A variant of the united multi-operator evolutionary algorithms using sequential quadratic programming and improved SHADE-cnEpSin
United multi-operator evolutionary algorithms (UMOEAs) combine multi-operator differential evolution (DE), the multi-operator genetic algorithm (MOGA), and the covariance matrix adaption evolution strategy (CMA-ES). UMOEAs-II, an improved version of UMOEAs, uses three differential evolution variants...
Saved in:
| Published in: | Information sciences Vol. 622; pp. 652 - 681 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.04.2023
|
| Subjects: | |
| ISSN: | 0020-0255, 1872-6291 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | United multi-operator evolutionary algorithms (UMOEAs) combine multi-operator differential evolution (DE), the multi-operator genetic algorithm (MOGA), and the covariance matrix adaption evolution strategy (CMA-ES). UMOEAs-II, an improved version of UMOEAs, uses three differential evolution variants as multi-operator differential evolution (MODE), and CMA-ES. In this study, we further reform UMOEAs-II using an improved SHADE-cnEpSin that employs a novel adaptive strategy of scaling factor F, a crossover rate cri,j updating mechanism which can calculate crossover rate for the ith individual with a particular jth component, an improved rank-based selective pressure based mutation strategy, and nonlinear population size reduction along with sequential quadratic programming method. The effectiveness of the improved rank-based selective pressure based mutation strategy, nonlinear population size reduction, and sequential quadratic programming are evident from the individual validations. The novel framework, enhanced the exploration and exploitation abilities, is named UMOEAs-III and is evaluated using the CEC2017 benchmark functions. The experiments are tested on 10, 30, 50, and 100 dimensions. The experimental results demonstrate the outstanding performance of UMOEAs-III in both low and high-dimensional tests compared to the state-of-the-art DE-based variants and hybrid algorithms. |
|---|---|
| AbstractList | United multi-operator evolutionary algorithms (UMOEAs) combine multi-operator differential evolution (DE), the multi-operator genetic algorithm (MOGA), and the covariance matrix adaption evolution strategy (CMA-ES). UMOEAs-II, an improved version of UMOEAs, uses three differential evolution variants as multi-operator differential evolution (MODE), and CMA-ES. In this study, we further reform UMOEAs-II using an improved SHADE-cnEpSin that employs a novel adaptive strategy of scaling factor F, a crossover rate cri,j updating mechanism which can calculate crossover rate for the ith individual with a particular jth component, an improved rank-based selective pressure based mutation strategy, and nonlinear population size reduction along with sequential quadratic programming method. The effectiveness of the improved rank-based selective pressure based mutation strategy, nonlinear population size reduction, and sequential quadratic programming are evident from the individual validations. The novel framework, enhanced the exploration and exploitation abilities, is named UMOEAs-III and is evaluated using the CEC2017 benchmark functions. The experiments are tested on 10, 30, 50, and 100 dimensions. The experimental results demonstrate the outstanding performance of UMOEAs-III in both low and high-dimensional tests compared to the state-of-the-art DE-based variants and hybrid algorithms. |
| Author | Liu, Fuchang Wang, Ben Guo, Youjian Hong, Libin |
| Author_xml | – sequence: 1 givenname: Libin surname: Hong fullname: Hong, Libin email: libin.hong@hznu.edu.cn – sequence: 2 givenname: Youjian surname: Guo fullname: Guo, Youjian – sequence: 3 givenname: Fuchang surname: Liu fullname: Liu, Fuchang – sequence: 4 givenname: Ben surname: Wang fullname: Wang, Ben |
| BookMark | eNp9kMFqGzEQhkVJoU6aB8hNL7BbjWyvdunJpG4TCOSQ9izG0qwzZldyJK2htz561ySnHHIa-Jnvh_-7FBchBhLiBlQNCppvh5pDrrXSugaoYQmfxAJao6tGd3AhFkppVSm9Xn8RlzkflFIr0zQL8W8jT5gYQ5Gxl-WZ5BS4kJfjNBSu4pESlpgkneIwFY4B01-Jwz4mLs9jllPmsJeZXiYKhXGQLxP6GWEnjynuE47j-QGDlzzOyWmufrrb_NhWLmyPTxy-is89Dpmu3-6V-PNz-_v2rnp4_HV_u3monO5MqfxSoVm5BqHvu51Gj03feb-izjnYGdIOTKt81_bU7qAza9LLdtdh56gBg2p5Jcxrr0sx50S9dVzwvKgk5MGCsmeR9mBnkfYs0gLYWeRMwjvymHicPXzIfH9laJ50Yko2O6bgyHMiV6yP_AH9Hxh5kgM |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_126403 crossref_primary_10_1016_j_autcon_2024_105891 crossref_primary_10_1016_j_swevo_2025_102154 crossref_primary_10_1016_j_asoc_2025_113282 crossref_primary_10_1016_j_energy_2024_134100 crossref_primary_10_1016_j_ins_2023_120077 crossref_primary_10_1016_j_neucom_2023_126899 crossref_primary_10_1016_j_renene_2024_120074 crossref_primary_10_1038_s41598_024_72279_1 crossref_primary_10_1007_s42235_024_00505_7 crossref_primary_10_1016_j_swevo_2023_101452 crossref_primary_10_1007_s10462_024_11053_1 crossref_primary_10_1016_j_engappai_2025_111117 crossref_primary_10_1016_j_ins_2024_120524 crossref_primary_10_1016_j_ins_2024_120548 |
| Cites_doi | 10.1109/TEVC.2009.2014613 10.1109/CEC.2016.7744163 10.1137/S0036144502414942 10.1016/j.asoc.2021.107678 10.1109/TEVC.2019.2890858 10.1186/s41074-019-0053-3 10.1109/TEVC.2006.872133 10.1109/CEC45853.2021.9504959 10.1007/BF02579150 10.1016/j.energy.2019.116778 10.1016/j.asoc.2020.106609 10.1023/A:1008202821328 10.1017/S0962492900002518 10.1007/978-3-642-29353-5_18 10.1109/CEC.2014.6900380 10.1109/ICGTSPICC.2016.7955308 10.1109/CEC45853.2021.9504792 10.1016/j.ins.2020.11.023 10.1109/ACCESS.2022.3185068 10.1109/CEC.2014.6900308 10.1109/CEC.2016.7744164 10.1145/1569901.1570014 10.1007/978-0-387-40065-5_18 10.1007/978-3-319-13356-0_2 10.1109/CEC.2017.7969524 10.1016/j.neucom.2021.08.118 10.1109/CEC.2017.7969336 10.1016/j.cor.2015.09.006 10.1109/CEC.2013.6557555 10.4236/jmf.2022.123029 10.1016/j.ins.2020.11.055 10.1007/s10489-018-1153-y 10.1016/j.neucom.2020.09.007 10.1109/TEVC.2008.927706 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Inc. |
| Copyright_xml | – notice: 2022 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2022.11.131 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 681 |
| ExternalDocumentID | 10_1016_j_ins_2022_11_131 S0020025522014402 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-d30a74c6a1ff9b2ada6f9dd4e9cc1b7e2c1780d98fe8b1975e238b9a9ce617a03 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000900836600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Sat Nov 29 07:27:02 EST 2025 Tue Nov 18 22:11:33 EST 2025 Fri Feb 23 02:38:51 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Differential evolution SHADE-cnEpSin United multi-operator evolutionary algorithms Sequential quadratic programming CMA-ES Nonlinear population size reduction |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-d30a74c6a1ff9b2ada6f9dd4e9cc1b7e2c1780d98fe8b1975e238b9a9ce617a03 |
| PageCount | 30 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2022_11_131 crossref_primary_10_1016_j_ins_2022_11_131 elsevier_sciencedirect_doi_10_1016_j_ins_2022_11_131 |
| PublicationCentury | 2000 |
| PublicationDate | April 2023 2023-04-00 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Hu, Wang, Peng, Zeng (b0020) 2020; 193 Elsayed, Sarker, Essam, Hamza (b0035) 2014 J.L.J. Laredo, C.M. Fernandes, J.J.M. Guervós, C. Gagné, Improving genetic algorithms performance via deterministic population shrinkage, in: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, 2009, p. 819–826. Awad, Ali, Suganthan, Reynolds (b0065) 2016 Boggs, Tolle (b0120) 1995; 4 Li, Wang, Jiang, Li (b0195) 2021; 421 Mousavirad, Moghadam, Saadatmand, Chakrabortty, Schaefer, Oliva (b0100) 2022 Qin, Huang, Suganthan (b0160) 2009; 13 Qian, Chai, Xu, Zhang (b0180) 2018; 48 Wang, Li, Zhu, Meng (b0095) 2021; 552 Cui, Li, Lin, Chen, Lu (b0175) 2016; 67 Hu, Dong, Fu, Zhai (b0030) 2022; 12 Zhang, Sanderson (b0200) 2009; 13 Stanovov, Akhmedova, Semenkin (b0085) 2021 Awad, Ali, Suganthan, Liang, Qu (b0205) 2017 Tanabe, Fukunaga (b0055) 2014 Su, Vargas, Sakurai (b0015) 2019; 11 Brest, Greiner, Boskovic, Mernik, Zumer (b0155) 2006; 10 Zamuda, Brest (b0165) 2012 Mohamed, Hadi, Mohamed, Awad (b0150) 2020 P.A. Vikhar, Evolutionary algorithms: A critical review and its future prospects, in: 2016 International conference on global trends in signal processing, information computing and communication, IEEE, 2016, pp. 261–265. Kumar, Misra, Singh (b0135) 2017 Ozkaya, Guvenc, Bingol (b0115) 2022; 10 Zhao, Zhao, Wang, Song (b0090) 2020; 96 Awad, Ali, Suganthan (b0070) 2017 Nocedal, Wright (b0125) 2006 Su, Vargas, Sakurai (b0010) 2019; 23 Elsayed, Hamza, Sarker (b0040) 2016 Karmarkar (b0140) 1984; 4 Stanovov, Akhmedova, Semenkin (b0075) 2018 Gill, Wong (b0130) 2012 Cui, Chang, Li, Kong, Tian, Wang, Huang, Yang, Wu, Li (b0025) 2021; 465 T.J. Choi, C.W. Ahn, An adaptive cauchy differential evolution algorithm with population size reduction and modified multiple mutation strategies, in: Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Vol. 2, Springer International Publishing, 2015, pp. 13–26. Tang, Peng, Dai, Wang, Zhao, Yang, Pu, Zuo (b0110) 2022 Tan, Li, Wang (b0185) 2021; 549 Tanabe, Fukunaga (b0050) 2013 Tan, Li (b0190) 2021; 111 Storn, Price (b0045) 1997; 11 Li, Han, Zhou, Tang, Zhao (b0105) 2022 S. Biswas, D. Saha, S. De, A.D. Cobb, S. Das, B.A. Jalaian, Improving differential evolution through bayesian hyperparameter optimization, in: 2021 IEEE Congress on Evolutionary Computation, IEEE, 2021, pp. 832–840. Forsgren, Gill, Wright (b0145) 2002; 44 Tanabe (10.1016/j.ins.2022.11.131_b0055) 2014 10.1016/j.ins.2022.11.131_b0005 Elsayed (10.1016/j.ins.2022.11.131_b0040) 2016 Su (10.1016/j.ins.2022.11.131_b0010) 2019; 23 Cui (10.1016/j.ins.2022.11.131_b0025) 2021; 465 Stanovov (10.1016/j.ins.2022.11.131_b0075) 2018 Su (10.1016/j.ins.2022.11.131_b0015) 2019; 11 Mousavirad (10.1016/j.ins.2022.11.131_b0100) 2022 Zamuda (10.1016/j.ins.2022.11.131_b0165) 2012 Nocedal (10.1016/j.ins.2022.11.131_b0125) 2006 Qin (10.1016/j.ins.2022.11.131_b0160) 2009; 13 Li (10.1016/j.ins.2022.11.131_b0195) 2021; 421 Storn (10.1016/j.ins.2022.11.131_b0045) 1997; 11 10.1016/j.ins.2022.11.131_b0060 Karmarkar (10.1016/j.ins.2022.11.131_b0140) 1984; 4 10.1016/j.ins.2022.11.131_b0080 Ozkaya (10.1016/j.ins.2022.11.131_b0115) 2022; 10 Forsgren (10.1016/j.ins.2022.11.131_b0145) 2002; 44 Cui (10.1016/j.ins.2022.11.131_b0175) 2016; 67 Hu (10.1016/j.ins.2022.11.131_b0020) 2020; 193 Awad (10.1016/j.ins.2022.11.131_b0070) 2017 Li (10.1016/j.ins.2022.11.131_b0105) 2022 Stanovov (10.1016/j.ins.2022.11.131_b0085) 2021 Hu (10.1016/j.ins.2022.11.131_b0030) 2022; 12 Brest (10.1016/j.ins.2022.11.131_b0155) 2006; 10 Gill (10.1016/j.ins.2022.11.131_b0130) 2012 Awad (10.1016/j.ins.2022.11.131_b0065) 2016 10.1016/j.ins.2022.11.131_b0170 Awad (10.1016/j.ins.2022.11.131_b0205) 2017 Qian (10.1016/j.ins.2022.11.131_b0180) 2018; 48 Wang (10.1016/j.ins.2022.11.131_b0095) 2021; 552 Boggs (10.1016/j.ins.2022.11.131_b0120) 1995; 4 Zhang (10.1016/j.ins.2022.11.131_b0200) 2009; 13 Elsayed (10.1016/j.ins.2022.11.131_b0035) 2014 Zhao (10.1016/j.ins.2022.11.131_b0090) 2020; 96 Kumar (10.1016/j.ins.2022.11.131_b0135) 2017 Tanabe (10.1016/j.ins.2022.11.131_b0050) 2013 Tan (10.1016/j.ins.2022.11.131_b0190) 2021; 111 Tang (10.1016/j.ins.2022.11.131_b0110) 2022 Mohamed (10.1016/j.ins.2022.11.131_b0150) 2020 Tan (10.1016/j.ins.2022.11.131_b0185) 2021; 549 |
| References_xml | – volume: 421 start-page: 285 year: 2021 end-page: 302 ident: b0195 article-title: Differential evolution algorithm with multi-population cooperation and multi-strategy integration publication-title: Neurocomputing – start-page: 372 year: 2017 end-page: 379 ident: b0070 article-title: Ensemble sinusoidal differential covariance matrix adaptation with euclidean neighborhood for solving cec2017 benchmark problems publication-title: 2017 IEEE Congress on Evolutionary Computation – volume: 23 start-page: 828 year: 2019 end-page: 841 ident: b0010 article-title: One pixel attack for fooling deep neural networks publication-title: IEEE Trans. Evol. Comput. – start-page: 2958 year: 2016 end-page: 2965 ident: b0065 article-title: An ensemble sinusoidal parameter adaptation incorporated with l-shade for solving cec2014 benchmark problems publication-title: 2016 IEEE Congress on Evolutionary Computation – volume: 193 year: 2020 ident: b0020 article-title: Effective energy consumption forecasting using enhanced bagged echo state network publication-title: Energy – volume: 48 start-page: 3612 year: 2018 end-page: 3629 ident: b0180 article-title: Differential evolution algorithm with multiple mutation strategies based on roulette wheel selection publication-title: Appl. Intell. – volume: 11 start-page: 1 year: 2019 end-page: 16 ident: b0015 article-title: Attacking convolutional neural network using differential evolution publication-title: IPSJ Trans. Comput. Vis. Appl. – start-page: 154 year: 2012 end-page: 161 ident: b0165 article-title: Population reduction differential evolution with multiple mutation strategies in real world industry challenges publication-title: Swarm Evol. Comput. – start-page: 1835 year: 2017 end-page: 1842 ident: b0135 article-title: Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase publication-title: 2017 IEEE Congress on Evolutionary Computation – start-page: 1650 year: 2014 end-page: 1657 ident: b0035 article-title: Testing united multi-operator evolutionary algorithms on the cec2014 real-parameter numerical optimization publication-title: 2014 IEEE Congress on Evolutionary Computation – start-page: 1 year: 2022 end-page: 18 ident: b0110 article-title: Enhancing the search ability of a hybrid lshade for global optimization of interplanetary trajectory design publication-title: Eng. Optim. – volume: 111 year: 2021 ident: b0190 article-title: Differential evolution with mixed mutation strategy based on deep reinforcement learning publication-title: Appl. Soft Comput. – year: 2022 ident: b0105 article-title: A novel adaptive l-shade algorithm and its application in uav swarm resource configuration problem publication-title: Inf. Sci. – start-page: 529 year: 2006 end-page: 562 ident: b0125 article-title: Sequential quadratic programming publication-title: Numer. Optim. – start-page: 809 year: 2021 end-page: 816 ident: b0085 article-title: Nl-shade-rsp algorithm with adaptive archive and selective pressure for cec 2021 numerical optimization, in publication-title: 2021 IEEE Congress on Evolutionary Computation – start-page: 147 year: 2012 end-page: 224 ident: b0130 article-title: Sequential quadratic programming methods publication-title: Mixed integer nonlinear programming – volume: 10 start-page: 646 year: 2006 end-page: 657 ident: b0155 article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems publication-title: IEEE Trans. Evol. Comput. – volume: 465 start-page: 38 year: 2021 end-page: 52 ident: b0025 article-title: Deattack: A differential evolution based attack method for the robustness evaluation of medical image segmentation publication-title: Neurocomputing – volume: 4 start-page: 373 year: 1984 end-page: 395 ident: b0140 article-title: A new polynomial-time algorithm for linear programming publication-title: Combinatorica – volume: 44 start-page: 525 year: 2002 end-page: 597 ident: b0145 article-title: Interior methods for nonlinear optimization publication-title: SIAM Rev. – reference: P.A. Vikhar, Evolutionary algorithms: A critical review and its future prospects, in: 2016 International conference on global trends in signal processing, information computing and communication, IEEE, 2016, pp. 261–265. – volume: 12 start-page: 547 year: 2022 end-page: 565 ident: b0030 article-title: Fractional stochastic volatility pricing of european option based on self-adaptive differential evolution publication-title: J. Math. Finance – start-page: 255 year: 2022 end-page: 268 ident: b0100 article-title: Rws-l-shade: An effective l-shade algorithm incorporation roulette wheel selection strategy for numerical optimisation publication-title: International Conference on the Applications of Evolutionary Computation – reference: S. Biswas, D. Saha, S. De, A.D. Cobb, S. Das, B.A. Jalaian, Improving differential evolution through bayesian hyperparameter optimization, in: 2021 IEEE Congress on Evolutionary Computation, IEEE, 2021, pp. 832–840. – volume: 67 start-page: 155 year: 2016 end-page: 173 ident: b0175 article-title: Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations publication-title: Comput. Oper. Res. – start-page: 1658 year: 2014 end-page: 1665 ident: b0055 article-title: Improving the search performance of shade using linear population size reduction publication-title: 2014 IEEE Congress on Evolutionary Computation – volume: 13 start-page: 945 year: 2009 end-page: 958 ident: b0200 article-title: Jade: Adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. – volume: 13 start-page: 398 year: 2009 end-page: 417 ident: b0160 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Trans. Evol. Comput. – reference: T.J. Choi, C.W. Ahn, An adaptive cauchy differential evolution algorithm with population size reduction and modified multiple mutation strategies, in: Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Vol. 2, Springer International Publishing, 2015, pp. 13–26. – volume: 4 start-page: 1 year: 1995 end-page: 51 ident: b0120 article-title: Sequential quadratic programming publication-title: Acta Numerica – reference: J.L.J. Laredo, C.M. Fernandes, J.J.M. Guervós, C. Gagné, Improving genetic algorithms performance via deterministic population shrinkage, in: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, 2009, p. 819–826. – volume: 549 start-page: 142 year: 2021 end-page: 163 ident: b0185 article-title: Differential evolution with adaptive mutation strategy based on fitness landscape analysis publication-title: Inf. Sci. – start-page: 1 year: 2018 end-page: 8 ident: b0075 article-title: Lshade algorithm with rank-based selective pressure strategy for solving cec 2017 benchmark problems publication-title: 2018 IEEE Congress on Evolutionary Computation – volume: 10 start-page: 66770 year: 2022 end-page: 66796 ident: b0115 article-title: Fitness distance balance based lshade algorithm for energy hub economic dispatch problem publication-title: IEEE Access – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b0045 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. – start-page: 2966 year: 2016 end-page: 2973 ident: b0040 article-title: Testing united multi-operator evolutionary algorithms-ii on single objective optimization problems publication-title: 2016 IEEE Congress on Evolutionary Computation – volume: 96 year: 2020 ident: b0090 article-title: A collaborative lshade algorithm with comprehensive learning mechanism publication-title: Appl. Soft Comput. – volume: 552 start-page: 201 year: 2021 end-page: 219 ident: b0095 article-title: L-shade-e: Ensemble of two differential evolution algorithms originating from l-shade publication-title: Inf. Sci. – start-page: 1 year: 2020 end-page: 8 ident: b0150 article-title: Evaluating the performance of adaptive gainingsharing knowledge based algorithm on cec2020 benchmark problems, in publication-title: 2020 IEEE Congress on Evolutionary Computation – start-page: 71 year: 2013 end-page: 78 ident: b0050 article-title: Success-history based parameter adaptation for differential evolution publication-title: 2013 IEEE Congress on Evolutionary Computation – year: 2017 ident: b0205 article-title: Problem definitions and evaluation criteria for the cec 2017 special session and competition on single objective real-parameter numerical optimization – volume: 13 start-page: 945 issue: 5 year: 2009 ident: 10.1016/j.ins.2022.11.131_b0200 article-title: Jade: Adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2014613 – start-page: 2958 year: 2016 ident: 10.1016/j.ins.2022.11.131_b0065 article-title: An ensemble sinusoidal parameter adaptation incorporated with l-shade for solving cec2014 benchmark problems publication-title: 2016 IEEE Congress on Evolutionary Computation doi: 10.1109/CEC.2016.7744163 – volume: 44 start-page: 525 issue: 4 year: 2002 ident: 10.1016/j.ins.2022.11.131_b0145 article-title: Interior methods for nonlinear optimization publication-title: SIAM Rev. doi: 10.1137/S0036144502414942 – volume: 111 year: 2021 ident: 10.1016/j.ins.2022.11.131_b0190 article-title: Differential evolution with mixed mutation strategy based on deep reinforcement learning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107678 – volume: 23 start-page: 828 issue: 5 year: 2019 ident: 10.1016/j.ins.2022.11.131_b0010 article-title: One pixel attack for fooling deep neural networks publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2890858 – start-page: 1 year: 2022 ident: 10.1016/j.ins.2022.11.131_b0110 article-title: Enhancing the search ability of a hybrid lshade for global optimization of interplanetary trajectory design publication-title: Eng. Optim. – volume: 11 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.ins.2022.11.131_b0015 article-title: Attacking convolutional neural network using differential evolution publication-title: IPSJ Trans. Comput. Vis. Appl. doi: 10.1186/s41074-019-0053-3 – volume: 10 start-page: 646 issue: 6 year: 2006 ident: 10.1016/j.ins.2022.11.131_b0155 article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2006.872133 – start-page: 809 year: 2021 ident: 10.1016/j.ins.2022.11.131_b0085 article-title: Nl-shade-rsp algorithm with adaptive archive and selective pressure for cec 2021 numerical optimization, in publication-title: 2021 IEEE Congress on Evolutionary Computation doi: 10.1109/CEC45853.2021.9504959 – start-page: 1 year: 2020 ident: 10.1016/j.ins.2022.11.131_b0150 article-title: Evaluating the performance of adaptive gainingsharing knowledge based algorithm on cec2020 benchmark problems, in publication-title: 2020 IEEE Congress on Evolutionary Computation – volume: 4 start-page: 373 issue: 5 year: 1984 ident: 10.1016/j.ins.2022.11.131_b0140 article-title: A new polynomial-time algorithm for linear programming publication-title: Combinatorica doi: 10.1007/BF02579150 – volume: 193 year: 2020 ident: 10.1016/j.ins.2022.11.131_b0020 article-title: Effective energy consumption forecasting using enhanced bagged echo state network publication-title: Energy doi: 10.1016/j.energy.2019.116778 – volume: 96 year: 2020 ident: 10.1016/j.ins.2022.11.131_b0090 article-title: A collaborative lshade algorithm with comprehensive learning mechanism publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106609 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.ins.2022.11.131_b0045 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – volume: 4 start-page: 1 year: 1995 ident: 10.1016/j.ins.2022.11.131_b0120 article-title: Sequential quadratic programming publication-title: Acta Numerica doi: 10.1017/S0962492900002518 – start-page: 154 year: 2012 ident: 10.1016/j.ins.2022.11.131_b0165 article-title: Population reduction differential evolution with multiple mutation strategies in real world industry challenges publication-title: Swarm Evol. Comput. doi: 10.1007/978-3-642-29353-5_18 – start-page: 1658 year: 2014 ident: 10.1016/j.ins.2022.11.131_b0055 article-title: Improving the search performance of shade using linear population size reduction publication-title: 2014 IEEE Congress on Evolutionary Computation doi: 10.1109/CEC.2014.6900380 – ident: 10.1016/j.ins.2022.11.131_b0005 doi: 10.1109/ICGTSPICC.2016.7955308 – start-page: 147 year: 2012 ident: 10.1016/j.ins.2022.11.131_b0130 article-title: Sequential quadratic programming methods – ident: 10.1016/j.ins.2022.11.131_b0080 doi: 10.1109/CEC45853.2021.9504792 – volume: 549 start-page: 142 year: 2021 ident: 10.1016/j.ins.2022.11.131_b0185 article-title: Differential evolution with adaptive mutation strategy based on fitness landscape analysis publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.11.023 – year: 2022 ident: 10.1016/j.ins.2022.11.131_b0105 article-title: A novel adaptive l-shade algorithm and its application in uav swarm resource configuration problem publication-title: Inf. Sci. – volume: 10 start-page: 66770 year: 2022 ident: 10.1016/j.ins.2022.11.131_b0115 article-title: Fitness distance balance based lshade algorithm for energy hub economic dispatch problem publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3185068 – start-page: 1650 year: 2014 ident: 10.1016/j.ins.2022.11.131_b0035 article-title: Testing united multi-operator evolutionary algorithms on the cec2014 real-parameter numerical optimization publication-title: 2014 IEEE Congress on Evolutionary Computation doi: 10.1109/CEC.2014.6900308 – start-page: 2966 year: 2016 ident: 10.1016/j.ins.2022.11.131_b0040 article-title: Testing united multi-operator evolutionary algorithms-ii on single objective optimization problems publication-title: 2016 IEEE Congress on Evolutionary Computation doi: 10.1109/CEC.2016.7744164 – ident: 10.1016/j.ins.2022.11.131_b0060 doi: 10.1145/1569901.1570014 – start-page: 529 year: 2006 ident: 10.1016/j.ins.2022.11.131_b0125 article-title: Sequential quadratic programming publication-title: Numer. Optim. doi: 10.1007/978-0-387-40065-5_18 – ident: 10.1016/j.ins.2022.11.131_b0170 doi: 10.1007/978-3-319-13356-0_2 – start-page: 1835 year: 2017 ident: 10.1016/j.ins.2022.11.131_b0135 article-title: Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase publication-title: 2017 IEEE Congress on Evolutionary Computation doi: 10.1109/CEC.2017.7969524 – year: 2017 ident: 10.1016/j.ins.2022.11.131_b0205 – volume: 465 start-page: 38 year: 2021 ident: 10.1016/j.ins.2022.11.131_b0025 article-title: Deattack: A differential evolution based attack method for the robustness evaluation of medical image segmentation publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.08.118 – start-page: 372 year: 2017 ident: 10.1016/j.ins.2022.11.131_b0070 article-title: Ensemble sinusoidal differential covariance matrix adaptation with euclidean neighborhood for solving cec2017 benchmark problems publication-title: 2017 IEEE Congress on Evolutionary Computation doi: 10.1109/CEC.2017.7969336 – volume: 67 start-page: 155 year: 2016 ident: 10.1016/j.ins.2022.11.131_b0175 article-title: Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2015.09.006 – start-page: 71 year: 2013 ident: 10.1016/j.ins.2022.11.131_b0050 article-title: Success-history based parameter adaptation for differential evolution publication-title: 2013 IEEE Congress on Evolutionary Computation doi: 10.1109/CEC.2013.6557555 – start-page: 1 year: 2018 ident: 10.1016/j.ins.2022.11.131_b0075 article-title: Lshade algorithm with rank-based selective pressure strategy for solving cec 2017 benchmark problems publication-title: 2018 IEEE Congress on Evolutionary Computation – volume: 12 start-page: 547 issue: 3 year: 2022 ident: 10.1016/j.ins.2022.11.131_b0030 article-title: Fractional stochastic volatility pricing of european option based on self-adaptive differential evolution publication-title: J. Math. Finance doi: 10.4236/jmf.2022.123029 – volume: 552 start-page: 201 year: 2021 ident: 10.1016/j.ins.2022.11.131_b0095 article-title: L-shade-e: Ensemble of two differential evolution algorithms originating from l-shade publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.11.055 – volume: 48 start-page: 3612 issue: 10 year: 2018 ident: 10.1016/j.ins.2022.11.131_b0180 article-title: Differential evolution algorithm with multiple mutation strategies based on roulette wheel selection publication-title: Appl. Intell. doi: 10.1007/s10489-018-1153-y – volume: 421 start-page: 285 year: 2021 ident: 10.1016/j.ins.2022.11.131_b0195 article-title: Differential evolution algorithm with multi-population cooperation and multi-strategy integration publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.09.007 – start-page: 255 year: 2022 ident: 10.1016/j.ins.2022.11.131_b0100 article-title: Rws-l-shade: An effective l-shade algorithm incorporation roulette wheel selection strategy for numerical optimisation – volume: 13 start-page: 398 issue: 2 year: 2009 ident: 10.1016/j.ins.2022.11.131_b0160 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.927706 |
| SSID | ssj0004766 |
| Score | 2.4809432 |
| Snippet | United multi-operator evolutionary algorithms (UMOEAs) combine multi-operator differential evolution (DE), the multi-operator genetic algorithm (MOGA), and the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 652 |
| SubjectTerms | CMA-ES Differential evolution Nonlinear population size reduction Sequential quadratic programming SHADE-cnEpSin United multi-operator evolutionary algorithms |
| Title | A variant of the united multi-operator evolutionary algorithms using sequential quadratic programming and improved SHADE-cnEpSin |
| URI | https://dx.doi.org/10.1016/j.ins.2022.11.131 |
| Volume | 622 |
| WOSCitedRecordID | wos000900836600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELWqLgc4IFhALLDIB8SBKihO0zg-FlQoaLVCYpF6i-zEhlTdtHSTao_8Df4t468kXVjEHrhEVZS4aefF82Y8b4zQC2D8ikL8HxSEiyBmRAViApMhUcBOCFfgo0Oz2QQ9PU0XC_ZpMPjptTC7Fa2q9PKSbf6rqeEcGFtLZ29g7nZQOAGfwehwBLPD8Z8MPx3tIP7ldolf08rG0kpTOhisN9IsrI_kzj2FLpvjq6_rbVl_O78YNSZ5YCusa51O_97wYmv6urparnOvayxNQkIz1jnYM8ir2eaza-S99AXyrThy5Hxty-Hnrhj4pBRli9D3jUndwhy07OH2pGwMyW6MTLlbA7ADvHFqNpe7iMa9khevJQgDHdX05-PECpXdjJrYBrfOOSd2f5ff5n2bglhCsKJbsEcReILXxLmXvR7bV3xfW5Hoi92WGQyR6SEgNsqIVugfRHTC0iE6mH6YLT52oltqF8L9T_BL5qZ48Mpz_Jn09IjM2T1010UgeGqRcx8NZHWI7vT6Uh6iY6dmwS9xz4LY-YEH6McUO4zhtcKAMWwxhvcxhvsYwx3GsMEY7jCGW4zhHsYwYAx7jOE9jD1EX97Nzt7OA7eVR5BHjNZBMQ45jfOEE6WYiHjBE8WKIpYsz4mgMsoJTcOCpUqmgjA6kUAlBeMsl0CxeTh-hIbVupKPEaaMgmecSFUQESu4JGFpksqJEOC3gb8fodD_11nu-tzr7VZW2bU2PkKv2ls2tsnL3y6OvQEz9-ZY9pkBGK-_7clNvuMput29Ls_QsN428hjdynd1ebF97pD4C-_Ht9g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+variant+of+the+united+multi-operator+evolutionary+algorithms+using+sequential+quadratic+programming+and+improved+SHADE-cnEpSin&rft.jtitle=Information+sciences&rft.au=Hong%2C+Libin&rft.au=Guo%2C+Youjian&rft.au=Liu%2C+Fuchang&rft.au=Wang%2C+Ben&rft.date=2023-04-01&rft.issn=0020-0255&rft.volume=622&rft.spage=652&rft.epage=681&rft_id=info:doi/10.1016%2Fj.ins.2022.11.131&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2022_11_131 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |