A modular algorithm to compute the generalized Hermite normal form for Z[x]-lattices

In this paper, a modular algorithm is given to compute the generalized Hermite normal form of matrices over Z[x], or equivalently, the reduced Gröbner basis of Z[x]-modules in Z[x]n. The main advantage of the algorithm is that the special structure of the Gröbner basis of ideals in Z[x] is taken int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of symbolic computation Jg. 81; S. 97 - 118
Hauptverfasser: Jing, Rui-Juan, Yuan, Chun-Ming
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.07.2017
Schlagworte:
ISSN:0747-7171, 1095-855X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, a modular algorithm is given to compute the generalized Hermite normal form of matrices over Z[x], or equivalently, the reduced Gröbner basis of Z[x]-modules in Z[x]n. The main advantage of the algorithm is that the special structure of the Gröbner basis of ideals in Z[x] is taken into consideration. The algorithm is deterministic and seems to be the most efficient available algorithm for inputs with relatively low degrees.
AbstractList In this paper, a modular algorithm is given to compute the generalized Hermite normal form of matrices over Z[x], or equivalently, the reduced Gröbner basis of Z[x]-modules in Z[x]n. The main advantage of the algorithm is that the special structure of the Gröbner basis of ideals in Z[x] is taken into consideration. The algorithm is deterministic and seems to be the most efficient available algorithm for inputs with relatively low degrees.
Author Yuan, Chun-Ming
Jing, Rui-Juan
Author_xml – sequence: 1
  givenname: Rui-Juan
  surname: Jing
  fullname: Jing, Rui-Juan
  email: rjing@amss.ac.cn
– sequence: 2
  givenname: Chun-Ming
  surname: Yuan
  fullname: Yuan, Chun-Ming
  email: cmyuan@mmrc.iss.ac.cn
BookMark eNp9kM1KAzEURoNUsK0-gLu8wIzJ_CXBVSlqhYKbLkSRkCZ32gwzk5Kkoj69M9SVi27ud_ngXLhnhia96wGhW0pSSmh116RN0Gk2rCnNUkLKCzSlRJQJL8vXCZoSVrCEUUav0CyEhhAiirycos0Cd84cW-WxanfO27jvcHRYu-5wjIDjHvAOevCqtT9g8Ap8Z4e-d75TLa6HGAd-e__6SFoVo9UQrtFlrdoAN385R5vHh81ylaxfnp6Xi3WiM8FiYnKhOBXKGGbyjMGW1qoUGa0oMUVmeMFZsa0J47wShrG6MjkBrrYgmNEC8jlip7PauxA81FLbqKJ1ffTKtpISObqRjRzcyNGNpJkc3Awk_UcevO2U_z7L3J8YGD76tOBl0BZ6DcZ60FEaZ8_Qvwzef-0
CitedBy_id crossref_primary_10_1007_s11425_018_9319_7
crossref_primary_10_1088_1757_899X_770_1_012061
Cites_doi 10.1137/0608057
10.1137/0208040
10.1016/S0747-7171(02)00140-2
10.1016/S0747-7171(02)00139-6
10.1016/S0747-7171(88)80020-8
10.1016/0885-064X(86)90001-4
10.1016/j.jsc.2006.02.001
10.1287/moor.12.1.50
10.1016/S0747-7171(88)80049-X
10.1016/S0747-7171(85)80035-3
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jsc.2016.12.005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1095-855X
EndPage 118
ExternalDocumentID 10_1016_j_jsc_2016_12_005
S0747717116301699
GrantInformation_xml – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences
  funderid: http://dx.doi.org/10.13039/501100004739
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-d39a819add7d327eb1fa5921610d42d84874bf078869d77f6d30e8abe97dc9e3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392999800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0747-7171
IngestDate Tue Nov 18 22:35:32 EST 2025
Sat Nov 29 02:51:00 EST 2025
Fri Feb 23 02:31:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Reduced Gröbner bases
Hensel Lifting
Generalized Hermite normal form
Modular algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-d39a819add7d327eb1fa5921610d42d84874bf078869d77f6d30e8abe97dc9e3
PageCount 22
ParticipantIDs crossref_citationtrail_10_1016_j_jsc_2016_12_005
crossref_primary_10_1016_j_jsc_2016_12_005
elsevier_sciencedirect_doi_10_1016_j_jsc_2016_12_005
PublicationCentury 2000
PublicationDate July-August 2017
2017-07-00
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: July-August 2017
PublicationDecade 2010
PublicationTitle Journal of symbolic computation
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Domich, Kannan, Trotter (br0090) 1987; 12
Moenck (br0180) 1973
Jing, Yuan, Gao (br0110) 2016
Cox, Little, Schenck (br0080) 2010
Lazard (br0160) 1985; 3
Winkler (br0220) 1988; 6
Kaltofen, Krishnamoorthy, Saunders (br0120) 1987; 8
Kandri-Rody, Kapur (br0130) 1988; 6
Storjohann, Labahn (br0210) 1996
Bürgisser, Clausen, Shokrollahi (br0050) 1996
Gao, Huang, Yuan (br0100) 2014
Beckermann, Labahn, Villard (br0030) 2006; 41
Kannan, Bachem (br0140) 1979; 8
Cox, Little, O'shea (br0070) 2005; vol. 185
Cohen (br0060) 1983; vol. 138
Lichtblau (br0170) 2003
Mulders, Storjohann (br0190) 2003; 35
Lenstra, Lenstra, Manasse, Pollard (br0150) 1990
Bini, Pan (br0040) 1986; 2
Arnold (br0010) 2003; 35
Storjohann (br0200) 2000
Bürgisser (10.1016/j.jsc.2016.12.005_br0050) 1996
Storjohann (10.1016/j.jsc.2016.12.005_br0210) 1996
Cox (10.1016/j.jsc.2016.12.005_br0070) 2005; vol. 185
Mulders (10.1016/j.jsc.2016.12.005_br0190) 2003; 35
Cox (10.1016/j.jsc.2016.12.005_br0080) 2010
Kaltofen (10.1016/j.jsc.2016.12.005_br0120) 1987; 8
Storjohann (10.1016/j.jsc.2016.12.005_br0200) 2000
Beckermann (10.1016/j.jsc.2016.12.005_br0030) 2006; 41
Arnold (10.1016/j.jsc.2016.12.005_br0010) 2003; 35
Kannan (10.1016/j.jsc.2016.12.005_br0140) 1979; 8
Domich (10.1016/j.jsc.2016.12.005_br0090) 1987; 12
Cohen (10.1016/j.jsc.2016.12.005_br0060) 1983; vol. 138
Bini (10.1016/j.jsc.2016.12.005_br0040) 1986; 2
Lenstra (10.1016/j.jsc.2016.12.005_br0150) 1990
Jing (10.1016/j.jsc.2016.12.005_br0110)
Kandri-Rody (10.1016/j.jsc.2016.12.005_br0130) 1988; 6
Gao (10.1016/j.jsc.2016.12.005_br0100)
Lazard (10.1016/j.jsc.2016.12.005_br0160) 1985; 3
Moenck (10.1016/j.jsc.2016.12.005_br0180) 1973
Lichtblau (10.1016/j.jsc.2016.12.005_br0170) 2003
Winkler (10.1016/j.jsc.2016.12.005_br0220) 1988; 6
References_xml – volume: 41
  start-page: 708
  year: 2006
  end-page: 737
  ident: br0030
  article-title: Normal forms for general polynomial matrices
  publication-title: J. Symb. Comput.
– year: 2010
  ident: br0080
  article-title: Toric Varieties
– volume: 2
  start-page: 179
  year: 1986
  end-page: 203
  ident: br0040
  article-title: Polynomial division and its computational complexity
  publication-title: J. Complex.
– start-page: 564
  year: 1990
  end-page: 572
  ident: br0150
  article-title: The number field sieve
  publication-title: Proc. STOC'90
– start-page: 259
  year: 1996
  end-page: 266
  ident: br0210
  article-title: Asymptotically fast computation of Hermite normal forms of integer matrices
  publication-title: Proc. ISSAC1996
– volume: 35
  start-page: 403
  year: 2003
  end-page: 419
  ident: br0010
  article-title: Modular algorithms for computing Gröbner bases
  publication-title: J. Symb. Comput.
– volume: 8
  start-page: 683
  year: 1987
  end-page: 690
  ident: br0120
  article-title: Fast parallel computation of Hermite and Smith forms of polynomial matrices
  publication-title: SIAM J. Algebraic Discrete Methods
– year: 2003
  ident: br0170
  article-title: Revisiting Strong Gröbner Bases over Euclidean Domains
– volume: 8
  start-page: 499
  year: 1979
  end-page: 507
  ident: br0140
  article-title: Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix
  publication-title: SIAM J. Comput.
– volume: 6
  start-page: 37
  year: 1988
  end-page: 57
  ident: br0130
  article-title: Computing a Gröbner basis of a polynomial ideal over a Euclidean domain
  publication-title: J. Symb. Comput.
– volume: 35
  start-page: 377
  year: 2003
  end-page: 401
  ident: br0190
  article-title: On lattice reduction for polynomial matrices
  publication-title: J. Symb. Comput.
– volume: 12
  start-page: 50
  year: 1987
  end-page: 59
  ident: br0090
  article-title: Hermite normal form computation using modulo determinant arithmetic
  publication-title: Math. Oper. Res.
– volume: 3
  start-page: 261
  year: 1985
  end-page: 270
  ident: br0160
  article-title: Ideal bases and primary decomposition: case of two variables
  publication-title: J. Symb. Comput.
– volume: vol. 138
  year: 1983
  ident: br0060
  article-title: A Course in Computational Algebraic Number Theory
– year: 1996
  ident: br0050
  article-title: Algebraic Complexity Theory
– year: 2016
  ident: br0110
  article-title: A polynomial-time algorithm to compute generalized Hermite normal form of matrices over
– volume: 6
  start-page: 287
  year: 1988
  end-page: 304
  ident: br0220
  article-title: A p-adic approach to the computation of Gröbner bases
  publication-title: J. Symb. Comput.
– start-page: 142
  year: 1973
  end-page: 151
  ident: br0180
  article-title: Fast computation of GCDs
  publication-title: Proc. STOC'73
– year: 2000
  ident: br0200
  article-title: Algorithms for Matrix Canonical Forms
– year: 2014
  ident: br0100
  article-title: Binomial difference ideal and toric difference variety
– volume: vol. 185
  year: 2005
  ident: br0070
  article-title: Using Algebraic Geometry
– volume: vol. 138
  year: 1983
  ident: 10.1016/j.jsc.2016.12.005_br0060
– volume: vol. 185
  year: 2005
  ident: 10.1016/j.jsc.2016.12.005_br0070
– start-page: 259
  year: 1996
  ident: 10.1016/j.jsc.2016.12.005_br0210
  article-title: Asymptotically fast computation of Hermite normal forms of integer matrices
– volume: 8
  start-page: 683
  issue: 4
  year: 1987
  ident: 10.1016/j.jsc.2016.12.005_br0120
  article-title: Fast parallel computation of Hermite and Smith forms of polynomial matrices
  publication-title: SIAM J. Algebraic Discrete Methods
  doi: 10.1137/0608057
– volume: 8
  start-page: 499
  issue: 4
  year: 1979
  ident: 10.1016/j.jsc.2016.12.005_br0140
  article-title: Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix
  publication-title: SIAM J. Comput.
  doi: 10.1137/0208040
– start-page: 142
  year: 1973
  ident: 10.1016/j.jsc.2016.12.005_br0180
  article-title: Fast computation of GCDs
– year: 2000
  ident: 10.1016/j.jsc.2016.12.005_br0200
– ident: 10.1016/j.jsc.2016.12.005_br0110
– volume: 35
  start-page: 403
  issue: 4
  year: 2003
  ident: 10.1016/j.jsc.2016.12.005_br0010
  article-title: Modular algorithms for computing Gröbner bases
  publication-title: J. Symb. Comput.
  doi: 10.1016/S0747-7171(02)00140-2
– volume: 35
  start-page: 377
  issue: 4
  year: 2003
  ident: 10.1016/j.jsc.2016.12.005_br0190
  article-title: On lattice reduction for polynomial matrices
  publication-title: J. Symb. Comput.
  doi: 10.1016/S0747-7171(02)00139-6
– volume: 6
  start-page: 37
  issue: 1
  year: 1988
  ident: 10.1016/j.jsc.2016.12.005_br0130
  article-title: Computing a Gröbner basis of a polynomial ideal over a Euclidean domain
  publication-title: J. Symb. Comput.
  doi: 10.1016/S0747-7171(88)80020-8
– year: 1996
  ident: 10.1016/j.jsc.2016.12.005_br0050
– ident: 10.1016/j.jsc.2016.12.005_br0100
– year: 2003
  ident: 10.1016/j.jsc.2016.12.005_br0170
– volume: 2
  start-page: 179
  issue: 3
  year: 1986
  ident: 10.1016/j.jsc.2016.12.005_br0040
  article-title: Polynomial division and its computational complexity
  publication-title: J. Complex.
  doi: 10.1016/0885-064X(86)90001-4
– year: 2010
  ident: 10.1016/j.jsc.2016.12.005_br0080
– volume: 41
  start-page: 708
  issue: 6
  year: 2006
  ident: 10.1016/j.jsc.2016.12.005_br0030
  article-title: Normal forms for general polynomial matrices
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2006.02.001
– volume: 12
  start-page: 50
  issue: 1
  year: 1987
  ident: 10.1016/j.jsc.2016.12.005_br0090
  article-title: Hermite normal form computation using modulo determinant arithmetic
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.12.1.50
– start-page: 564
  year: 1990
  ident: 10.1016/j.jsc.2016.12.005_br0150
  article-title: The number field sieve
– volume: 6
  start-page: 287
  issue: 2
  year: 1988
  ident: 10.1016/j.jsc.2016.12.005_br0220
  article-title: A p-adic approach to the computation of Gröbner bases
  publication-title: J. Symb. Comput.
  doi: 10.1016/S0747-7171(88)80049-X
– volume: 3
  start-page: 261
  year: 1985
  ident: 10.1016/j.jsc.2016.12.005_br0160
  article-title: Ideal bases and primary decomposition: case of two variables
  publication-title: J. Symb. Comput.
  doi: 10.1016/S0747-7171(85)80035-3
SSID ssj0009435
Score 2.1237059
Snippet In this paper, a modular algorithm is given to compute the generalized Hermite normal form of matrices over Z[x], or equivalently, the reduced Gröbner basis of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 97
SubjectTerms Generalized Hermite normal form
Hensel Lifting
Modular algorithm
Reduced Gröbner bases
Title A modular algorithm to compute the generalized Hermite normal form for Z[x]-lattices
URI https://dx.doi.org/10.1016/j.jsc.2016.12.005
Volume 81
WOSCitedRecordID wos000392999800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-855X
  dateEnd: 20180228
  omitProxy: false
  ssIdentifier: ssj0009435
  issn: 0747-7171
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5cCFlpcopcgHekEyysOOM8eFtiorUSHYw1KEoiR22l1ts1WToIVfzzh2kuVRBEhcrMiKN5bn2_Fn-_MMIc8gioWIU4-lIowYj6KcZeADw6kdPYPSSoJqk03Ik5N4OoW3Tm5btekEZFnGqxVc_ldTYx0a21yd_Qtz9z-KFfiMRscSzY7lHxl-ZLLbtOLSdHG2xLX_-YUhmLlN39ASzTMba3r2FdnmsVHDYH1pyKu9zNhKD0_3xcvVvjhgi7Q2ArnqGhpbfbnITGxh94HvDvbHLmHKu2bGxs2Aww9N6s76m5K96SZPt_fgy16n6jbEuksxgwKpakNgS4arRPuetn4VmRxDVEzXHa_N1eI8p1XpujnYtz75J_dudxrmL-aViT7pR-1OrieGuaxXGL43vTCdQL5pAs7ATbIZSAHouzdHrw-n4yEyM7dZWLted0ffrQjwhw_9mrysEZLJNrnjTEBHFgF3yQ1d3iNbXZYO6pz2fTIZUQcI2gOC1kvqAEEREHQNENQBglpAUAMIU9DTj6tPPRgekMnR4eTVMXO5NFgegKyZCiFF8oezmVRhIPF_WKQCAuT7nuKBinHdyrMC-WIcgZKyiFTo6TjNNEiVgw4fko1yWepHhIIfZlBw6QmPc6lNQDdcoiqpRVjIjMMO8boxSnIXZ96kO1kknaBwnuCwJmZYEz9IcFh3yPO-yaUNsvK7l3k38IljiZb9JYiS65s9_rdmu-T2APwnZKO-avQeuZV_rmfV1VOHpW-PaIqO
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modular+algorithm+to+compute+the+generalized+Hermite+normal+form+for+Z%5Bx%5D-lattices&rft.jtitle=Journal+of+symbolic+computation&rft.au=Jing%2C+Rui-Juan&rft.au=Yuan%2C+Chun-Ming&rft.date=2017-07-01&rft.pub=Elsevier+Ltd&rft.issn=0747-7171&rft.eissn=1095-855X&rft.volume=81&rft.spage=97&rft.epage=118&rft_id=info:doi/10.1016%2Fj.jsc.2016.12.005&rft.externalDocID=S0747717116301699
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-7171&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-7171&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-7171&client=summon