://doi.org/10.1016/j.biombioe.2012.08.009. Skaggs, Coleman, Seiple, Milbrandt (b0275) 2018; 82 Leng, Xu, Liu, Yu, Zhuo, Leng, Xiong, Huang (b0495) 2020; 298 Fan, Hornung, Raffelt, Dahmen (b0545) 2020; 104798 J. Yang, Q. (Sophia)He, L. Yang, A review on hydrothermal co-liquefaction of biomass, Appl. Energy. 250 (2019) 926–945. https://doi.org/10.1016/j.apenergy.2019.05.033. He, Zhang, Yin, Funk, Riskowski (b0640) 2001; 44 Sheehan, Savage (b0630) 2016; 4 Chen, Lin, Liu, Chen, Hung, Chen, Ong (b0325) 2019; 237 J. Yang, Q. (Sophia) He, K. Corscadden, H. Niu, J. Lin, T. Astatkie, Advanced models for the prediction of product yield in hydrothermal liquefaction via a mixture design of biomass model components coupled with process variables, Appl. Energy. 233–234 (2019) 906–915. https://doi.org/10.1016/j.apenergy.2018.10.035. Xu, Zheng, Yu, Hu (b0660) 2014; 156 Yuan, Wang, Cao, Hu, Abomohra, Wang, Qian, Liu, Liu, He, Sun, Feng, Zhang (b0365) 2019; 173 Yang, Li, Zhang, Feng (b0425) 2017; 154 Tian, Li, Liu, Zhang, Lu (b0605) 2014; 38 López Barreiro, Zamalloa, Boon, Vyverman, Ronsse, Brilman, Prins (b0075) 2013; 146 Chen, Zhang, Zhang, Schideman, Yu, Zhang, Minarick (b0115) 2014; 128 Xu, Wang, Lin, Guo, Wang, Wu (b0155) 2019; 138 Ma, Geng, Zhang, Ning (b0195) 2020; 93 Peterson, Vogel, Lachance, Fröling, Antal, Tester (b0010) 2008; 1 Grigoras, Stroe, Sintamarean, Rosendahl (b0385) 2017; 231 Huang, Wufuer, Wang, Dai (b0580) 2018; 69 Yan, Wang, Li, Zhang, Ma, Fu, Chen, Liu (b0200) 2019; 292 Prajitno, Insyani, Park, Ryu, Kim (b0635) 2016; 172 Prajitno, Park, Ryu, Park, Lim, Kim (b0240) 2018; 218 Zhuang, Huang, Song, Zhan, Yin, Wu (b0220) 2017; 245 Hu, Feng, Bassi, Xu (b0745) 2018; 171 Vardon, Sharma, Scott, Yu, Wang, Schideman, Zhang, Strathmann (b0120) 2011; 102 Yang, Li, Li, Tong, Feng (b0475) 2015; 196 Inoue, Sawayama, Dote, Ogi (b0615) 1997; 12 Tang, Zhang, Yang (b0760) 2020; 258 Su, Liu, Gong, Zhu, Yu, Gu (b0225) 2019; 44 Akimoto, Ninomiya, Takami, Ishikawa, Sato, Washio (b0715) 2002; 41 Castello, Haider, Rosendahl (b0645) 2019; 141 L. Yang, Q. (Sophia) He, P. Havard, K. Corscadden, C. (Charles) Xu, X. Wang, Co-liquefaction of spent coffee grounds and lignocellulosic feedstocks, Bioresour. Technol. 237 (2017) 108–121. https://doi.org/10.1016/j.biortech.2017.02.087. Eboibi, Lewis, Ashman, Chinnasamy (b0235) 2015; 5 Wang, Dai, Yang, Luo (b0055) 2017; 62 Toraman, Franz, Ronsse, Van Geem, Marin (b0480) 2016; 1460 Li, Ma, Yang, Li, Wei, Sun (b0245) 2018; 138 Chen, He, Zhang, Feng, Kandasamy, Wang (b0465) 2019; 179 Aierzhati, Stablein, Wu, Kuo, Si, Kang, Zhang (b0350) 2019; 284 Li, Zhu, Wang, Yang, Pan, Wang, Ni, Li, Yuan, Jiang, Tang (b0675) 2020; 174 Suzuki, Nakamura, Yokoyama, Ogi, Koguch (b0250) 1988; 21 Miao, Chakraborty, Chen (b0290) 2012; 110 Huang, Yuan (b0005) 2015; 49 Leng, Bogush, Roy, Stegemann (b0680) 2019; 690 Leow, Witter, Vardon, Sharma, Guest, Strathmann (b0145) 2015; 17 Song, Wang, Xu, Guo, Yang, Zhang, Li (b0165) 2019; 36 Wu, Wang, Zheng, Liu, Wang, Zou, Yuan, Xiao (b0310) 2020; 264 Watson, Wang, Si, Chen, Aierzhati, Zhang (b0610) 2020; 77 Leng, Yuan, Zeng, Shao, Chen, Wu, Wang, Peng (b0025) 2015; 155 Kantarli, Kabadayi, Ucar, Yanik (b0360) 2016; 56 Wang, Peng, Chen, Ma (b0470) 2019; 139 Ramos-Tercero, Bertucco, (Wim) Brilman (b0735) 2015; 29 Peng, Ma, Lin, Wang, Zhang, Yang (b0085) 2016; 117 Liu, Yuan, Huang, Wang, Wang, Zeng (b0695) 2013; 112 Mishra, Mohanty (b0090) 2020; 204 Guo, Yeh, Song, Xu, Wang (b0510) 2015; 48 Gu, Yu, Pang, Martinez-fernandez, Fu, Chen (b0600) 2019; 114115 (b0620) 2012; 26 G. Yu, Y. Zhang, L. Schideman, T. Funk, Z. Wang, Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae, Energy Environ. Sci. 4 (2011) 4587–4595. https://doi.org/10.1039/C1EE01541A. Xu, Lin, Guo, Wang, Guo, Jing (b0460) 2018; 97 Chand, Babu Borugadda, Qiu, Dalai (b0355) 2019; 254 Duan, Savage (b0670) 2011; 50 Leng, Yuan, Chen, Huang, Wang, Li, Zhu, Li, Zeng (b0040) 2015 Luo, Dai, Savage (b0655) 2015; 29 Tang, Zhang, Li, Yang (b0405) 2016; 202 Sohail, Rosendahl, Rudolf (b0015) 2011; 36 Hu, Qi, Feng, Bassi, (Charles) Xu (b0700) 2019; 238 Neveux, Yuen, Jazrawi, He, Magnusson, Haynes, Masters, Montoya, Paul, Maschmeyer, de Nys (b0185) 2014; 6 Leng, Zhou (b0490) 2018; 40 Leng, Huang, Li, Li, Zhou (b0030) 2019; 647 Raikova, Le, Beacham, Jenkins, Allen, Chuck (b0210) 2017; 107 He, Zhang, Funk, Riskowski, Yin (b0320) 2000; 43 Yin, Dolan, Harris, Tan (b0305) 2010; 101 T. Minowa, S. ya Yokoyama, M. Kishimoto, T. Okakura, Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction, Fuel. 74 (1995) 1735–1738. https://doi.org/10.1016/0016-2361(95)80001-X. Zhang, Xu, Champagne (b0215) 2010; 101 Su, Zhu, Gong, Zhou, Fan, Amuzu-Sefordzi (b0420) 2015; 40 Xu, Lancaster (b0755) 2008; 42 Watson, Lu, de Souza, Si, Zhang, Liu (b0750) 2019; 167 Inoue, Okigawa, Minowa, Ogi (b0445) 1999; 16 Hu, Gong, Feng, Charles, Bassi (b0515) 2019; 101 Li, Leow, Fedders, Sharma, Guest, Strathmann (b0410) 2017; 19 Leng, Li, Han, Chen, Chen, Fan, Lu, Li, Leng, Zhou (b0730) 2020; 298 Wądrzyk, Janus, Vos, Brilman (b0450) 2018 He, Zhao, Wang, Cheng, Yan, Chen (b0500) 2020 Huang, Chen, Xie, Liu, Yin, Wu (b0100) 2016; 183 Matayeva, Bianchi, Chiaberge, Cavani, Basile (b0415) 2019; 240 Leng, Leng, Chen, Yuan, Li, Li, Wang, Zhou (b0555) 2018; 259 Leng, Li, Yuan, Li, Han, Hong, Wei, Zhou (b0375) 2018; 251 Neveux, Yuen, Jazrawi, Magnusson, Haynes, Masters, Montoya, Paul, Maschmeyer, de Nys (b0175) 2014; 155 C. Torri, L. Garcia Alba, C. Samorì, D. Fabbri, D.W.F. Brilman, Hydrothermal treatment (HTT) of microalgae: Detailed molecular characterization of HTT oil in view of HTT mechanism elucidation, Energy and Fuels. 26 (2012) 658–671. https://doi.org/10.1021/ef201417e. Yan, Duan, Wang, Xu (b0710) 2016; 185 Obeid, Chu Van, Brown, Rainey (b0050) 2019; 181 S.R. Villadsen, L. Dithmer, R. Forsberg, J. Becker, A. Rudolf, S.B. Iversen, B.B. Iversen, M. Glasius, Development and Application of Chemical Analysis Methods for Investigation of Bio-Oils and Aqueous Phase from Hydrothermal Liquefaction of Biomass, Energy & Fuels. 26 (2012) 121023084455008. https://doi.org/10.1021/ef300954e. Dimitriadis, Bezergianni (b Raikova (10.1016/j.cej.2020.126030_b0210) 2017; 107 10.1016/j.cej.2020.126030_b0560 Jena (10.1016/j.cej.2020.126030_b0065) 2011; 102 Chen (10.1016/j.cej.2020.126030_b0465) 2019; 179 Vardon (10.1016/j.cej.2020.126030_b0120) 2011; 102 Leng (10.1016/j.cej.2020.126030_b0555) 2018; 259 10.1016/j.cej.2020.126030_b0205 Aida (10.1016/j.cej.2020.126030_b0595) 2016; 18 Leng (10.1016/j.cej.2020.126030_b0040) 2015 Costanzo (10.1016/j.cej.2020.126030_b0180) 2016; 13 Huang (10.1016/j.cej.2020.126030_b0260) 2014; 109 He (10.1016/j.cej.2020.126030_b0640) 2001; 44 Xiu (10.1016/j.cej.2020.126030_b0300) 2011; 52 Peterson (10.1016/j.cej.2020.126030_b0010) 2008; 1 Chand (10.1016/j.cej.2020.126030_b0355) 2019; 254 Neveux (10.1016/j.cej.2020.126030_b0185) 2014; 6 Yang (10.1016/j.cej.2020.126030_b0475) 2015; 196 Malins (10.1016/j.cej.2020.126030_b0270) 2015; 187 Miao (10.1016/j.cej.2020.126030_b0575) 2014; 164 Duan (10.1016/j.cej.2020.126030_b0670) 2011; 50 Song (10.1016/j.cej.2020.126030_b0165) 2019; 36 Li (10.1016/j.cej.2020.126030_b0520) 2019; 163 Leng (10.1016/j.cej.2020.126030_b0395) 2019; 210 10.1016/j.cej.2020.126030_b0335 Martinez-Fernandez (10.1016/j.cej.2020.126030_b0590) 2017; 25 Inoue (10.1016/j.cej.2020.126030_b0615) 1997; 12 Tian (10.1016/j.cej.2020.126030_b0605) 2014; 38 Liu (10.1016/j.cej.2020.126030_b0695) 2013; 112 Huang (10.1016/j.cej.2020.126030_b0580) 2018; 69 10.1016/j.cej.2020.126030_b0455 Skaggs (10.1016/j.cej.2020.126030_b0275) 2018; 82 Wądrzyk (10.1016/j.cej.2020.126030_b0450) 2018 Feng (10.1016/j.cej.2020.126030_b0380) 2018; 155 Grigoras (10.1016/j.cej.2020.126030_b0385) 2017; 231 Cao (10.1016/j.cej.2020.126030_b0390) 2016; 6 Anastasakis (10.1016/j.cej.2020.126030_b0190) 2011; 102 Su (10.1016/j.cej.2020.126030_b0420) 2015; 40 Dandamudi (10.1016/j.cej.2020.126030_b0070) 2017; 236 Kantarli (10.1016/j.cej.2020.126030_b0360) 2016; 56 Prajitno (10.1016/j.cej.2020.126030_b0635) 2016; 172 Xu (10.1016/j.cej.2020.126030_b0460) 2018; 97 He (10.1016/j.cej.2020.126030_b0500) 2020 Biller (10.1016/j.cej.2020.126030_b0725) 2016; 220 Jasiūnas (10.1016/j.cej.2020.126030_b0330) 2017; 111 Leng (10.1016/j.cej.2020.126030_b0680) 2019; 690 Mishra (10.1016/j.cej.2020.126030_b0090) 2020; 204 Li (10.1016/j.cej.2020.126030_b0530) 2008; 81 10.1016/j.cej.2020.126030_b0345 Yin (10.1016/j.cej.2020.126030_b0305) 2010; 101 Prapaiwatcharapan (10.1016/j.cej.2020.126030_b0585) 2015; 191 10.1016/j.cej.2020.126030_b0625 Obeid (10.1016/j.cej.2020.126030_b0430) 2020; 389 Jena (10.1016/j.cej.2020.126030_b0340) 2015; 8 Durak (10.1016/j.cej.2020.126030_b0650) 2016; 111 Matayeva (10.1016/j.cej.2020.126030_b0415) 2019; 240 Shakya (10.1016/j.cej.2020.126030_b0140) 2017; 243 Xu (10.1016/j.cej.2020.126030_b0155) 2019; 138 Eboibi (10.1016/j.cej.2020.126030_b0235) 2015; 5 Lu (10.1016/j.cej.2020.126030_b0285) 2018; 6 Ramos-Tercero (10.1016/j.cej.2020.126030_b0735) 2015; 29 Duan (10.1016/j.cej.2020.126030_b0170) 2013; 135 Huang (10.1016/j.cej.2020.126030_b0005) 2015; 49 Yuan (10.1016/j.cej.2020.126030_b0690) 2011; 36 Wang (10.1016/j.cej.2020.126030_b0055) 2017; 62 Yan (10.1016/j.cej.2020.126030_b0710) 2016; 185 Hu (10.1016/j.cej.2020.126030_b0515) 2019; 101 10.1016/j.cej.2020.126030_b0080 Li (10.1016/j.cej.2020.126030_b0410) 2017; 19 Yang (10.1016/j.cej.2020.126030_b0425) 2017; 154 Sohail (10.1016/j.cej.2020.126030_b0015) 2011; 36 Yan (10.1016/j.cej.2020.126030_b0200) 2019; 292 Wang (10.1016/j.cej.2020.126030_b0470) 2019; 139 Chen (10.1016/j.cej.2020.126030_b0325) 2019; 237 10.1016/j.cej.2020.126030_b0765 Wu (10.1016/j.cej.2020.126030_b0310) 2020; 264 Obeid (10.1016/j.cej.2020.126030_b0050) 2019; 181 10.1016/j.cej.2020.126030_b0485 Leng (10.1016/j.cej.2020.126030_b0045) 2018; 161 Zhang (10.1016/j.cej.2020.126030_b0060) 2014; 28 Peng (10.1016/j.cej.2020.126030_b0085) 2016; 117 Leng (10.1016/j.cej.2020.126030_b0505) 2016; 200 Suzuki (10.1016/j.cej.2020.126030_b0250) 1988; 21 Fan (10.1016/j.cej.2020.126030_b0545) 2020; 104798 Madsen (10.1016/j.cej.2020.126030_b0150) 2017; 1 Mujahid (10.1016/j.cej.2020.126030_b0230) 2020; 262 10.1016/j.cej.2020.126030_b0130 Xu (10.1016/j.cej.2020.126030_b0440) 2019; 278 (10.1016/j.cej.2020.126030_b0620) 2012; 26 Ma (10.1016/j.cej.2020.126030_b0195) 2020; 93 Biswas (10.1016/j.cej.2020.126030_b0550) 2020; 307 Xu (10.1016/j.cej.2020.126030_b0255) 2018; 159 Biller (10.1016/j.cej.2020.126030_b0135) 2011; 102 Tang (10.1016/j.cej.2020.126030_b0405) 2016; 202 Dote (10.1016/j.cej.2020.126030_b0540) 1998; 64 Biller (10.1016/j.cej.2020.126030_b0665) 2011; 102 Su (10.1016/j.cej.2020.126030_b0225) 2019; 44 Guo (10.1016/j.cej.2020.126030_b0510) 2015; 48 Leng (10.1016/j.cej.2020.126030_b0030) 2019; 647 Arun (10.1016/j.cej.2020.126030_b0370) 2019; 274 Chen (10.1016/j.cej.2020.126030_b0115) 2014; 128 Leng (10.1016/j.cej.2020.126030_b0375) 2018; 251 Yuan (10.1016/j.cej.2020.126030_b0365) 2019; 173 Neveux (10.1016/j.cej.2020.126030_b0175) 2014; 155 Köchermann (10.1016/j.cej.2020.126030_b0720) 2018; 6 Phusunti (10.1016/j.cej.2020.126030_b0570) 2017; 10 Duan (10.1016/j.cej.2020.126030_b0105) 2013; 133 Lemoine (10.1016/j.cej.2020.126030_b0705) 2013; 142 Dimitriadis (10.1016/j.cej.2020.126030_b0020) 2017; 68 Li (10.1016/j.cej.2020.126030_b0280) 2019; 33 Leng (10.1016/j.cej.2020.126030_b0490) 2018; 40 Xu (10.1016/j.cej.2020.126030_b0755) 2008; 42 Gu (10.1016/j.cej.2020.126030_b0600) 2019; 114115 Zhang (10.1016/j.cej.2020.126030_b0095) 2016; 18 Hu (10.1016/j.cej.2020.126030_b0700) 2019; 238 Li (10.1016/j.cej.2020.126030_b0245) 2018; 138 Li (10.1016/j.cej.2020.126030_b0675) 2020; 174 Chen (10.1016/j.cej.2020.126030_b0110) 2019; 284 Fullana (10.1016/j.cej.2020.126030_b0525) 2003; 68–69 Leng (10.1016/j.cej.2020.126030_b0035) 2018; 256 Leng (10.1016/j.cej.2020.126030_b0025) 2015; 155 Lu (10.1016/j.cej.2020.126030_b0295) 2017; 134 He (10.1016/j.cej.2020.126030_b0320) 2000; 43 Zhuang (10.1016/j.cej.2020.126030_b0220) 2017; 245 Prajitno (10.1016/j.cej.2020.126030_b0240) 2018; 218 Castello (10.1016/j.cej.2020.126030_b0645) 2019; 141 Miao (10.1016/j.cej.2020.126030_b0290) 2012; 110 Cao (10.1016/j.cej.2020.126030_b0565) 2016; 220 Inoue (10.1016/j.cej.2020.126030_b0445) 1999; 16 Toraman (10.1016/j.cej.2020.126030_b0480) 2016; 1460 Xu (10.1016/j.cej.2020.126030_b0660) 2014; 156 Posmanik (10.1016/j.cej.2020.126030_b0315) 2018; 6 Zhang (10.1016/j.cej.2020.126030_b0125) 2020; 193 Zhang (10.1016/j.cej.2020.126030_b0215) 2010; 101 López Barreiro (10.1016/j.cej.2020.126030_b0075) 2013; 146 Tang (10.1016/j.cej.2020.126030_b0760) 2020; 258 Leng (10.1016/j.cej.2020.126030_b0495) 2020; 298 Sheehan (10.1016/j.cej.2020.126030_b0630) 2016; 4 Hu (10.1016/j.cej.2020.126030_b0745) 2018; 171 Hietala (10.1016/j.cej.2020.126030_b0160) 2019; 235 Huang (10.1016/j.cej.2020.126030_b0100) 2016; 183 Jazrawi (10.1016/j.cej.2020.126030_b0400) 2015; 8 Luo (10.1016/j.cej.2020.126030_b0655) 2015; 29 Chen (10.1016/j.cej.2020.126030_b0740) 2020; 262 Watson (10.1016/j.cej.2020.126030_b0610) 2020; 77 Akimoto (10.1016/j.cej.2020.126030_b0715) 2002; 41 Leng (10.1016/j.cej.2020.126030_b0730) 2020; 298 Watson (10.1016/j.cej.2020.126030_b0750) 2019; 167 10.1016/j.cej.2020.126030_b0435 Leng (10.1016/j.cej.2020.126030_b0685) 2018; 153 Huang (10.1016/j.cej.2020.126030_b0265) 2013; 56 Zhou (10.1016/j.cej.2020.126030_b0535) 2011; 102 Aierzhati (10.1016/j.cej.2020.126030_b0350) 2019; 284 Leow (10.1016/j.cej.2020.126030_b0145) 2015; 17 |
| References_xml | – volume: 6 start-page: 22 year: 2014 end-page: 31 ident: b0185 article-title: Pre- and post-harvest treatment of macroalgae to improve the quality of feedstock for hydrothermal liquefaction publication-title: Algal Res. – volume: 21 start-page: 288 year: 1988 end-page: 293 ident: b0250 article-title: Conversion of sewage sludge to heavy oil by direct thermochemical liquefaction publication-title: J. Chem. Eng. Japan. – volume: 81 start-page: 629 year: 2008 end-page: 636 ident: b0530 article-title: Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans publication-title: Appl. Microbiol. Biotechnol. – volume: 6 start-page: 15260 year: 2016 end-page: 15270 ident: b0390 article-title: Bio-oil production from eight selected green landscaping wastes through hydrothermal liquefaction publication-title: RSC Adv. – volume: 41 start-page: 5393 year: 2002 end-page: 5400 ident: b0715 article-title: Hydrothermal dechlorination and denitrogenation of municipal-waste-plastics-derived fuel oil under sub- and supercritical conditions publication-title: Ind. Eng. Chem. Res. – volume: 25 start-page: 274 year: 2017 end-page: 284 ident: b0590 article-title: Sequential Hydrothermal Liquefaction characterization and nutrient recovery assessment publication-title: Algal Res. – volume: 10 start-page: 1005 year: 2017 end-page: 1017 ident: b0570 article-title: Subcritical Water Hydrolysis of Microalgal Biomass for Protein and Pyrolytic Bio-oil Recovery publication-title: Bioenergy Res. – volume: 138 start-page: 1143 year: 2019 end-page: 1151 ident: b0155 article-title: Co-hydrothermal liquefaction of microalgae and sewage sludge in subcritical water: Ash effects on bio-oil production publication-title: Renew. Energy. – volume: 102 start-page: 215 year: 2011 end-page: 225 ident: b0135 article-title: Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content publication-title: Bioresour. Technol. – volume: 155 start-page: 334 year: 2014 end-page: 341 ident: b0175 article-title: Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae publication-title: Bioresour. Technol. – volume: 40 start-page: 9125 year: 2015 end-page: 9136 ident: b0420 article-title: Interaction between sewage sludge components lignin (phenol) and proteins (alanine) in supercritical water gasification publication-title: Int. J. Hydrogen Energy. – volume: 1 start-page: 32 year: 2008 end-page: 65 ident: b0010 article-title: Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies publication-title: Energy Environ. Sci. – volume: 36 start-page: 6406 year: 2011 end-page: 6412 ident: b0690 article-title: Comparative studies of thermochemical liquefaction characteristics of microalgae using different organic solvents publication-title: Energy. – volume: 193 year: 2020 ident: b0125 article-title: Hydrothermal liquefaction of fresh lemon-peel and Spirulina platensis blending -operation parameter and biocrude chemistry investigation publication-title: Energy. – volume: 48 start-page: 776 year: 2015 end-page: 790 ident: b0510 article-title: A review of bio-oil production from hydrothermal liquefaction of algae publication-title: Renew. Sustain. Energy Rev. – volume: 196 start-page: 99 year: 2015 end-page: 108 ident: b0475 article-title: Understanding low-lipid algae hydrothermal liquefaction characteristics and pathways through hydrothermal liquefaction of algal major components: Crude polysaccharides, crude proteins and their binary mixtures publication-title: Bioresour. Technol. – volume: 218 start-page: 402 year: 2018 end-page: 416 ident: b0240 article-title: Effects of solvent participation and controlled product separation on biomass liquefaction: A case study of sewage sludge publication-title: Appl. Energy. – volume: 128 start-page: 209 year: 2014 end-page: 216 ident: b0115 article-title: Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil publication-title: Appl. Energy. – volume: 77 year: 2020 ident: b0610 article-title: Valorization of hydrothermal liquefaction aqueous phase: pathways towards commercial viability publication-title: Prog. Energy Combust. Sci. – volume: 690 start-page: 573 year: 2019 end-page: 583 ident: b0680 article-title: Characterisation of ashes from waste biomass power plants and phosphorus recovery publication-title: Sci. Total Environ. – volume: 298 year: 2020 ident: b0495 article-title: Nitrogen containing functional groups of biochar: An overview publication-title: Bioresour. Technol. – volume: 40 start-page: 2648 year: 2018 end-page: 2659 ident: b0490 article-title: Chemical compositions and wastewater properties of aqueous phase (wastewater) produced from the hydrothermal treatment of wet biomass: A review, Energy Sources publication-title: Part A Recover. Util. Environ. Eff. – volume: 68 start-page: 113 year: 2017 end-page: 125 ident: b0020 article-title: Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review publication-title: Renew. Sustain. Energy Rev. – volume: 44 start-page: 1873 year: 2001 end-page: 1880 ident: b0640 article-title: Effects of alternative process gases on the thermochemical conversion process of swine manure publication-title: Trans. Am. Soc. Agric. Eng. – volume: 251 year: 2018 ident: b0375 article-title: Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass publication-title: Bioresour. Technol. – volume: 155 start-page: 77 year: 2015 end-page: 85 ident: b0025 article-title: Surface characterization of rice husk bio-char produced by liquefaction and application for cationic dye (Malachite green) adsorption publication-title: Fuel. – volume: 154 start-page: 336 year: 2017 end-page: 343 ident: b0425 article-title: Catalytic upgrading of bio-oil in hydrothermal liquefaction of algae major model components over liquid acids publication-title: Energy Convers. Manag. – volume: 18 start-page: 61 year: 2016 end-page: 68 ident: b0595 article-title: Nutrient recovery from municipal sludge for microalgae cultivation with two-step hydrothermal liquefaction publication-title: Algal Res. – volume: 6 start-page: 13570 year: 2018 end-page: 13578 ident: b0285 article-title: Nitrogen Migration and Transformation during Hydrothermal Liquefaction of Livestock Manures publication-title: ACS Sustain. Chem. Eng. – volume: 292 year: 2019 ident: b0200 article-title: Hydrothermal liquefaction of Ulva prolifera macroalgae and the influence of base catalysts on products publication-title: Bioresour. Technol. – volume: 133 start-page: 197 year: 2013 end-page: 205 ident: b0105 article-title: Thermo-chemical conversion of Chlorella pyrenoidosa to liquid biofuels publication-title: Bioresour. Technol. – volume: 159 start-page: 686 year: 2018 end-page: 695 ident: b0255 article-title: Comprehensive evaluation on product characteristics of fast hydrothermal liquefaction of sewage sludge at different temperatures publication-title: Energy. – volume: 111 start-page: 179 year: 2016 end-page: 198 ident: b0650 article-title: Thermochemical liquefaction of algae for bio-oil production in supercritical acetone/ethanol/isopropanol publication-title: J. Supercrit. Fluids. – volume: 102 start-page: 4841 year: 2011 end-page: 4848 ident: b0665 article-title: Catalytic hydrothermal processing of microalgae: Decomposition and upgrading of lipids publication-title: Bioresour. Technol. – volume: 5 start-page: 20193 year: 2015 end-page: 20207 ident: b0235 article-title: Influence of process conditions on pretreatment of microalgae for protein extraction and production of biocrude during hydrothermal liquefaction of pretreated Tetraselmis sp publication-title: RSC Adv. – volume: 49 start-page: 59 year: 2015 end-page: 80 ident: b0005 article-title: Recent progress in the direct liquefaction of typical biomass publication-title: Prog. Energy Combust. Sci. – volume: 102 start-page: 6909 year: 2011 end-page: 6919 ident: b0535 article-title: Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production publication-title: Bioresour. Technol. – volume: 4 start-page: 6931 year: 2016 end-page: 6939 ident: b0630 article-title: Products, Pathways, and Kinetics for the Fast Hydrothermal Liquefaction of Soy Protein Isolate publication-title: ACS Sustain. Chem. Eng. – reference: Y. Hu, S. Feng, C. (Charles) Xu, A. Bassi, Production of low-nitrogen bio-crude oils from microalgae pre-treated with pre-cooled NaOH/urea solution, Fuel. 206 (2017) 300–306. https://doi.org/10.1016/j.fuel.2017.06.021. – volume: 36 start-page: 1604 year: 2019 end-page: 1618 ident: b0165 article-title: Comprehensive potential evaluation of the bio-oil production and nutrient recycling from seven algae through hydrothermal liquefaction publication-title: Korean J. Chem. Eng. – volume: 68–69 start-page: 561 year: 2003 end-page: 575 ident: b0525 article-title: Pyrolysis of sewage sludge: Nitrogenated compounds and pretreatment effects publication-title: J. Anal. Appl. Pyrolysis. – volume: 231 start-page: 116 year: 2017 end-page: 123 ident: b0385 article-title: Effect of biomass pretreatment on the product distribution and composition resulting from the hydrothermal liquefaction of short rotation coppice willow publication-title: Bioresour. Technol. – reference: J. Yang, Q. (Sophia) He, K. Corscadden, H. Niu, J. Lin, T. Astatkie, Advanced models for the prediction of product yield in hydrothermal liquefaction via a mixture design of biomass model components coupled with process variables, Appl. Energy. 233–234 (2019) 906–915. https://doi.org/10.1016/j.apenergy.2018.10.035. – volume: 13 start-page: 53 year: 2016 end-page: 68 ident: b0180 article-title: Effect of low temperature hydrothermal liquefaction on catalytic hydrodenitrogenation of algae biocrude and model macromolecules publication-title: Algal Res. – volume: 167 start-page: 189 year: 2019 end-page: 197 ident: b0750 article-title: Effects of the extraction solvents in hydrothermal liquefaction processes: Biocrude oil quality and energy conversion efficiency publication-title: Energy. – volume: 109 start-page: 176 year: 2014 end-page: 184 ident: b0260 article-title: Thermochemical liquefaction characteristics of sewage sludge in different organic solvents publication-title: J. Anal. Appl. Pyrolysis. – volume: 38 start-page: 933 year: 2014 end-page: 950 ident: b0605 article-title: Hydrothermal liquefaction for algal biorefinery: A critical review publication-title: Renew. Sustain. Energy Rev. – volume: 172 start-page: 12 year: 2016 end-page: 22 ident: b0635 article-title: Non-catalytic upgrading of fast pyrolysis bio-oil in supercritical ethanol and combustion behavior of the upgraded oil publication-title: Appl. Energy. – volume: 97 start-page: 103 year: 2018 end-page: 118 ident: b0460 article-title: Catalytic hydrothermal liquefaction of algae and upgrading of biocrude : A critical review publication-title: Renew. Sustain. Energy Rev. – volume: 117 start-page: 43 year: 2016 end-page: 53 ident: b0085 article-title: Effect of process parameters on solvolysis liquefaction of Chlorella pyrenoidosa in ethanol–water system and energy evaluation publication-title: Energy Convers. Manag. – volume: 1 start-page: 789 year: 2017 end-page: 805 ident: b0150 article-title: Hydrothermal co-liquefaction of biomasses – quantitative analysis of bio-crude and aqueous phase composition publication-title: Sustain. Energy Fuels. – volume: 114115 year: 2019 ident: b0600 article-title: Comparative techno-economic analysis of algal biofuel production via hydrothermal liquefaction : One stage versus two stages publication-title: Appl. Energy. – volume: 153 start-page: 1061 year: 2018 end-page: 1072 ident: b0685 article-title: Biodiesel microemulsion upgrading and thermogravimetric study of bio-oil produced by liquefaction of different sludges publication-title: Energy. – volume: 33 start-page: 7415 year: 2019 end-page: 7423 ident: b0280 article-title: Liquefaction of Sewage Sludge to Produce Bio-oil in Different Organic Solvents with in Situ Hydrogenation publication-title: Energy and Fuels. – volume: 101 start-page: 2713 year: 2010 end-page: 2721 ident: b0215 article-title: Energy recovery from secondary pulp/paper-mill sludge and sewage sludge with supercritical water treatment publication-title: Bioresour. Technol. – volume: 69 start-page: 136 year: 2018 end-page: 143 ident: b0580 article-title: Hydrothermal liquefaction of pretreated low-lipid microalgae for the production of bio-oil with low heteroatom content publication-title: Process Biochem. – volume: 284 start-page: 286 year: 2019 end-page: 292 ident: b0110 article-title: Investigation of Mannich reaction during co-liquefaction of microalgae and sweet potato waste publication-title: Bioresour. Technol. – volume: 93 start-page: 581 year: 2020 end-page: 590 ident: b0195 article-title: Hydrothermal liquefaction of macroalgae: Influence of zeolites based catalyst on products publication-title: J. Energy Inst. – volume: 29 start-page: 3208 year: 2015 end-page: 3214 ident: b0655 article-title: Catalytic hydrothermal liquefaction of soy protein concentrate publication-title: Energy and Fuels. – volume: 264 year: 2020 ident: b0310 article-title: Thermochemical liquefaction of pig manure: Factors influencing on oil publication-title: Fuel. – volume: 204 year: 2020 ident: b0090 article-title: Co-HTL of domestic sewage sludge and wastewater treatment derived microalgal biomass – An integrated biorefinery approach for sustainable biocrude production publication-title: Energy Convers. Manag. – volume: 50 start-page: 52 year: 2011 end-page: 61 ident: b0670 article-title: Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts publication-title: Ind. Eng. Chem. Res. – volume: 284 start-page: 139 year: 2019 end-page: 147 ident: b0350 article-title: Experimental and model enhancement of food waste hydrothermal liquefaction with combined effects of biochemical composition and reaction conditions publication-title: Bioresour. Technol. – reference: J. Yang, Q. (Sophia) He, H. Niu, K. Corscadden, T. Astatkie, Hydrothermal liquefaction of biomass model components for product yield prediction and reaction pathways exploration, Appl. Energy. 228 (2018) 1618–1628. https://doi.org/10.1016/j.apenergy.2018.06.142. – volume: 146 start-page: 463 year: 2013 end-page: 471 ident: b0075 article-title: Influence of strain-specific parameters on hydrothermal liquefaction of microalgae publication-title: Bioresour. Technol. – volume: 134 start-page: 340 year: 2017 end-page: 346 ident: b0295 article-title: Simultaneous production of biocrude oil and recovery of nutrients and metals from human feces via hydrothermal liquefaction publication-title: Energy Convers. Manag. – volume: 181 start-page: 105 year: 2019 end-page: 119 ident: b0050 article-title: Nitrogen and sulphur in algal biocrude: A review of the HTL process, upgrading, engine performance and emissions publication-title: Energy Convers. Manag. – reference: T. Minowa, S. ya Yokoyama, M. Kishimoto, T. Okakura, Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction, Fuel. 74 (1995) 1735–1738. https://doi.org/10.1016/0016-2361(95)80001-X. – volume: 139 start-page: 250 year: 2019 end-page: 257 ident: b0470 article-title: Co-liquefaction of low-lipid microalgae and starch-rich biomass waste: The interaction effect on product distribution and composition publication-title: J. Anal. Appl. Pyrolysis. – volume: 102 start-page: 6221 year: 2011 end-page: 6229 ident: b0065 article-title: Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis publication-title: Bioresour. Technol. – reference: C. Torri, L. Garcia Alba, C. Samorì, D. Fabbri, D.W.F. Brilman, Hydrothermal treatment (HTT) of microalgae: Detailed molecular characterization of HTT oil in view of HTT mechanism elucidation, Energy and Fuels. 26 (2012) 658–671. https://doi.org/10.1021/ef201417e. – volume: 44 start-page: 26933 year: 2019 end-page: 26942 ident: b0225 article-title: Investigation on the decomposition of chemical compositions during hydrothermal conversion of dewatered sewage sludge publication-title: Int. J. Hydrogen Energy. – volume: 56 start-page: 52 year: 2013 end-page: 60 ident: b0265 article-title: Comparative studies of thermochemical liquefaction characteristics of microalgae, lignocellulosic biomass and sewage sludge publication-title: Energy. – volume: 101 start-page: 3657 year: 2010 end-page: 3664 ident: b0305 article-title: Subcritical hydrothermal liquefaction of cattle manure to bio-oil: Effects of conversion parameters on bio-oil yield and characterization of bio-oil publication-title: Bioresour. Technol. – volume: 163 year: 2019 ident: b0520 article-title: How does zero valent iron activating peroxydisulfate improve the dewatering of anaerobically digested sludge? publication-title: Water Res. – volume: 102 start-page: 4876 year: 2011 end-page: 4883 ident: b0190 article-title: Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina: Effect of reaction conditions on product distribution and composition publication-title: Bioresour. Technol. – volume: 8 start-page: 167 year: 2015 ident: b0340 article-title: Oleaginous yeast platform for producing biofuels via co-solvent hydrothermal liquefaction publication-title: Biotechnol. Biofuels. – volume: 187 start-page: 23 year: 2015 end-page: 29 ident: b0270 article-title: Bio-oil from thermo-chemical hydro-liquefaction of wet sewage sludge publication-title: Bioresour. Technol. – reference: J. Yang, Q. (Sophia)He, L. Yang, A review on hydrothermal co-liquefaction of biomass, Appl. Energy. 250 (2019) 926–945. https://doi.org/10.1016/j.apenergy.2019.05.033. – volume: 256 start-page: 529 year: 2018 end-page: 542 ident: b0035 article-title: Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process publication-title: Bioresour. Technol. – volume: 262 year: 2020 ident: b0740 article-title: Ethanol addition during aqueous phase recirculation for further improving bio-oil yield and quality publication-title: Appl. Energy. – volume: 307 year: 2020 ident: b0550 article-title: Solid base catalytic hydrothermal liquefaction of macroalgae: Effects of process parameter on product yield and characterization publication-title: Bioresour. Technol. – start-page: 1 year: 2015 end-page: 11 ident: b0040 article-title: Characterization of liquefaction bio-oil from sewage sludge and its solubilization in diesel microemulsion publication-title: Energy. – volume: 254 year: 2019 ident: b0355 article-title: Evaluating the potential for bio-fuel upgrading: A comprehensive analysis of bio-crude and bio-residue from hydrothermal liquefaction of agricultural biomass publication-title: Appl. Energy. – volume: 179 start-page: 1103 year: 2019 end-page: 1113 ident: b0465 article-title: Effects of the aqueous phase recycling on bio-oil yield in hydrothermal liquefaction of Spirulina Platensis publication-title: Α-cellulose, and lignin, Energy. – volume: 111 start-page: 392 year: 2017 end-page: 398 ident: b0330 article-title: Biocrude production via supercritical hydrothermal co-liquefaction of spent mushroom compost and aspen wood sawdust publication-title: Renew. Energy. – volume: 173 start-page: 413 year: 2019 end-page: 422 ident: b0365 article-title: Optimization of hydrothermal co-liquefaction of seaweeds with lignocellulosic biomass: Merging 2nd and 3rd generation feedstocks for enhanced bio-oil production publication-title: Energy. – volume: 235 start-page: 714 year: 2019 end-page: 728 ident: b0160 article-title: The independent and coupled effects of feedstock characteristics and reaction conditions on biocrude production by hydrothermal liquefaction publication-title: Appl. Energy. – volume: 26 start-page: 642 year: 2012 end-page: 657 ident: b0620 publication-title: Energy Fuels – volume: 278 start-page: 311 year: 2019 end-page: 317 ident: b0440 article-title: Hydrothermal liquefaction of cellulose in ammonia/water publication-title: Bioresour. Technol. – volume: 210 start-page: 1376 year: 2019 end-page: 1384 ident: b0395 article-title: Surfactant assisted upgrading fuel properties of waste cooking oil biodiesel publication-title: J. Clean. Prod. – volume: 171 start-page: 618 year: 2018 end-page: 625 ident: b0745 article-title: Improvement in bio-crude yield and quality through co-liquefaction of algal biomass and sawdust in ethanol-water mixed solvent and recycling of the aqueous byproduct as a reaction medium publication-title: Energy Convers. Manag. – volume: 161 start-page: 214 year: 2018 end-page: 232 ident: b0045 article-title: Bio-oil upgrading by emulsification/microemulsification: A review publication-title: Energy. – reference: L. Yang, Q. (Sophia) He, P. Havard, K. Corscadden, C. (Charles) Xu, X. Wang, Co-liquefaction of spent coffee grounds and lignocellulosic feedstocks, Bioresour. Technol. 237 (2017) 108–121. https://doi.org/10.1016/j.biortech.2017.02.087. – volume: 102 start-page: 8295 year: 2011 end-page: 8303 ident: b0120 article-title: Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge publication-title: Bioresour. Technol. – volume: 6 start-page: 2724 year: 2018 end-page: 2732 ident: b0315 article-title: Acid and Alkali Catalyzed Hydrothermal Liquefaction of Dairy Manure Digestate and Food Waste publication-title: ACS Sustain. Chem. Eng. – volume: 245 start-page: 463 year: 2017 end-page: 470 ident: b0220 article-title: The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment publication-title: Bioresour. Technol. – volume: 56 start-page: 530 year: 2016 end-page: 539 ident: b0360 article-title: Conversion of poultry wastes into energy feedstocks publication-title: Waste Manag. – volume: 142 start-page: 1 year: 2013 end-page: 8 ident: b0705 article-title: Alternative fuel production by catalytic hydroliquefaction of solid municipal wastes, primary sludges and microalgae publication-title: Bioresour. Technol. – volume: 6 start-page: 5481 year: 2018 end-page: 5487 ident: b0720 article-title: Hydrothermal carbonization: Temperature influence on hydrochar and aqueous phase composition during process water recirculation publication-title: J. Environ. Chem. Eng. – volume: 62 start-page: 33 year: 2017 end-page: 86 ident: b0055 article-title: Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review publication-title: Prog. Energy Combust. Sci. – volume: 155 start-page: 234 year: 2018 end-page: 241 ident: b0380 article-title: Comparative study on lignocellulose liquefaction in water, ethanol, and water/ethanol mixture: Roles of ethanol and water publication-title: Energy. – volume: 101 start-page: 476 year: 2019 end-page: 492 ident: b0515 article-title: A review of recent developments of pretreatment technologies and hydrothermal liquefaction of microalgae for bio-crude oil production publication-title: Renew. Sustain. Energy Rev. – volume: 52 start-page: 1004 year: 2011 end-page: 1009 ident: b0300 article-title: Enhanced bio-oil production from swine manure co-liquefaction with crude glycerol publication-title: Energy Convers. Manag. – volume: 36 start-page: 2328 year: 2011 end-page: 2342 ident: b0015 article-title: Hydrothermal liquefaction of biomass : A review of subcritical water technologies publication-title: Energy. – volume: 17 start-page: 3584 year: 2015 end-page: 3599 ident: b0145 article-title: Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition publication-title: Green Chem. – volume: 389 year: 2020 ident: b0430 article-title: Reaction kinetics and characterisation of species in renewable crude from hydrothermal liquefaction of monomers to represent organic fractions of biomass feedstocks publication-title: Chem. Eng. J. – volume: 138 start-page: 115 year: 2018 end-page: 123 ident: b0245 article-title: Sub–supercritical liquefaction of municipal wet sewage sludge to produce bio-oil: Effect of different organic–water mixed solvents publication-title: J. Supercrit. Fluids. – volume: 43 start-page: 1827 year: 2000 end-page: 1833 ident: b0320 article-title: Thermochemical conversion of swine mamure: An alternative process for waste treatment and renewable energy production publication-title: Trans. Am. Soc. Agric. Eng. – volume: 202 start-page: 8 year: 2016 end-page: 14 ident: b0405 article-title: Element and chemical compounds transfer in bio-crude from hydrothermal liquefaction of microalgae publication-title: Bioresour. Technol. – volume: 259 start-page: 156 year: 2018 end-page: 163 ident: b0555 article-title: The migration and transformation behavior of heavy metals during co-liquefaction of municipal sewage sludge and lignocellulosic biomass publication-title: Bioresour. Technol. – volume: 64 start-page: 157 year: 1998 end-page: 160 ident: b0540 article-title: Distribution of nitrogen to oil products from liquefaction of amino acids publication-title: Bioresour. Technol. – volume: 258 year: 2020 ident: b0760 article-title: Optimizing process of hydrothermal liquefaction of microalgae via flash heating and isolating aqueous extract from bio-crude publication-title: J. Clean. Prod. – volume: 16 start-page: 377 year: 1999 end-page: 383 ident: b0445 article-title: Liquefaction of ammonia and cellulose: Effect of nitrogen/carbon ratio in the feedstock publication-title: Biomass and Bioenergy. – volume: 110 start-page: 617 year: 2012 end-page: 627 ident: b0290 article-title: Impact of reaction conditions on the simultaneous production of polysaccharides and bio-oil from heterotrophically grown Chlorella sorokiniana by a unique sequential hydrothermal liquefaction process publication-title: Bioresour. Technol. – reference: G. Yu, Y. Zhang, L. Schideman, T. Funk, Z. Wang, Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae, Energy Environ. Sci. 4 (2011) 4587–4595. https://doi.org/10.1039/C1EE01541A. – volume: 220 start-page: 471 year: 2016 end-page: 478 ident: b0565 article-title: Effect of glycerol as co-solvent on yields of bio-oil from rice straw through hydrothermal liquefaction publication-title: Bioresour. Technol. – volume: 274 start-page: 296 year: 2019 end-page: 301 ident: b0370 article-title: Co-liquefaction of Prosopis juliflora with polyolefin waste for production of high grade liquid hydrocarbons publication-title: Bioresour. Technol. – year: 2020 ident: b0500 article-title: Hydrothermal liquefaction of low-lipid algae Nannochloropsis sp. and Sargassum sp.: Effect of feedstock composition and temperature publication-title: Sci. Total Environ. 712 – volume: 156 start-page: 1 year: 2014 end-page: 5 ident: b0660 article-title: Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5 publication-title: Bioresour. Technol. – volume: 191 start-page: 426 year: 2015 end-page: 432 ident: b0585 article-title: Single- and two-step hydrothermal liquefaction of microalgae in a semi-continuous reactor: Effect of the operating parameters publication-title: Bioresour. Technol. – volume: 141 start-page: 420 year: 2019 end-page: 430 ident: b0645 article-title: Catalytic upgrading of hydrothermal liquefaction biocrudes: Different challenges for different feedstocks publication-title: Renew. Energy. – volume: 183 start-page: 9 year: 2016 end-page: 19 ident: b0100 article-title: Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild Cyanobacteria sp. and cultivated Bacillariophyta sp publication-title: Fuel. – volume: 8 start-page: 15 year: 2015 end-page: 22 ident: b0400 article-title: Two-stage hydrothermal liquefaction of a high-protein microalga publication-title: Algal Res. – volume: 18 start-page: 2542 year: 2016 end-page: 2553 ident: b0095 article-title: Enhancing the performance of Co-hydrothermal liquefaction for mixed algae strains by the Maillard reaction publication-title: Green Chem. – volume: 12 start-page: 473 year: 1997 end-page: 475 ident: b0615 article-title: Behaviour of nitrogen during liquefaction of dewatered sewage sludge publication-title: Biomass and Bioenergy. – volume: 104798 year: 2020 ident: b0545 article-title: The Influence of Lipids on the Fate of Nitrogen during Hydrothermal Liquefaction of Protein-containing Biomass publication-title: J. Anal. Appl. Pyrolysis. – volume: 240 start-page: 169 year: 2019 end-page: 178 ident: b0415 article-title: Elucidation of reaction pathways of nitrogenous species by hydrothermal liquefaction process of model compounds publication-title: Fuel. – volume: 82 start-page: 2640 year: 2018 end-page: 2651 ident: b0275 article-title: Waste-to-Energy biofuel production potential for selected feedstocks in the conterminous United States publication-title: Renew. Sustain. Energy Rev. – volume: 1460 start-page: 135 year: 2016 end-page: 146 ident: b0480 article-title: Quantitative analysis of nitrogen containing compounds in microalgae based bio-oils using comprehensive two-dimensional gas-chromatography coupled to nitrogen chemiluminescence detector and time of flight mass spectrometer publication-title: J. Chromatogr. A. – volume: 112 start-page: 93 year: 2013 end-page: 99 ident: b0695 article-title: Thermochemical liquefaction of rice husk for bio-oil production in mixed solvent (ethanol – water) publication-title: Fuel Process. Technol. – reference: P.J. Valdez, M.C. Nelson, H.Y. Wang, X.N. Lin, P.E. Savage, Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions, Biomass and Bioenergy. 46 (2012) 317–331. https://doi.org/10.1016/j.biombioe.2012.08.009. – volume: 185 start-page: 229 year: 2016 end-page: 235 ident: b0710 article-title: Composition of the bio-oil from the hydrothermal liquefaction of duckweed and the influence of the extraction solvents publication-title: Fuel. – volume: 42 start-page: 1571 year: 2008 end-page: 1582 ident: b0755 article-title: Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water publication-title: Water Res. – reference: S.R. Villadsen, L. Dithmer, R. Forsberg, J. Becker, A. Rudolf, S.B. Iversen, B.B. Iversen, M. Glasius, Development and Application of Chemical Analysis Methods for Investigation of Bio-Oils and Aqueous Phase from Hydrothermal Liquefaction of Biomass, Energy & Fuels. 26 (2012) 121023084455008. https://doi.org/10.1021/ef300954e. – reference: D. López Barreiro, M. Beck, U. Hornung, F. Ronsse, A. Kruse, W. Prins, Suitability of hydrothermal liquefaction as a conversion route to produce biofuels from macroalgae, Algal Res. 11 (2015) 234–241. https://doi.org/10.1016/j.algal.2015.06.023. – volume: 298 year: 2020 ident: b0730 article-title: Aqueous phase recirculation during hydrothermal carbonization of microalgae and soybean straw: A comparison study publication-title: Bioresour. Technol. – volume: 262 year: 2020 ident: b0230 article-title: A centrifugation-first approach for recovering high-yield bio-oil with high calorific values in biomass liquefaction: A case study of sewage sludge publication-title: Fuel. – volume: 236 start-page: 129 year: 2017 end-page: 137 ident: b0070 article-title: Co-liquefaction of mixed culture microalgal strains under sub-critical water conditions publication-title: Bioresour. Technol. – volume: 220 start-page: 190 year: 2016 end-page: 199 ident: b0725 article-title: Effect of hydrothermal liquefaction aqueous phase recycling on bio-crude yields and composition publication-title: Bioresour. Technol. – volume: 237 start-page: 283 year: 2019 end-page: 291 ident: b0325 article-title: A comprehensive analysis of food waste derived liquefaction bio-oil properties for industrial application publication-title: Appl. Energy. – volume: 174 year: 2020 ident: b0675 article-title: Fe(II) catalyzing sodium percarbonate facilitates the dewaterability of waste activated sludge: Performance, mechanism, and implication publication-title: Water Res. – volume: 200 start-page: 320 year: 2016 end-page: 327 ident: b0505 article-title: Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char publication-title: Bioresour. Technol. – volume: 238 start-page: 240 year: 2019 end-page: 247 ident: b0700 article-title: Comparative studies on liquefaction of low-lipid microalgae into bio-crude oil using varying reaction media publication-title: Fuel. – volume: 243 start-page: 1112 year: 2017 end-page: 1120 ident: b0140 article-title: Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties publication-title: Bioresour. Technol. – volume: 28 start-page: 5178 year: 2014 end-page: 5183 ident: b0060 article-title: Hydrothermal Liquefaction of Microalgae in an Ethanol-Water Co-Solvent To Produce Biocrude Oil publication-title: Energy & Fuels. – start-page: 415 year: 2018 end-page: 426 ident: b0450 article-title: Effect of process conditions on bio-oil obtained through continuous hydrothermal liquefaction of Scenedesmus sp. microalgae publication-title: J. Anal. Appl. Pyrolysis. 134 – volume: 647 start-page: 210 year: 2019 end-page: 222 ident: b0030 article-title: Biochar stability assessment methods: A review publication-title: Sci. Total Environ. – volume: 107 start-page: 244 year: 2017 end-page: 253 ident: b0210 article-title: Towards a marine biorefinery through the hydrothermal liquefaction of macroalgae native to the United Kingdom publication-title: Biomass and Bioenergy. – volume: 19 start-page: 1163 year: 2017 end-page: 1174 ident: b0410 article-title: Quantitative multiphase model for hydrothermal liquefaction of algal biomass publication-title: Green Chem. – volume: 164 start-page: 106 year: 2014 end-page: 112 ident: b0575 article-title: Sequential hydrothermal fractionation of yeast Cryptococcus curvatus biomass publication-title: Bioresour. Technol. – volume: 29 start-page: 2422 year: 2015 end-page: 2430 ident: b0735 article-title: Process Water Recycle in Hydrothermal Liquefaction of Microalgae To Enhance Bio-oil Yield publication-title: Energy & Fuels. – volume: 135 start-page: 710 year: 2013 end-page: 719 ident: b0170 article-title: Hydrothermal processing of duckweed: Effect of reaction conditions on product distribution and composition publication-title: Bioresour. Technol. – year: 2020 ident: 10.1016/j.cej.2020.126030_b0500 article-title: Hydrothermal liquefaction of low-lipid algae Nannochloropsis sp. and Sargassum sp.: Effect of feedstock composition and temperature publication-title: Sci. Total Environ. 712 – volume: 6 start-page: 22 year: 2014 ident: 10.1016/j.cej.2020.126030_b0185 article-title: Pre- and post-harvest treatment of macroalgae to improve the quality of feedstock for hydrothermal liquefaction publication-title: Algal Res. doi: 10.1016/j.algal.2014.08.008 – volume: 284 start-page: 139 year: 2019 ident: 10.1016/j.cej.2020.126030_b0350 article-title: Experimental and model enhancement of food waste hydrothermal liquefaction with combined effects of biochemical composition and reaction conditions publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.03.076 – volume: 235 start-page: 714 year: 2019 ident: 10.1016/j.cej.2020.126030_b0160 article-title: The independent and coupled effects of feedstock characteristics and reaction conditions on biocrude production by hydrothermal liquefaction publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2018.10.120 – volume: 68 start-page: 113 year: 2017 ident: 10.1016/j.cej.2020.126030_b0020 article-title: Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.09.120 – volume: 62 start-page: 33 year: 2017 ident: 10.1016/j.cej.2020.126030_b0055 article-title: Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2017.05.004 – volume: 187 start-page: 23 year: 2015 ident: 10.1016/j.cej.2020.126030_b0270 article-title: Bio-oil from thermo-chemical hydro-liquefaction of wet sewage sludge publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.03.093 – volume: 238 start-page: 240 year: 2019 ident: 10.1016/j.cej.2020.126030_b0700 article-title: Comparative studies on liquefaction of low-lipid microalgae into bio-crude oil using varying reaction media publication-title: Fuel. doi: 10.1016/j.fuel.2018.10.124 – volume: 101 start-page: 3657 year: 2010 ident: 10.1016/j.cej.2020.126030_b0305 article-title: Subcritical hydrothermal liquefaction of cattle manure to bio-oil: Effects of conversion parameters on bio-oil yield and characterization of bio-oil publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.12.058 – volume: 307 year: 2020 ident: 10.1016/j.cej.2020.126030_b0550 article-title: Solid base catalytic hydrothermal liquefaction of macroalgae: Effects of process parameter on product yield and characterization publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.123232 – volume: 111 start-page: 179 year: 2016 ident: 10.1016/j.cej.2020.126030_b0650 article-title: Thermochemical liquefaction of algae for bio-oil production in supercritical acetone/ethanol/isopropanol publication-title: J. Supercrit. Fluids. doi: 10.1016/j.supflu.2015.11.021 – volume: 44 start-page: 26933 year: 2019 ident: 10.1016/j.cej.2020.126030_b0225 article-title: Investigation on the decomposition of chemical compositions during hydrothermal conversion of dewatered sewage sludge publication-title: Int. J. Hydrogen Energy. doi: 10.1016/j.ijhydene.2019.08.182 – ident: 10.1016/j.cej.2020.126030_b0435 doi: 10.1021/ef300954e – volume: 6 start-page: 13570 year: 2018 ident: 10.1016/j.cej.2020.126030_b0285 article-title: Nitrogen Migration and Transformation during Hydrothermal Liquefaction of Livestock Manures publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b03810 – volume: 29 start-page: 3208 year: 2015 ident: 10.1016/j.cej.2020.126030_b0655 article-title: Catalytic hydrothermal liquefaction of soy protein concentrate publication-title: Energy and Fuels. doi: 10.1021/acs.energyfuels.5b00321 – volume: 172 start-page: 12 year: 2016 ident: 10.1016/j.cej.2020.126030_b0635 article-title: Non-catalytic upgrading of fast pyrolysis bio-oil in supercritical ethanol and combustion behavior of the upgraded oil publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2016.03.093 – volume: 19 start-page: 1163 year: 2017 ident: 10.1016/j.cej.2020.126030_b0410 article-title: Quantitative multiphase model for hydrothermal liquefaction of algal biomass publication-title: Green Chem. doi: 10.1039/C6GC03294J – volume: 4 start-page: 6931 year: 2016 ident: 10.1016/j.cej.2020.126030_b0630 article-title: Products, Pathways, and Kinetics for the Fast Hydrothermal Liquefaction of Soy Protein Isolate publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b01857 – volume: 107 start-page: 244 year: 2017 ident: 10.1016/j.cej.2020.126030_b0210 article-title: Towards a marine biorefinery through the hydrothermal liquefaction of macroalgae native to the United Kingdom publication-title: Biomass and Bioenergy. doi: 10.1016/j.biombioe.2017.10.010 – volume: 245 start-page: 463 year: 2017 ident: 10.1016/j.cej.2020.126030_b0220 article-title: The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.08.195 – volume: 44 start-page: 1873 year: 2001 ident: 10.1016/j.cej.2020.126030_b0640 article-title: Effects of alternative process gases on the thermochemical conversion process of swine manure publication-title: Trans. Am. Soc. Agric. Eng. – volume: 64 start-page: 157 year: 1998 ident: 10.1016/j.cej.2020.126030_b0540 article-title: Distribution of nitrogen to oil products from liquefaction of amino acids publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(97)00079-5 – volume: 155 start-page: 234 year: 2018 ident: 10.1016/j.cej.2020.126030_b0380 article-title: Comparative study on lignocellulose liquefaction in water, ethanol, and water/ethanol mixture: Roles of ethanol and water publication-title: Energy. doi: 10.1016/j.energy.2018.05.023 – volume: 237 start-page: 283 year: 2019 ident: 10.1016/j.cej.2020.126030_b0325 article-title: A comprehensive analysis of food waste derived liquefaction bio-oil properties for industrial application publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2018.12.084 – volume: 202 start-page: 8 year: 2016 ident: 10.1016/j.cej.2020.126030_b0405 article-title: Element and chemical compounds transfer in bio-crude from hydrothermal liquefaction of microalgae publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.11.076 – volume: 153 start-page: 1061 year: 2018 ident: 10.1016/j.cej.2020.126030_b0685 article-title: Biodiesel microemulsion upgrading and thermogravimetric study of bio-oil produced by liquefaction of different sludges publication-title: Energy. doi: 10.1016/j.energy.2018.04.087 – ident: 10.1016/j.cej.2020.126030_b0625 doi: 10.1039/c1ee01541a – volume: 28 start-page: 5178 year: 2014 ident: 10.1016/j.cej.2020.126030_b0060 article-title: Hydrothermal Liquefaction of Microalgae in an Ethanol-Water Co-Solvent To Produce Biocrude Oil publication-title: Energy & Fuels. doi: 10.1021/ef501040j – volume: 251 year: 2018 ident: 10.1016/j.cej.2020.126030_b0375 article-title: Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.12.018 – volume: 179 start-page: 1103 year: 2019 ident: 10.1016/j.cej.2020.126030_b0465 article-title: Effects of the aqueous phase recycling on bio-oil yield in hydrothermal liquefaction of Spirulina Platensis publication-title: Α-cellulose, and lignin, Energy. – volume: 49 start-page: 59 year: 2015 ident: 10.1016/j.cej.2020.126030_b0005 article-title: Recent progress in the direct liquefaction of typical biomass publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2015.01.003 – volume: 36 start-page: 2328 year: 2011 ident: 10.1016/j.cej.2020.126030_b0015 article-title: Hydrothermal liquefaction of biomass : A review of subcritical water technologies publication-title: Energy. doi: 10.1016/j.energy.2011.03.013 – volume: 109 start-page: 176 year: 2014 ident: 10.1016/j.cej.2020.126030_b0260 article-title: Thermochemical liquefaction characteristics of sewage sludge in different organic solvents publication-title: J. Anal. Appl. Pyrolysis. doi: 10.1016/j.jaap.2014.06.015 – volume: 161 start-page: 214 year: 2018 ident: 10.1016/j.cej.2020.126030_b0045 article-title: Bio-oil upgrading by emulsification/microemulsification: A review publication-title: Energy. doi: 10.1016/j.energy.2018.07.117 – volume: 185 start-page: 229 year: 2016 ident: 10.1016/j.cej.2020.126030_b0710 article-title: Composition of the bio-oil from the hydrothermal liquefaction of duckweed and the influence of the extraction solvents publication-title: Fuel. doi: 10.1016/j.fuel.2016.07.117 – volume: 298 year: 2020 ident: 10.1016/j.cej.2020.126030_b0730 article-title: Aqueous phase recirculation during hydrothermal carbonization of microalgae and soybean straw: A comparison study publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.122502 – volume: 173 start-page: 413 year: 2019 ident: 10.1016/j.cej.2020.126030_b0365 article-title: Optimization of hydrothermal co-liquefaction of seaweeds with lignocellulosic biomass: Merging 2nd and 3rd generation feedstocks for enhanced bio-oil production publication-title: Energy. doi: 10.1016/j.energy.2019.02.091 – volume: 102 start-page: 6909 year: 2011 ident: 10.1016/j.cej.2020.126030_b0535 article-title: Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.04.038 – volume: 135 start-page: 710 year: 2013 ident: 10.1016/j.cej.2020.126030_b0170 article-title: Hydrothermal processing of duckweed: Effect of reaction conditions on product distribution and composition publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.08.106 – ident: 10.1016/j.cej.2020.126030_b0560 doi: 10.1016/j.apenergy.2019.05.033 – volume: 93 start-page: 581 year: 2020 ident: 10.1016/j.cej.2020.126030_b0195 article-title: Hydrothermal liquefaction of macroalgae: Influence of zeolites based catalyst on products publication-title: J. Energy Inst. doi: 10.1016/j.joei.2019.06.007 – volume: 258 year: 2020 ident: 10.1016/j.cej.2020.126030_b0760 article-title: Optimizing process of hydrothermal liquefaction of microalgae via flash heating and isolating aqueous extract from bio-crude publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120660 – volume: 262 year: 2020 ident: 10.1016/j.cej.2020.126030_b0230 article-title: A centrifugation-first approach for recovering high-yield bio-oil with high calorific values in biomass liquefaction: A case study of sewage sludge publication-title: Fuel. doi: 10.1016/j.fuel.2019.116628 – volume: 102 start-page: 4841 year: 2011 ident: 10.1016/j.cej.2020.126030_b0665 article-title: Catalytic hydrothermal processing of microalgae: Decomposition and upgrading of lipids publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.12.113 – volume: 1 start-page: 32 year: 2008 ident: 10.1016/j.cej.2020.126030_b0010 article-title: Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies publication-title: Energy Environ. Sci. doi: 10.1039/b810100k – volume: 36 start-page: 1604 year: 2019 ident: 10.1016/j.cej.2020.126030_b0165 article-title: Comprehensive potential evaluation of the bio-oil production and nutrient recycling from seven algae through hydrothermal liquefaction publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-019-0345-4 – volume: 101 start-page: 2713 year: 2010 ident: 10.1016/j.cej.2020.126030_b0215 article-title: Energy recovery from secondary pulp/paper-mill sludge and sewage sludge with supercritical water treatment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.11.106 – start-page: 1 year: 2015 ident: 10.1016/j.cej.2020.126030_b0040 article-title: Characterization of liquefaction bio-oil from sewage sludge and its solubilization in diesel microemulsion publication-title: Energy. – volume: 284 start-page: 286 year: 2019 ident: 10.1016/j.cej.2020.126030_b0110 article-title: Investigation of Mannich reaction during co-liquefaction of microalgae and sweet potato waste publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.03.136 – volume: 141 start-page: 420 year: 2019 ident: 10.1016/j.cej.2020.126030_b0645 article-title: Catalytic upgrading of hydrothermal liquefaction biocrudes: Different challenges for different feedstocks publication-title: Renew. Energy. doi: 10.1016/j.renene.2019.04.003 – volume: 240 start-page: 169 year: 2019 ident: 10.1016/j.cej.2020.126030_b0415 article-title: Elucidation of reaction pathways of nitrogenous species by hydrothermal liquefaction process of model compounds publication-title: Fuel. doi: 10.1016/j.fuel.2018.11.136 – volume: 12 start-page: 473 year: 1997 ident: 10.1016/j.cej.2020.126030_b0615 article-title: Behaviour of nitrogen during liquefaction of dewatered sewage sludge publication-title: Biomass and Bioenergy. doi: 10.1016/S0961-9534(97)00017-2 – ident: 10.1016/j.cej.2020.126030_b0130 doi: 10.1021/ef201417e – volume: 81 start-page: 629 year: 2008 ident: 10.1016/j.cej.2020.126030_b0530 article-title: Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-008-1681-1 – volume: 298 year: 2020 ident: 10.1016/j.cej.2020.126030_b0495 article-title: Nitrogen containing functional groups of biochar: An overview publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.122286 – volume: 256 start-page: 529 year: 2018 ident: 10.1016/j.cej.2020.126030_b0035 article-title: Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.01.121 – volume: 101 start-page: 476 year: 2019 ident: 10.1016/j.cej.2020.126030_b0515 article-title: A review of recent developments of pretreatment technologies and hydrothermal liquefaction of microalgae for bio-crude oil production publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.11.037 – ident: 10.1016/j.cej.2020.126030_b0205 doi: 10.1016/j.algal.2015.06.023 – volume: 159 start-page: 686 year: 2018 ident: 10.1016/j.cej.2020.126030_b0255 article-title: Comprehensive evaluation on product characteristics of fast hydrothermal liquefaction of sewage sludge at different temperatures publication-title: Energy. doi: 10.1016/j.energy.2018.06.191 – volume: 243 start-page: 1112 year: 2017 ident: 10.1016/j.cej.2020.126030_b0140 article-title: Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.07.046 – volume: 167 start-page: 189 year: 2019 ident: 10.1016/j.cej.2020.126030_b0750 article-title: Effects of the extraction solvents in hydrothermal liquefaction processes: Biocrude oil quality and energy conversion efficiency publication-title: Energy. doi: 10.1016/j.energy.2018.11.003 – volume: 33 start-page: 7415 year: 2019 ident: 10.1016/j.cej.2020.126030_b0280 article-title: Liquefaction of Sewage Sludge to Produce Bio-oil in Different Organic Solvents with in Situ Hydrogenation publication-title: Energy and Fuels. doi: 10.1021/acs.energyfuels.9b01434 – volume: 6 start-page: 5481 year: 2018 ident: 10.1016/j.cej.2020.126030_b0720 article-title: Hydrothermal carbonization: Temperature influence on hydrochar and aqueous phase composition during process water recirculation publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2018.07.053 – volume: 259 start-page: 156 year: 2018 ident: 10.1016/j.cej.2020.126030_b0555 article-title: The migration and transformation behavior of heavy metals during co-liquefaction of municipal sewage sludge and lignocellulosic biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.03.019 – volume: 138 start-page: 1143 year: 2019 ident: 10.1016/j.cej.2020.126030_b0155 article-title: Co-hydrothermal liquefaction of microalgae and sewage sludge in subcritical water: Ash effects on bio-oil production publication-title: Renew. Energy. doi: 10.1016/j.renene.2019.02.020 – volume: 111 start-page: 392 year: 2017 ident: 10.1016/j.cej.2020.126030_b0330 article-title: Biocrude production via supercritical hydrothermal co-liquefaction of spent mushroom compost and aspen wood sawdust publication-title: Renew. Energy. doi: 10.1016/j.renene.2017.04.019 – volume: 389 year: 2020 ident: 10.1016/j.cej.2020.126030_b0430 article-title: Reaction kinetics and characterisation of species in renewable crude from hydrothermal liquefaction of monomers to represent organic fractions of biomass feedstocks publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124397 – volume: 16 start-page: 377 year: 1999 ident: 10.1016/j.cej.2020.126030_b0445 article-title: Liquefaction of ammonia and cellulose: Effect of nitrogen/carbon ratio in the feedstock publication-title: Biomass and Bioenergy. doi: 10.1016/S0961-9534(99)00003-3 – volume: 142 start-page: 1 year: 2013 ident: 10.1016/j.cej.2020.126030_b0705 article-title: Alternative fuel production by catalytic hydroliquefaction of solid municipal wastes, primary sludges and microalgae publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.04.123 – volume: 154 start-page: 336 year: 2017 ident: 10.1016/j.cej.2020.126030_b0425 article-title: Catalytic upgrading of bio-oil in hydrothermal liquefaction of algae major model components over liquid acids publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.11.018 – volume: 262 year: 2020 ident: 10.1016/j.cej.2020.126030_b0740 article-title: Ethanol addition during aqueous phase recirculation for further improving bio-oil yield and quality publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2020.114550 – volume: 128 start-page: 209 year: 2014 ident: 10.1016/j.cej.2020.126030_b0115 article-title: Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2014.04.068 – volume: 163 year: 2019 ident: 10.1016/j.cej.2020.126030_b0520 article-title: How does zero valent iron activating peroxydisulfate improve the dewatering of anaerobically digested sludge? publication-title: Water Res. doi: 10.1016/j.watres.2019.114912 – volume: 191 start-page: 426 year: 2015 ident: 10.1016/j.cej.2020.126030_b0585 article-title: Single- and two-step hydrothermal liquefaction of microalgae in a semi-continuous reactor: Effect of the operating parameters publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.04.027 – ident: 10.1016/j.cej.2020.126030_b0485 doi: 10.1016/j.apenergy.2018.10.035 – volume: 278 start-page: 311 year: 2019 ident: 10.1016/j.cej.2020.126030_b0440 article-title: Hydrothermal liquefaction of cellulose in ammonia/water publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.01.061 – volume: 82 start-page: 2640 year: 2018 ident: 10.1016/j.cej.2020.126030_b0275 article-title: Waste-to-Energy biofuel production potential for selected feedstocks in the conterminous United States publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.09.107 – volume: 138 start-page: 115 year: 2018 ident: 10.1016/j.cej.2020.126030_b0245 article-title: Sub–supercritical liquefaction of municipal wet sewage sludge to produce bio-oil: Effect of different organic–water mixed solvents publication-title: J. Supercrit. Fluids. doi: 10.1016/j.supflu.2018.04.011 – volume: 10 start-page: 1005 year: 2017 ident: 10.1016/j.cej.2020.126030_b0570 article-title: Subcritical Water Hydrolysis of Microalgal Biomass for Protein and Pyrolytic Bio-oil Recovery publication-title: Bioenergy Res. doi: 10.1007/s12155-017-9859-y – volume: 146 start-page: 463 year: 2013 ident: 10.1016/j.cej.2020.126030_b0075 article-title: Influence of strain-specific parameters on hydrothermal liquefaction of microalgae publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.07.123 – volume: 196 start-page: 99 year: 2015 ident: 10.1016/j.cej.2020.126030_b0475 article-title: Understanding low-lipid algae hydrothermal liquefaction characteristics and pathways through hydrothermal liquefaction of algal major components: Crude polysaccharides, crude proteins and their binary mixtures publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.07.020 – volume: 40 start-page: 2648 year: 2018 ident: 10.1016/j.cej.2020.126030_b0490 article-title: Chemical compositions and wastewater properties of aqueous phase (wastewater) produced from the hydrothermal treatment of wet biomass: A review, Energy Sources publication-title: Part A Recover. Util. Environ. Eff. – ident: 10.1016/j.cej.2020.126030_b0455 doi: 10.1016/j.apenergy.2018.06.142 – volume: 134 start-page: 340 year: 2017 ident: 10.1016/j.cej.2020.126030_b0295 article-title: Simultaneous production of biocrude oil and recovery of nutrients and metals from human feces via hydrothermal liquefaction publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.12.052 – volume: 17 start-page: 3584 year: 2015 ident: 10.1016/j.cej.2020.126030_b0145 article-title: Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition publication-title: Green Chem. doi: 10.1039/C5GC00574D – volume: 220 start-page: 471 year: 2016 ident: 10.1016/j.cej.2020.126030_b0565 article-title: Effect of glycerol as co-solvent on yields of bio-oil from rice straw through hydrothermal liquefaction publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.08.110 – volume: 43 start-page: 1827 year: 2000 ident: 10.1016/j.cej.2020.126030_b0320 article-title: Thermochemical conversion of swine mamure: An alternative process for waste treatment and renewable energy production publication-title: Trans. Am. Soc. Agric. Eng. doi: 10.13031/2013.3087 – ident: 10.1016/j.cej.2020.126030_b0765 doi: 10.1016/j.biombioe.2012.08.009 – ident: 10.1016/j.cej.2020.126030_b0080 doi: 10.1016/0016-2361(95)80001-X – ident: 10.1016/j.cej.2020.126030_b0335 doi: 10.1016/j.biortech.2017.02.087 – volume: 183 start-page: 9 year: 2016 ident: 10.1016/j.cej.2020.126030_b0100 article-title: Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild Cyanobacteria sp. and cultivated Bacillariophyta sp publication-title: Fuel. doi: 10.1016/j.fuel.2016.06.013 – volume: 254 year: 2019 ident: 10.1016/j.cej.2020.126030_b0355 article-title: Evaluating the potential for bio-fuel upgrading: A comprehensive analysis of bio-crude and bio-residue from hydrothermal liquefaction of agricultural biomass publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2019.113679 – volume: 56 start-page: 530 year: 2016 ident: 10.1016/j.cej.2020.126030_b0360 article-title: Conversion of poultry wastes into energy feedstocks publication-title: Waste Manag. doi: 10.1016/j.wasman.2016.07.019 – volume: 274 start-page: 296 year: 2019 ident: 10.1016/j.cej.2020.126030_b0370 article-title: Co-liquefaction of Prosopis juliflora with polyolefin waste for production of high grade liquid hydrocarbons publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.11.102 – volume: 231 start-page: 116 year: 2017 ident: 10.1016/j.cej.2020.126030_b0385 article-title: Effect of biomass pretreatment on the product distribution and composition resulting from the hydrothermal liquefaction of short rotation coppice willow publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.01.056 – volume: 117 start-page: 43 year: 2016 ident: 10.1016/j.cej.2020.126030_b0085 article-title: Effect of process parameters on solvolysis liquefaction of Chlorella pyrenoidosa in ethanol–water system and energy evaluation publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.03.029 – volume: 133 start-page: 197 year: 2013 ident: 10.1016/j.cej.2020.126030_b0105 article-title: Thermo-chemical conversion of Chlorella pyrenoidosa to liquid biofuels publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.01.069 – volume: 104798 year: 2020 ident: 10.1016/j.cej.2020.126030_b0545 article-title: The Influence of Lipids on the Fate of Nitrogen during Hydrothermal Liquefaction of Protein-containing Biomass publication-title: J. Anal. Appl. Pyrolysis. – volume: 25 start-page: 274 year: 2017 ident: 10.1016/j.cej.2020.126030_b0590 article-title: Sequential Hydrothermal Liquefaction characterization and nutrient recovery assessment publication-title: Algal Res. doi: 10.1016/j.algal.2017.05.022 – volume: 69 start-page: 136 year: 2018 ident: 10.1016/j.cej.2020.126030_b0580 article-title: Hydrothermal liquefaction of pretreated low-lipid microalgae for the production of bio-oil with low heteroatom content publication-title: Process Biochem. doi: 10.1016/j.procbio.2018.03.018 – volume: 647 start-page: 210 year: 2019 ident: 10.1016/j.cej.2020.126030_b0030 article-title: Biochar stability assessment methods: A review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.402 – volume: 18 start-page: 61 year: 2016 ident: 10.1016/j.cej.2020.126030_b0595 article-title: Nutrient recovery from municipal sludge for microalgae cultivation with two-step hydrothermal liquefaction publication-title: Algal Res. doi: 10.1016/j.algal.2016.06.009 – volume: 155 start-page: 77 year: 2015 ident: 10.1016/j.cej.2020.126030_b0025 article-title: Surface characterization of rice husk bio-char produced by liquefaction and application for cationic dye (Malachite green) adsorption publication-title: Fuel. doi: 10.1016/j.fuel.2015.04.019 – volume: 41 start-page: 5393 year: 2002 ident: 10.1016/j.cej.2020.126030_b0715 article-title: Hydrothermal dechlorination and denitrogenation of municipal-waste-plastics-derived fuel oil under sub- and supercritical conditions publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie020338x – start-page: 415 year: 2018 ident: 10.1016/j.cej.2020.126030_b0450 article-title: Effect of process conditions on bio-oil obtained through continuous hydrothermal liquefaction of Scenedesmus sp. microalgae publication-title: J. Anal. Appl. Pyrolysis. 134 doi: 10.1016/j.jaap.2018.07.008 – volume: 8 start-page: 167 year: 2015 ident: 10.1016/j.cej.2020.126030_b0340 article-title: Oleaginous yeast platform for producing biofuels via co-solvent hydrothermal liquefaction publication-title: Biotechnol. Biofuels. doi: 10.1186/s13068-015-0345-5 – volume: 5 start-page: 20193 year: 2015 ident: 10.1016/j.cej.2020.126030_b0235 article-title: Influence of process conditions on pretreatment of microalgae for protein extraction and production of biocrude during hydrothermal liquefaction of pretreated Tetraselmis sp publication-title: RSC Adv. doi: 10.1039/C4RA11662C – volume: 26 start-page: 642 issue: 1 year: 2012 ident: 10.1016/j.cej.2020.126030_b0620 publication-title: Energy Fuels doi: 10.1021/ef201415s – volume: 36 start-page: 6406 year: 2011 ident: 10.1016/j.cej.2020.126030_b0690 article-title: Comparative studies of thermochemical liquefaction characteristics of microalgae using different organic solvents publication-title: Energy. doi: 10.1016/j.energy.2011.09.031 – volume: 174 year: 2020 ident: 10.1016/j.cej.2020.126030_b0675 article-title: Fe(II) catalyzing sodium percarbonate facilitates the dewaterability of waste activated sludge: Performance, mechanism, and implication publication-title: Water Res. doi: 10.1016/j.watres.2020.115626 – volume: 52 start-page: 1004 year: 2011 ident: 10.1016/j.cej.2020.126030_b0300 article-title: Enhanced bio-oil production from swine manure co-liquefaction with crude glycerol publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2010.08.028 – volume: 6 start-page: 2724 year: 2018 ident: 10.1016/j.cej.2020.126030_b0315 article-title: Acid and Alkali Catalyzed Hydrothermal Liquefaction of Dairy Manure Digestate and Food Waste publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b04359 – volume: 1460 start-page: 135 year: 2016 ident: 10.1016/j.cej.2020.126030_b0480 article-title: Quantitative analysis of nitrogen containing compounds in microalgae based bio-oils using comprehensive two-dimensional gas-chromatography coupled to nitrogen chemiluminescence detector and time of flight mass spectrometer publication-title: J. Chromatogr. A. doi: 10.1016/j.chroma.2016.07.009 – volume: 292 year: 2019 ident: 10.1016/j.cej.2020.126030_b0200 article-title: Hydrothermal liquefaction of Ulva prolifera macroalgae and the influence of base catalysts on products publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.03.125 – volume: 77 year: 2020 ident: 10.1016/j.cej.2020.126030_b0610 article-title: Valorization of hydrothermal liquefaction aqueous phase: pathways towards commercial viability publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2019.100819 – volume: 220 start-page: 190 year: 2016 ident: 10.1016/j.cej.2020.126030_b0725 article-title: Effect of hydrothermal liquefaction aqueous phase recycling on bio-crude yields and composition publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.08.053 – volume: 102 start-page: 215 year: 2011 ident: 10.1016/j.cej.2020.126030_b0135 article-title: Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.06.028 – volume: 68–69 start-page: 561 year: 2003 ident: 10.1016/j.cej.2020.126030_b0525 article-title: Pyrolysis of sewage sludge: Nitrogenated compounds and pretreatment effects publication-title: J. Anal. Appl. Pyrolysis. doi: 10.1016/S0165-2370(03)00052-4 – volume: 6 start-page: 15260 year: 2016 ident: 10.1016/j.cej.2020.126030_b0390 article-title: Bio-oil production from eight selected green landscaping wastes through hydrothermal liquefaction publication-title: RSC Adv. doi: 10.1039/C5RA24760H – volume: 181 start-page: 105 year: 2019 ident: 10.1016/j.cej.2020.126030_b0050 article-title: Nitrogen and sulphur in algal biocrude: A review of the HTL process, upgrading, engine performance and emissions publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.11.054 – ident: 10.1016/j.cej.2020.126030_b0345 doi: 10.1016/j.fuel.2017.06.021 – volume: 13 start-page: 53 year: 2016 ident: 10.1016/j.cej.2020.126030_b0180 article-title: Effect of low temperature hydrothermal liquefaction on catalytic hydrodenitrogenation of algae biocrude and model macromolecules publication-title: Algal Res. doi: 10.1016/j.algal.2015.11.009 – volume: 102 start-page: 6221 year: 2011 ident: 10.1016/j.cej.2020.126030_b0065 article-title: Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.02.057 – volume: 56 start-page: 52 year: 2013 ident: 10.1016/j.cej.2020.126030_b0265 article-title: Comparative studies of thermochemical liquefaction characteristics of microalgae, lignocellulosic biomass and sewage sludge publication-title: Energy. doi: 10.1016/j.energy.2013.04.065 – volume: 40 start-page: 9125 year: 2015 ident: 10.1016/j.cej.2020.126030_b0420 article-title: Interaction between sewage sludge components lignin (phenol) and proteins (alanine) in supercritical water gasification publication-title: Int. J. Hydrogen Energy. doi: 10.1016/j.ijhydene.2015.05.072 – volume: 690 start-page: 573 year: 2019 ident: 10.1016/j.cej.2020.126030_b0680 article-title: Characterisation of ashes from waste biomass power plants and phosphorus recovery publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.06.312 – volume: 29 start-page: 2422 year: 2015 ident: 10.1016/j.cej.2020.126030_b0735 article-title: Process Water Recycle in Hydrothermal Liquefaction of Microalgae To Enhance Bio-oil Yield publication-title: Energy & Fuels. doi: 10.1021/ef502773w – volume: 164 start-page: 106 year: 2014 ident: 10.1016/j.cej.2020.126030_b0575 article-title: Sequential hydrothermal fractionation of yeast Cryptococcus curvatus biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.04.059 – volume: 171 start-page: 618 year: 2018 ident: 10.1016/j.cej.2020.126030_b0745 article-title: Improvement in bio-crude yield and quality through co-liquefaction of algal biomass and sawdust in ethanol-water mixed solvent and recycling of the aqueous byproduct as a reaction medium publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.06.023 – volume: 114115 year: 2019 ident: 10.1016/j.cej.2020.126030_b0600 article-title: Comparative techno-economic analysis of algal biofuel production via hydrothermal liquefaction : One stage versus two stages publication-title: Appl. Energy. – volume: 156 start-page: 1 year: 2014 ident: 10.1016/j.cej.2020.126030_b0660 article-title: Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.01.010 – volume: 21 start-page: 288 year: 1988 ident: 10.1016/j.cej.2020.126030_b0250 article-title: Conversion of sewage sludge to heavy oil by direct thermochemical liquefaction publication-title: J. Chem. Eng. Japan. doi: 10.1252/jcej.21.288 – volume: 102 start-page: 8295 year: 2011 ident: 10.1016/j.cej.2020.126030_b0120 article-title: Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.06.041 – volume: 102 start-page: 4876 year: 2011 ident: 10.1016/j.cej.2020.126030_b0190 article-title: Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina: Effect of reaction conditions on product distribution and composition publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.01.031 – volume: 236 start-page: 129 year: 2017 ident: 10.1016/j.cej.2020.126030_b0070 article-title: Co-liquefaction of mixed culture microalgal strains under sub-critical water conditions publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.03.165 – volume: 193 year: 2020 ident: 10.1016/j.cej.2020.126030_b0125 article-title: Hydrothermal liquefaction of fresh lemon-peel and Spirulina platensis blending -operation parameter and biocrude chemistry investigation publication-title: Energy. doi: 10.1016/j.energy.2019.116645 – volume: 210 start-page: 1376 year: 2019 ident: 10.1016/j.cej.2020.126030_b0395 article-title: Surfactant assisted upgrading fuel properties of waste cooking oil biodiesel publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.11.027 – volume: 204 year: 2020 ident: 10.1016/j.cej.2020.126030_b0090 article-title: Co-HTL of domestic sewage sludge and wastewater treatment derived microalgal biomass – An integrated biorefinery approach for sustainable biocrude production publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.112312 – volume: 264 year: 2020 ident: 10.1016/j.cej.2020.126030_b0310 article-title: Thermochemical liquefaction of pig manure: Factors influencing on oil publication-title: Fuel. doi: 10.1016/j.fuel.2019.116884 – volume: 218 start-page: 402 year: 2018 ident: 10.1016/j.cej.2020.126030_b0240 article-title: Effects of solvent participation and controlled product separation on biomass liquefaction: A case study of sewage sludge publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2018.03.008 – volume: 38 start-page: 933 year: 2014 ident: 10.1016/j.cej.2020.126030_b0605 article-title: Hydrothermal liquefaction for algal biorefinery: A critical review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.07.030 – volume: 18 start-page: 2542 year: 2016 ident: 10.1016/j.cej.2020.126030_b0095 article-title: Enhancing the performance of Co-hydrothermal liquefaction for mixed algae strains by the Maillard reaction publication-title: Green Chem. doi: 10.1039/C5GC02953H – volume: 1 start-page: 789 year: 2017 ident: 10.1016/j.cej.2020.126030_b0150 article-title: Hydrothermal co-liquefaction of biomasses – quantitative analysis of bio-crude and aqueous phase composition publication-title: Sustain. Energy Fuels. doi: 10.1039/C7SE00104E – volume: 200 start-page: 320 year: 2016 ident: 10.1016/j.cej.2020.126030_b0505 article-title: Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.10.040 – volume: 8 start-page: 15 year: 2015 ident: 10.1016/j.cej.2020.126030_b0400 article-title: Two-stage hydrothermal liquefaction of a high-protein microalga publication-title: Algal Res. doi: 10.1016/j.algal.2014.12.010 – volume: 112 start-page: 93 year: 2013 ident: 10.1016/j.cej.2020.126030_b0695 article-title: Thermochemical liquefaction of rice husk for bio-oil production in mixed solvent (ethanol – water) publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2013.03.005 – volume: 139 start-page: 250 year: 2019 ident: 10.1016/j.cej.2020.126030_b0470 article-title: Co-liquefaction of low-lipid microalgae and starch-rich biomass waste: The interaction effect on product distribution and composition publication-title: J. Anal. Appl. Pyrolysis. doi: 10.1016/j.jaap.2019.02.013 – volume: 110 start-page: 617 year: 2012 ident: 10.1016/j.cej.2020.126030_b0290 article-title: Impact of reaction conditions on the simultaneous production of polysaccharides and bio-oil from heterotrophically grown Chlorella sorokiniana by a unique sequential hydrothermal liquefaction process publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.01.047 – volume: 50 start-page: 52 year: 2011 ident: 10.1016/j.cej.2020.126030_b0670 article-title: Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie100758s – volume: 42 start-page: 1571 year: 2008 ident: 10.1016/j.cej.2020.126030_b0755 article-title: Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water publication-title: Water Res. doi: 10.1016/j.watres.2007.11.007 – volume: 155 start-page: 334 year: 2014 ident: 10.1016/j.cej.2020.126030_b0175 article-title: Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.12.083 – volume: 97 start-page: 103 year: 2018 ident: 10.1016/j.cej.2020.126030_b0460 article-title: Catalytic hydrothermal liquefaction of algae and upgrading of biocrude : A critical review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.08.042 – volume: 48 start-page: 776 year: 2015 ident: 10.1016/j.cej.2020.126030_b0510 article-title: A review of bio-oil production from hydrothermal liquefaction of algae publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.04.049 |
| SSID | ssj0006919 |
| Score | 2.66969 |
| SecondaryResourceType | review_article |
| Snippet | [Display omitted]
•20–40% of the N in biomass feedstock would distribute into bio-oil during the HTL.•Effects of biomass and HTL processing parameters on... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 126030 |
| SubjectTerms | Aqueous phase Bio-oil Biocrude oil Hydrothermal liquefaction Nitrogen migration and transformation Sub-/super-critical water gasification |
| Title | Nitrogen in bio-oil produced from hydrothermal liquefaction of biomass: A review |
| URI | https://dx.doi.org/10.1016/j.cej.2020.126030 |
| Volume | 401 |
| WOSCitedRecordID | wos000569903200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3212 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006919 issn: 1385-8947 databaseCode: AIEXJ dateStart: 19970115 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgM9oPISLVD5wAkpq65jJzG3FSpqq2pViSL2FjmOI7wKSZWmL34Gv5hxbCdpoag9cIlWjjOJMt9OxuOZbxB6DxjZTQqWBBHJsoDmEuwgETzIKNjLTAAKYtE1m4gXi2S55MeTyS9fC3NRxlWVXF3x0_-qahgDZZvS2QeouxcKA_AblA5HUDsc76X4hW6bGs6aSEam66DWpcnCys_NTn9XTfL9Om-6wqsfoJ_SELi68gbjOZp6fHCobcV6M-wceDYDTzCgBiLDnn7CtAcRJs3Hhkm_XOr2p60mdpEHHo0iD0fK2pkjvRphtI9gf1MwXg2m247ui_pa9xJsy22hy9p9gF38goxzQazJDRMWJNzybnqbTN0Ma1VnsOiyuzd_GHwbe1hNpVpNjfTpMPcmufatj16fiuiz3FYpiEiNiNSKeITWScw4WMr1-cHe8rD_vke8axfTP7ffK--yBm89x9-9nZEHc7KJnrqlB55byDxDE1U9RxsjQsoX6NiDB-sKO_BgDx5swIPH4MFj8OC6wA48H_EcW-i8RF8_75182g9cz41AEh63QU6F5AL-pTyKw4wrorhUjOVShIqHlMGpghoOJE5FSBQNCS9mgsgshqV3qKLwFVqr6kq9RljkkpGioDTnlIo8ETyeMRkx44ILGakttOvfTSodIb3pi1Kmd-pkC33oLzm1bCz_mkz9C0-dO2ndxBTAc_dl2w-5xxv0ZMD0W7TWNufqHXosL1p91uw45PwGitmSzg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen+in+bio-oil+produced+from+hydrothermal+liquefaction+of+biomass%3A+A+review&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Leng%2C+Lijian&rft.au=Zhang%2C+Weijin&rft.au=Peng%2C+Haoyi&rft.au=Li%2C+Hailong&rft.date=2020-12-01&rft.issn=1385-8947&rft.volume=401&rft.spage=126030&rft_id=info:doi/10.1016%2Fj.cej.2020.126030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2020_126030 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |