Improved Binary Adaptive Wind Driven Optimization Algorithm-Based Dimensionality Reduction for Supervised Classification
•An improved Binary Adaptive Wind Driven Optimization algorithm (iBAWDO) is proposed.•Improvements include the crossover technique and Simulated Annealing (SA) algorithm.•iBAWDO is employed for wrapper feature selection in supervised classification.•iBAWDO was highly competitive, based on two popula...
Saved in:
| Published in: | Computers & industrial engineering Vol. 167; p. 107904 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.05.2022
|
| Subjects: | |
| ISSN: | 0360-8352, 1879-0550 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •An improved Binary Adaptive Wind Driven Optimization algorithm (iBAWDO) is proposed.•Improvements include the crossover technique and Simulated Annealing (SA) algorithm.•iBAWDO is employed for wrapper feature selection in supervised classification.•iBAWDO was highly competitive, based on two popular classifiers, k-NN and SVM.•A Wilcoxon’s nonparametric test affirmed the supremacy of final results at α = 0.05.
Typically, Feature Selection (FS) is adopted as a critical preprocessing step in most pattern recognition and data mining tasks. It helps to avoid the acute impact of irrelevant and redundant features on the performance of the classification model under consideration. To tackle this problem, researchers have proposed different methods for selecting the most significant features to improve the overall classification accuracy for a given dataset by extracting relevant information. Realistically, for a given dataset with a large number of features, conventional methods usually struggle to find good solutions. Therefore, in this study, a meta-heuristic algorithm called the Wind Driven Optimization (WDO) is enhanced and then cloned into a binary variant, the improved Binary Adaptive WDO (iBAWDO). The proposed iBAWDO would manage to select the most relevant (near-optimal) features while reducing the computational cost and enhancing (or even maintaining) the final classification accuracy. An evolutionary crossover technique as well as the Simulated Annealing algorithm (SA) are incorporated into the original WDO algorithm to enhance its search ability for feasible regions as well as exploitation within these regions, respectively. To assess the relevance of the features selected, two popular classifiers, k-Nearest Neighbor (k-NN) and Support Vector Machine (SVM), are adopted as fitness evaluators. The proposed iBAWDO algorithm was validated on 18 multi-scale benchmark datasets against binary versions of 11 well-known meta-heuristic approaches: Binary version of the original WDO (BWDO), Binary Particle Swarm Optimization (BPSO), Binary Bat Algorithm (BBA), Binary Grey Wolf Optimization (BGWO), Binary Whale Optimization Algorithm (BWOA), Binary Grasshopper Optimization Algorithm (BGOA), Binary Sailfish Optimizer (BSFO), Binary Harris Hawks optimization (BHHO), Binary Bird Swarm Algorithm (BBSA), Binary Atom Search Optimization (BASO), and Binary Henry Gas Solubility Optimization (BHGSO). A Wilcoxon’s rank-sum non-parametric test was conducted at a 5% significance level to statistically affirm the high competitiveness of the proposed method. Overall, the experimental results revealed that the proposed method is significantly effective on both small- and large-dimensional datasets. |
|---|---|
| AbstractList | •An improved Binary Adaptive Wind Driven Optimization algorithm (iBAWDO) is proposed.•Improvements include the crossover technique and Simulated Annealing (SA) algorithm.•iBAWDO is employed for wrapper feature selection in supervised classification.•iBAWDO was highly competitive, based on two popular classifiers, k-NN and SVM.•A Wilcoxon’s nonparametric test affirmed the supremacy of final results at α = 0.05.
Typically, Feature Selection (FS) is adopted as a critical preprocessing step in most pattern recognition and data mining tasks. It helps to avoid the acute impact of irrelevant and redundant features on the performance of the classification model under consideration. To tackle this problem, researchers have proposed different methods for selecting the most significant features to improve the overall classification accuracy for a given dataset by extracting relevant information. Realistically, for a given dataset with a large number of features, conventional methods usually struggle to find good solutions. Therefore, in this study, a meta-heuristic algorithm called the Wind Driven Optimization (WDO) is enhanced and then cloned into a binary variant, the improved Binary Adaptive WDO (iBAWDO). The proposed iBAWDO would manage to select the most relevant (near-optimal) features while reducing the computational cost and enhancing (or even maintaining) the final classification accuracy. An evolutionary crossover technique as well as the Simulated Annealing algorithm (SA) are incorporated into the original WDO algorithm to enhance its search ability for feasible regions as well as exploitation within these regions, respectively. To assess the relevance of the features selected, two popular classifiers, k-Nearest Neighbor (k-NN) and Support Vector Machine (SVM), are adopted as fitness evaluators. The proposed iBAWDO algorithm was validated on 18 multi-scale benchmark datasets against binary versions of 11 well-known meta-heuristic approaches: Binary version of the original WDO (BWDO), Binary Particle Swarm Optimization (BPSO), Binary Bat Algorithm (BBA), Binary Grey Wolf Optimization (BGWO), Binary Whale Optimization Algorithm (BWOA), Binary Grasshopper Optimization Algorithm (BGOA), Binary Sailfish Optimizer (BSFO), Binary Harris Hawks optimization (BHHO), Binary Bird Swarm Algorithm (BBSA), Binary Atom Search Optimization (BASO), and Binary Henry Gas Solubility Optimization (BHGSO). A Wilcoxon’s rank-sum non-parametric test was conducted at a 5% significance level to statistically affirm the high competitiveness of the proposed method. Overall, the experimental results revealed that the proposed method is significantly effective on both small- and large-dimensional datasets. |
| ArticleNumber | 107904 |
| Author | Abd El-Mageed, Amr A. Munasinghe, Kumudu Gad, Ahmed G. Abohany, Amr A. Sallam, Karam M. |
| Author_xml | – sequence: 1 givenname: Amr A. surname: Abd El-Mageed fullname: Abd El-Mageed, Amr A. email: amr.atef@commerce.sohag.edu.eg organization: Faculty of Commerce, Information Systems Department, Sohag University, Sohag, Egypt – sequence: 2 givenname: Ahmed G. orcidid: 0000-0002-2671-041X surname: Gad fullname: Gad, Ahmed G. email: ahmed.gad@fci.kfs.edu.eg organization: Faculty of Computers and Information, Kafrelsheikh University, Kafrelsheikh, Egypt – sequence: 3 givenname: Karam M. surname: Sallam fullname: Sallam, Karam M. email: karam_sallam@zu.edu.eg organization: Faculty of Computers and Information, Zagazig University, Zagazig, Egypt – sequence: 4 givenname: Kumudu surname: Munasinghe fullname: Munasinghe, Kumudu email: kumudu.munasinghe@canberra.edu.au organization: School of IT and Systems, University of Canberra, ACT 2601, Australia – sequence: 5 givenname: Amr A. surname: Abohany fullname: Abohany, Amr A. email: amrabohany8@gmail.com organization: Faculty of Computers and Information, Kafrelsheikh University, Kafrelsheikh, Egypt |
| BookMark | eNp9kMlOwzAQhi1UJNrCA3DLC6TYzuJYnLqwVKpUiUUcLdeZwFTZZKcR5elxW04ceprt_0Yz_4gM6qYGQm4ZnTDK0rvtxCBMOOXM10LS-IIMWSZkSJOEDsiQRikNsyjhV2Tk3JZSGieSDcn3smpt00MezLDWdh9Mc9122EPwgXUeLKxP62DtWxX-6A6bOpiWn43F7qsKZ9p5cIEV1M5PdIndPniBfGeOwqKxweuuBdvjQTcvtXNYoDmuuSaXhS4d3PzFMXl_fHibP4er9dNyPl2FhkvRhaYQHCjwlAMAlwlLDduknOsko5LHPN4IlhVMmmiTAxcARsZFqk2cmUwnQkRjIk57jW2cs1Aog93xgs5qLBWj6mCg2vo-qIOB6mSgJ9k_srVYeY_OMvcnBvxLPYJVzktqAzlaMJ3KGzxD_wLLro1z |
| CitedBy_id | crossref_primary_10_1007_s00521_023_08761_0 crossref_primary_10_3390_a17070297 crossref_primary_10_1016_j_chemolab_2022_104574 crossref_primary_10_1371_journal_pone_0307228 crossref_primary_10_1016_j_cie_2023_109300 crossref_primary_10_1016_j_knosys_2024_111616 crossref_primary_10_3390_biomimetics9050298 crossref_primary_10_3390_math12152364 crossref_primary_10_1186_s40537_025_01125_6 crossref_primary_10_3390_math11010129 crossref_primary_10_1109_ACCESS_2022_3198987 crossref_primary_10_1109_ACCESS_2024_3449998 crossref_primary_10_1016_j_asoc_2023_110032 crossref_primary_10_3390_a17010026 crossref_primary_10_1038_s41598_024_63328_w crossref_primary_10_1016_j_aeue_2024_155653 crossref_primary_10_3390_a17080342 crossref_primary_10_1186_s40537_024_00895_9 crossref_primary_10_1007_s00521_024_09590_5 |
| Cites_doi | 10.1109/APS.2010.5562213 10.1016/j.patcog.2020.107470 10.1016/j.asoc.2018.07.040 10.1016/j.eswa.2018.09.031 10.1109/JPHOTOV.2017.2769000 10.1016/j.eswa.2017.02.044 10.1109/TAP.2011.2109350 10.1016/j.eswa.2019.03.039 10.1016/j.asoc.2017.11.006 10.1016/j.jbi.2018.07.015 10.1109/ACCESS.2021.3117853 10.1016/S0304-3975(97)00115-1 10.4108/eai.3-12-2015.2262424 10.1016/j.physrep.2016.08.001 10.1016/j.knosys.2020.106560 10.1109/ISEMANTIC.2018.8549804 10.1109/4235.585893 10.1007/s10489-018-1158-6 10.1007/s00500-020-05191-1 10.1007/s13369-019-04016-0 10.1016/j.asoc.2018.10.036 10.36478/jeasci.2019.8026.8033 10.1016/j.cose.2018.11.005 10.1126/science.220.4598.671 10.1016/j.knosys.2018.08.003 10.1016/j.jksuci.2018.06.003 10.1109/TAP.2013.2238654 10.1016/j.asoc.2018.11.047 10.1109/TGRS.2006.880628 10.1016/j.engappai.2021.104210 10.1111/exsy.12786 10.1016/j.patcog.2018.11.027 10.1016/j.neucom.2015.06.083 10.1016/j.compeleceng.2013.11.024 10.1016/j.eswa.2019.112824 10.1016/j.neucom.2019.01.017 10.1109/ACCESS.2019.2897325 10.1016/j.knosys.2020.106553 10.1016/j.knosys.2017.12.037 10.1016/j.inffus.2018.11.019 10.1016/j.eswa.2018.10.021 10.1016/j.knosys.2018.08.030 10.1109/ICIC50835.2020.9288653 10.1016/j.ins.2017.08.028 10.1109/ACCESS.2020.3033757 10.1109/CEC.2018.8477975 10.1007/s10845-014-0943-2 10.1016/j.eswa.2018.08.051 10.1016/j.eswa.2020.113176 10.1145/3434581.3434679 10.1109/CEC48606.2020.9185577 10.1007/s00521-017-2988-6 10.1155/2020/8860841 10.1109/ICDAR.2011.144 10.1016/j.ins.2009.03.004 10.1007/BF01096763 10.1088/1681-7575/aa8a4d 10.1109/ACCESS.2021.3083593 10.1109/ICEC.1996.542381 10.1016/j.knosys.2018.12.031 10.1063/5.0028662 10.1109/ACCESS.2019.2906757 10.1016/j.knosys.2018.05.009 10.1016/j.future.2019.07.015 10.1016/j.eswa.2018.09.015 10.1109/ICOASE.2019.8723728 10.1016/j.patcog.2019.107183 10.1088/1757-899X/732/1/012043 10.1007/s42979-021-00687-5 10.1016/j.patrec.2016.10.007 10.1016/j.renene.2018.05.008 10.2478/cait-2019-0001 10.1109/ACCESS.2018.2879848 10.1109/ACCESS.2021.3073261 10.1007/s10044-015-0504-0 10.1016/j.cie.2018.07.008 10.1016/j.ipm.2016.03.007 10.1016/j.chemolab.2018.11.010 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cie.2021.107904 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-0550 |
| ExternalDocumentID | 10_1016_j_cie_2021_107904 S0360835221008081 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFWJ AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADRHT ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-cf72e0e262eee29516c1b622a58092424b718f19c3bde27eec94f6ac48c8a5773 |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000779067000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-8352 |
| IngestDate | Sat Nov 29 07:20:15 EST 2025 Tue Nov 18 22:38:28 EST 2025 Fri Feb 23 02:40:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dimensionality reduction Feature selection Wind Driven Optimization algorithm (WDO) Machine learning Combinatorial optimization Supervised classification Meta-heuristics |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-cf72e0e262eee29516c1b622a58092424b718f19c3bde27eec94f6ac48c8a5773 |
| ORCID | 0000-0002-2671-041X |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cie_2021_107904 crossref_primary_10_1016_j_cie_2021_107904 elsevier_sciencedirect_doi_10_1016_j_cie_2021_107904 |
| PublicationCentury | 2000 |
| PublicationDate | May 2022 2022-05-00 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & industrial engineering |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Alpaydin (b0030) 2020 Neumann, L., & Matas, J. (2011). Text localization in real-world images using efficiently pruned exhaustive search. In 2011 International Conference on Document Analysis and Recognition, IEEE (pp. 687–691). Rao, Shi, Rodrigue, Feng, Xia, Elhoseny, Yuan, Gu (b0305) 2019; 74 Khamees, M., & Rashed, A. A. -B. (2020) Hybrid sca-cs optimization algorithm for feature selection in classification problems. In AIP Conference Proceedings, Vol. 2290, AIP Publishing LLC (p. 040001). Faris, Mafarja, Heidari, Aljarah, Ala’M, Mirjalili, Fujita (b0140) 2018; 154 Sayed, Khoriba, Haggag (b0350) 2018; 48 Selvakumar, Muneeswaran (b0360) 2019; 81 Garcia-Carretero, Vigil-Medina, Mora-Jimenez, Soguero-Ruiz, Barquero-Perez, Ramos-Lopez (b0155) 2020 Abd Elminaam, Nabil, Ibraheem, Houssein (b0020) 2021; 9 Chen, Hao (b0100) 2017; 80 Georges, Mhiri, Rekik, Initiative (b0160) 2020; 101 Al-Tashi, Kadir, Rais, Mirjalili, Alhussian (b0035) 2019; 7 Mafarja, Aljarah, Heidari, Hammouri, Faris, Ala’M, Mirjalili (b0260) 2018; 145 Aljarah, Mafarja, Heidari, Faris, Zhang, Mirjalili (b0025) 2018; 71 Ghoneim, Farrag, Rashed, El-kenawy, Ibrahim (b0165) 2021 Tubishat, Alswaitti, Mirjalili, Al-Garadi, Rana (b0385) 2020; 8 Sallam, K. M., Elsayed, S. M., Chakrabortty, R. K. & Ryan, M. J. (2020). Improved multi-operator differential evolution algorithm for solving unconstrained problems. In 2020 IEEE Congress on Evolutionary Computation (CEC), IEEE (pp. 1–8). Khurma, Aljarah, Sharieh (b0230) 2021 Gregory, Bayraktar, Werner (b0185) 2011; 59 Too, Mirjalili (b0380) 2021; 212 Yan, Ma, Luo, Patel (b0435) 2019; 184 Arora, Anand (b0045) 2019; 116 de Souza, de Macedo, dos Santos Coelho, Pierezan, Mariani (b0110) 2020 Harijanto, B., Amalia, E., & Mentari, M. (2020). Recognition of the character on the map captured by the camera using k-nearest neighbor. In IOP Conference Series: Materials Science and Engineering, Vol. 732, IOP Publishing (p. 012043). Hansen, N., Ostermeier, A. (1996). Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. In Proceedings of IEEE international conference on evolutionary computation, IEEE (pp. 312–317). Kirkpatrick, Gelatt, Vecchi (b0235) 1983; 220 Bayraktar, Komurcu, Bossard, Werner (b0070) 2013; 61 Dhiman, Oliva, Kaur, Singh, Vimal, Sharma, Cengiz (b0120) 2021; 211 Mafarja, Aljarah, Faris, Hammouri, Ala’M, Mirjalili (b0250) 2019; 117 Rashedi, Nezamabadi-Pour, Saryazdi (b0310) 2009; 179 Urbanowicz, Olson, Schmitt, Meeker, Moore (b0400) 2018; 85 Zhigljavsky (b0460) 2012; Vol. 65 . Manochandar, Punniyamoorthy (b0270) 2018; 124 Mathew, Rani, Kumar, Wang, Binns, Busawon (b0280) 2017; 8 Hegazy, Makhlouf, El-Tawel (b0210) 2020; 32 Salgotra, Singh, Saha (b0330) 2019; 44 Zheng, Li, Wang, Chen, Xu, Fan, Cui (b0455) 2018; 7 González, Ortega, Damas, Martín-Smith, Gan (b0175) 2019; 333 Abdel-Basset, El-Shahat, El-henawy, de Albuquerque, Mirjalili (b0010) 2020; 139 Wolpert, Macready (b0430) 1997; 1 Frank, A. (2010) Uci machine learning repository Zhang, Nie, Li, Wei (b0445) 2019; 50 Abdel-Basset, Ding, El-Shahat (b0005) 2020 Bazi, Melgani (b0075) 2006; 44 Gokalp, Tasci, Ugur (b0170) 2020; 146 Bulut, Amasyali (b0085) 2017; 20 Thaher, Heidari, Mafarja, Dong, Mirjalili (b0370) 2020 Chandrashekar, Sahin (b0090) 2014; 40 Tu, Chen, Liu (b0390) 2019; 76 Chantar, Tubishat, Essgaer, Mirjalili (b0095) 2021; 2 Wang, Gao, Li, Wang (b0420) 2021; 2021 Belaout, Krim, Mellit, Talbi, Arabi (b0080) 2018; 127 Amaldi, Kann (b0040) 1998; 209 Schölkopf, Smola, Bach (b0355) 2002 Rutkowski (b0320) 2008 Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b0205) 2019; 101 De Souza, R. C. T., dos Santos Coelho, L., De Macedo, C. A., & Pierezan, J. (2018). A v-shaped binary crow search algorithm for feature selection. In 2018 IEEE congress on evolutionary computation (CEC), IEEE, 2018 (pp. 1–8). Bayraktar, Z., Komurcu, M., & Werner, D. H. (2010). Wind driven optimization (wdo): A novel nature-inspired optimization algorithm and its application to electromagnetics. In 2010 IEEE antennas and propagation society international symposium, IEEE (pp. 1–4). Mastromichalakis, Chountasis (b0275) 2020 Tang, J., Alelyani, S. & Liu, H. (2014). Feature selection for classification: A review, Data classification: Algorithms and applications, 37. Gupta, Alam, Agarwal (b0190) 2020; 2020 Pratama, F. I., & Budianita, A. (2020). Optimization of k-nn classification in human gait recognition. In 2020 Fifth International Conference on Informatics and Computing (ICIC), IEEE, 2020 (pp. 1–5). Tutkan, Ganiz, Akyokuş (b0395) 2016; 52 Rostami, Berahmand, Nasiri, Forouzande (b0315) 2021; 100 Zakeri, Hokmabadi (b0440) 2019; 119 Mafarja, Aljarah, Heidari, Faris, Fournier-Viger, Li, Mirjalili (b0255) 2018; 161 Van Laarhoven, Aarts (b0405) 1987 Rachmawanto, E. H., Anarqi, G. R., & Sari, C .A. et al. (2018). Handwriting recognition using eccentricity and metric feature extraction based on k-nearest neighbors. In 2018 International Seminar on Application for Technology of Information and Communication, IEEE (pp. 411–416). Venkataramanaiah, Kamala (b0410) 2020; 24 Li, S. (2020). Global face pose detection based on an improved pso-svm method. In Proceedings of the 2020 International Conference on Aviation Safety and Information Technology, 2020 (pp. 549–553). Sallam, Elsayed, Sarker, Essam (b0335) 2017; 418 Feo, Resende (b0145) 1995; 6 Bayraktar, Z., Komurcu, M. (2016). Adaptive wind driven optimization. In Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS) (pp. 124–127). Peng, Zhu, Wang, An, Shen (b0290) 2019; 88 Arora, Singh, Sharma, Sharma, Anand (b0050) 2019; 7 Emary, Zawbaa, Hassanien (b0135) 2016; 172 Salcedo-Sanz (b0325) 2016; 655 Jousten, Hendricks, Barker, Douglas, Eckel, Egan, Fedchak, Flügge, Gaiser, Olson (b0215) 2017; 54 Venkatesh, Anuradha (b0415) 2019; 19 EL-Hasnony, I. M., Elhoseny, M., & Tarek, Z. (2021). A hybrid feature selection model based on butterfly optimization algorithm: Covid-19 as a case study. Expert Systems, e12786. Wang, Wu, Wang, Xiang, Huang (b0425) 2019; 168 Barddal, Enembreck, Gomes, Bifet, Pfahringer (b0055) 2019; 116 Zhao, Wang, Zhang (b0450) 2019; 163 Chen, Zhou, Yuan (b0105) 2019; 128 Li, Wu, Feng, Rong (b0245) 2015; 26 Mafarja, Mirjalili (b0265) 2018; 62 Kangrang, Techarungruengsakul, Hormwichian, Sriwanpheng (b0220) 2019; 14 Dino, H. I., Abdulrazzaq, M. B. (2019). Facial expression classification based on svm, knn and mlp classifiers. In 2019 International Conference on Advanced Science and Engineering (ICOASE), IEEE (pp. 70–75). Abdel-Basset, Sallam, Mohamed, Elgendi, Munasinghe, ELkomy (b0015) 2021 Tharwat, Hassanien, Elnaghi (b0375) 2017; 93 Gopi, Jyothi, Narayana, Sandeep (b0180) 2020 Sayed, Hassanien, Azar (b0345) 2019; 31 Salcedo-Sanz (10.1016/j.cie.2021.107904_b0325) 2016; 655 Sayed (10.1016/j.cie.2021.107904_b0350) 2018; 48 Bulut (10.1016/j.cie.2021.107904_b0085) 2017; 20 Ghoneim (10.1016/j.cie.2021.107904_b0165) 2021 Tharwat (10.1016/j.cie.2021.107904_b0375) 2017; 93 Amaldi (10.1016/j.cie.2021.107904_b0040) 1998; 209 Venkataramanaiah (10.1016/j.cie.2021.107904_b0410) 2020; 24 Van Laarhoven (10.1016/j.cie.2021.107904_b0405) 1987 Alpaydin (10.1016/j.cie.2021.107904_b0030) 2020 Mafarja (10.1016/j.cie.2021.107904_b0255) 2018; 161 Zhigljavsky (10.1016/j.cie.2021.107904_b0460) 2012; Vol. 65 Wang (10.1016/j.cie.2021.107904_b0420) 2021; 2021 de Souza (10.1016/j.cie.2021.107904_b0110) 2020 Gopi (10.1016/j.cie.2021.107904_b0180) 2020 10.1016/j.cie.2021.107904_b0200 10.1016/j.cie.2021.107904_b0365 10.1016/j.cie.2021.107904_b0125 Emary (10.1016/j.cie.2021.107904_b0135) 2016; 172 Khurma (10.1016/j.cie.2021.107904_b0230) 2021 Kirkpatrick (10.1016/j.cie.2021.107904_b0235) 1983; 220 Mathew (10.1016/j.cie.2021.107904_b0280) 2017; 8 Schölkopf (10.1016/j.cie.2021.107904_b0355) 2002 10.1016/j.cie.2021.107904_b0240 Peng (10.1016/j.cie.2021.107904_b0290) 2019; 88 10.1016/j.cie.2021.107904_b0285 Arora (10.1016/j.cie.2021.107904_b0045) 2019; 116 Urbanowicz (10.1016/j.cie.2021.107904_b0400) 2018; 85 Chantar (10.1016/j.cie.2021.107904_b0095) 2021; 2 Salgotra (10.1016/j.cie.2021.107904_b0330) 2019; 44 Sallam (10.1016/j.cie.2021.107904_b0335) 2017; 418 Abdel-Basset (10.1016/j.cie.2021.107904_b0015) 2021 González (10.1016/j.cie.2021.107904_b0175) 2019; 333 Bayraktar (10.1016/j.cie.2021.107904_b0070) 2013; 61 Zhao (10.1016/j.cie.2021.107904_b0450) 2019; 163 Barddal (10.1016/j.cie.2021.107904_b0055) 2019; 116 10.1016/j.cie.2021.107904_b0150 10.1016/j.cie.2021.107904_b0195 Kangrang (10.1016/j.cie.2021.107904_b0220) 2019; 14 Sayed (10.1016/j.cie.2021.107904_b0345) 2019; 31 Selvakumar (10.1016/j.cie.2021.107904_b0360) 2019; 81 Zhang (10.1016/j.cie.2021.107904_b0445) 2019; 50 Chen (10.1016/j.cie.2021.107904_b0100) 2017; 80 Tutkan (10.1016/j.cie.2021.107904_b0395) 2016; 52 Mafarja (10.1016/j.cie.2021.107904_b0250) 2019; 117 Abdel-Basset (10.1016/j.cie.2021.107904_b0010) 2020; 139 Mafarja (10.1016/j.cie.2021.107904_b0260) 2018; 145 Aljarah (10.1016/j.cie.2021.107904_b0025) 2018; 71 10.1016/j.cie.2021.107904_b0115 Hashim (10.1016/j.cie.2021.107904_b0205) 2019; 101 Rutkowski (10.1016/j.cie.2021.107904_b0320) 2008 Thaher (10.1016/j.cie.2021.107904_b0370) 2020 Wolpert (10.1016/j.cie.2021.107904_b0430) 1997; 1 Hegazy (10.1016/j.cie.2021.107904_b0210) 2020; 32 Venkatesh (10.1016/j.cie.2021.107904_b0415) 2019; 19 Manochandar (10.1016/j.cie.2021.107904_b0270) 2018; 124 Gokalp (10.1016/j.cie.2021.107904_b0170) 2020; 146 Rashedi (10.1016/j.cie.2021.107904_b0310) 2009; 179 Tubishat (10.1016/j.cie.2021.107904_b0385) 2020; 8 Faris (10.1016/j.cie.2021.107904_b0140) 2018; 154 Li (10.1016/j.cie.2021.107904_b0245) 2015; 26 Mastromichalakis (10.1016/j.cie.2021.107904_b0275) 2020 Rostami (10.1016/j.cie.2021.107904_b0315) 2021; 100 Mafarja (10.1016/j.cie.2021.107904_b0265) 2018; 62 Chandrashekar (10.1016/j.cie.2021.107904_b0090) 2014; 40 Yan (10.1016/j.cie.2021.107904_b0435) 2019; 184 Georges (10.1016/j.cie.2021.107904_b0160) 2020; 101 10.1016/j.cie.2021.107904_b0060 Feo (10.1016/j.cie.2021.107904_b0145) 1995; 6 Rao (10.1016/j.cie.2021.107904_b0305) 2019; 74 10.1016/j.cie.2021.107904_b0300 10.1016/j.cie.2021.107904_b0225 10.1016/j.cie.2021.107904_b0065 10.1016/j.cie.2021.107904_b0340 Zakeri (10.1016/j.cie.2021.107904_b0440) 2019; 119 Al-Tashi (10.1016/j.cie.2021.107904_b0035) 2019; 7 Abdel-Basset (10.1016/j.cie.2021.107904_b0005) 2020 Zheng (10.1016/j.cie.2021.107904_b0455) 2018; 7 Tu (10.1016/j.cie.2021.107904_b0390) 2019; 76 Dhiman (10.1016/j.cie.2021.107904_b0120) 2021; 211 Gregory (10.1016/j.cie.2021.107904_b0185) 2011; 59 Bazi (10.1016/j.cie.2021.107904_b0075) 2006; 44 Garcia-Carretero (10.1016/j.cie.2021.107904_b0155) 2020 Wang (10.1016/j.cie.2021.107904_b0425) 2019; 168 Gupta (10.1016/j.cie.2021.107904_b0190) 2020; 2020 Too (10.1016/j.cie.2021.107904_b0380) 2021; 212 Chen (10.1016/j.cie.2021.107904_b0105) 2019; 128 Arora (10.1016/j.cie.2021.107904_b0050) 2019; 7 Jousten (10.1016/j.cie.2021.107904_b0215) 2017; 54 Abd Elminaam (10.1016/j.cie.2021.107904_b0020) 2021; 9 Belaout (10.1016/j.cie.2021.107904_b0080) 2018; 127 10.1016/j.cie.2021.107904_b0130 10.1016/j.cie.2021.107904_b0295 |
| References_xml | – volume: 128 start-page: 140 year: 2019 end-page: 156 ident: b0105 article-title: Hybrid particle swarm optimization with spiral-shaped mechanism for feature selection publication-title: Expert Systems with Applications – volume: 101 start-page: 646 year: 2019 end-page: 667 ident: b0205 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Generation Computer Systems – volume: 8 start-page: 194303 year: 2020 end-page: 194314 ident: b0385 article-title: Dynamic butterfly optimization algorithm for feature selection publication-title: IEEE Access – volume: 62 start-page: 441 year: 2018 end-page: 453 ident: b0265 article-title: Whale optimization approaches for wrapper feature selection publication-title: Applied Soft Computing – volume: 93 start-page: 13 year: 2017 end-page: 22 ident: b0375 article-title: A ba-based algorithm for parameter optimization of support vector machine publication-title: Pattern Recognition Letters – volume: 54 start-page: S146 year: 2017 ident: b0215 article-title: Perspectives for a new realization of the pascal by optical methods publication-title: Metrologia – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: b0235 article-title: Optimization by simulated annealing publication-title: science – volume: 139 start-page: 1 year: 2020 end-page: 14 ident: b0010 article-title: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection publication-title: Expert Systems with Applications – year: 2008 ident: b0320 article-title: Computational intelligence: methods and techniques – year: 2002 ident: b0355 article-title: Learning with kernels: support vector machines, regularization, optimization, and beyond – start-page: 251 year: 2020 end-page: 272 ident: b0370 article-title: Binary harris hawks optimizer for high-dimensional, low sample size feature selection publication-title: Evolutionary Machine Learning Techniques – reference: Khamees, M., & Rashed, A. A. -B. (2020) Hybrid sca-cs optimization algorithm for feature selection in classification problems. In AIP Conference Proceedings, Vol. 2290, AIP Publishing LLC (p. 040001). – volume: 145 start-page: 25 year: 2018 end-page: 45 ident: b0260 article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems publication-title: Knowledge-Based Systems – volume: 2 start-page: 1 year: 2021 end-page: 11 ident: b0095 article-title: Hybrid binary dragonfly algorithm with simulated annealing for feature selection publication-title: SN computer science – start-page: 1 year: 2021 end-page: 26 ident: b0230 article-title: A simultaneous moth flame optimizer feature selection approach based on levy flight and selection operators for medical diagnosis publication-title: Arabian Journal for Science and Engineering – start-page: 1 year: 2020 end-page: 12 ident: b0155 article-title: Use of a k-nearest neighbors model to predict the development of type 2 diabetes within 2 years in an obese, hypertensive population publication-title: Medical & Biological Engineering & Computing – volume: 119 start-page: 61 year: 2019 end-page: 72 ident: b0440 article-title: Efficient feature selection method using real-valued grasshopper optimization algorithm publication-title: Expert Systems with Applications – volume: 19 start-page: 3 year: 2019 end-page: 26 ident: b0415 article-title: A review of feature selection and its methods publication-title: Cybernetics and Information Technologies – volume: 9 start-page: 60136 year: 2021 end-page: 60153 ident: b0020 article-title: An efficient marine predators algorithm for feature selection publication-title: IEEE Access – volume: 61 start-page: 2745 year: 2013 end-page: 2757 ident: b0070 article-title: The wind driven optimization technique and its application in electromagnetics publication-title: IEEE transactions on antennas and propagation – volume: 116 start-page: 147 year: 2019 end-page: 160 ident: b0045 article-title: Binary butterfly optimization approaches for feature selection publication-title: Expert Systems with Applications – volume: 8 start-page: 248 year: 2017 end-page: 256 ident: b0280 article-title: Wind-driven optimization technique for estimation of solar photovoltaic parameters publication-title: IEEE Journal of Photovoltaics – volume: 50 start-page: 158 year: 2019 end-page: 167 ident: b0445 article-title: Feature selection with multi-view data: A survey publication-title: Information Fusion – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b0430 article-title: No free lunch theorems for optimization publication-title: IEEE transactions on evolutionary computation – volume: 31 start-page: 171 year: 2019 end-page: 188 ident: b0345 article-title: Feature selection via a novel chaotic crow search algorithm publication-title: Neural Computing and Applications – reference: Dino, H. I., Abdulrazzaq, M. B. (2019). Facial expression classification based on svm, knn and mlp classifiers. In 2019 International Conference on Advanced Science and Engineering (ICOASE), IEEE (pp. 70–75). – volume: 24 start-page: 17457 year: 2020 end-page: 17466 ident: b0410 article-title: Ecg signal processing and knn classifier-based abnormality detection by vh-doctor for remote cardiac healthcare monitoring publication-title: Soft Computing – volume: 76 start-page: 16 year: 2019 end-page: 30 ident: b0390 article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection publication-title: Applied Soft Computing – start-page: 1 year: 2020 end-page: 16 ident: b0180 article-title: Classification of tweets data based on polarity using improved rbf kernel of svm publication-title: International Journal of Information Technology – start-page: 7 year: 1987 end-page: 15 ident: b0405 article-title: Simulated annealing publication-title: Simulated annealing: Theory and applications – volume: 40 start-page: 16 year: 2014 end-page: 28 ident: b0090 article-title: A survey on feature selection methods publication-title: Computers & Electrical Engineering – volume: 80 start-page: 340 year: 2017 end-page: 355 ident: b0100 article-title: A feature weighted support vector machine and k-nearest neighbor algorithm for stock market indices prediction publication-title: Expert Systems with Applications – volume: 48 start-page: 3462 year: 2018 end-page: 3481 ident: b0350 article-title: A novel chaotic salp swarm algorithm for global optimization and feature selection publication-title: Applied Intelligence – volume: 117 start-page: 267 year: 2019 end-page: 286 ident: b0250 article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems publication-title: Expert Systems with Applications – year: 2021 ident: b0015 article-title: An improved binary grey-wolf optimizer with simulated annealing for feature selection publication-title: IEEE Access – reference: Hansen, N., Ostermeier, A. (1996). Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. In Proceedings of IEEE international conference on evolutionary computation, IEEE (pp. 312–317). – volume: 14 start-page: 8026 year: 2019 end-page: 8033 ident: b0220 article-title: Alternative approach of wind driven optimization for flood control rule curves publication-title: Journal of Engineering and Applied Sciences – volume: 44 start-page: 9653 year: 2019 end-page: 9691 ident: b0330 article-title: On some improved versions of whale optimization algorithm publication-title: Arabian Journal for Science and Engineering – reference: Tang, J., Alelyani, S. & Liu, H. (2014). Feature selection for classification: A review, Data classification: Algorithms and applications, 37. – volume: 85 start-page: 168 year: 2018 end-page: 188 ident: b0400 article-title: Benchmarking relief-based feature selection methods for bioinformatics data mining publication-title: Journal of biomedical informatics – reference: Harijanto, B., Amalia, E., & Mentari, M. (2020). Recognition of the character on the map captured by the camera using k-nearest neighbor. In IOP Conference Series: Materials Science and Engineering, Vol. 732, IOP Publishing (p. 012043). – volume: 26 start-page: 933 year: 2015 end-page: 944 ident: b0245 article-title: Scheduling fms problems with heuristic search function and transition-timed petri nets publication-title: Journal of Intelligent Manufacturing – volume: 2020 year: 2020 ident: b0190 article-title: Modified support vector machine for detecting stress level using eeg signals publication-title: Computational Intelligence and Neuroscience – volume: 655 start-page: 1 year: 2016 end-page: 70 ident: b0325 article-title: Modern meta-heuristics based on nonlinear physics processes: A review of models and design procedures publication-title: Physics Reports – volume: 71 start-page: 964 year: 2018 end-page: 979 ident: b0025 article-title: Asynchronous accelerating multi-leader salp chains for feature selection publication-title: Applied Soft Computing – volume: 7 start-page: 26343 year: 2019 end-page: 26361 ident: b0050 article-title: A new hybrid algorithm based on grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection publication-title: IEEE Access – volume: Vol. 65 year: 2012 ident: b0460 publication-title: Theory of global random search – reference: Bayraktar, Z., Komurcu, M. (2016). Adaptive wind driven optimization. In Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS) (pp. 124–127). – start-page: 107470 year: 2020 ident: b0110 article-title: Binary coyote optimization algorithm for feature selection publication-title: Pattern Recognition – reference: EL-Hasnony, I. M., Elhoseny, M., & Tarek, Z. (2021). A hybrid feature selection model based on butterfly optimization algorithm: Covid-19 as a case study. Expert Systems, e12786. – volume: 124 start-page: 139 year: 2018 end-page: 156 ident: b0270 article-title: Scaling feature selection method for enhancing the classification performance of support vector machines in text mining publication-title: Computers & Industrial Engineering – start-page: 1 year: 2020 end-page: 45 ident: b0005 article-title: A hybrid harris hawks optimization algorithm with simulated annealing for feature selection publication-title: Artificial Intelligence Review – volume: 209 start-page: 237 year: 1998 end-page: 260 ident: b0040 article-title: On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems publication-title: Theoretical Computer Science – volume: 44 start-page: 3374 year: 2006 end-page: 3385 ident: b0075 article-title: Toward an optimal svm classification system for hyperspectral remote sensing images publication-title: IEEE Transactions on geoscience and remote sensing – volume: 101 start-page: 107 year: 2020 end-page: 183 ident: b0160 article-title: Identifying the best data-driven feature selection method for boosting reproducibility in classification tasks publication-title: Pattern Recognition – reference: Li, S. (2020). Global face pose detection based on an improved pso-svm method. In Proceedings of the 2020 International Conference on Aviation Safety and Information Technology, 2020 (pp. 549–553). – reference: Neumann, L., & Matas, J. (2011). Text localization in real-world images using efficiently pruned exhaustive search. In 2011 International Conference on Document Analysis and Recognition, IEEE (pp. 687–691). – volume: 168 start-page: 39 year: 2019 end-page: 48 ident: b0425 article-title: A feature selection approach for hyperspectral image based on modified ant lion optimizer publication-title: Knowledge-Based Systems – reference: Pratama, F. I., & Budianita, A. (2020). Optimization of k-nn classification in human gait recognition. In 2020 Fifth International Conference on Informatics and Computing (ICIC), IEEE, 2020 (pp. 1–5). – volume: 52 start-page: 885 year: 2016 end-page: 910 ident: b0395 article-title: Helmholtz principle based supervised and unsupervised feature selection methods for text mining publication-title: Information Processing & Management – year: 2021 ident: b0165 article-title: Adaptive dynamic meta-heuristics for feature selection and classification in diagnostic accuracy of transformer faults publication-title: IEEE Access – volume: 7 start-page: 14908 year: 2018 end-page: 14923 ident: b0455 article-title: A novel hybrid algorithm for feature selection based on whale optimization algorithm publication-title: IEEE Access – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b0310 article-title: Gsa: a gravitational search algorithm publication-title: Information sciences – volume: 100 start-page: 104210 year: 2021 ident: b0315 article-title: Review of swarm intelligence-based feature selection methods publication-title: Engineering Applications of Artificial Intelligence – volume: 59 start-page: 1275 year: 2011 end-page: 1285 ident: b0185 article-title: Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy publication-title: IEEE Transactions on Antennas and Propagation – volume: 161 start-page: 185 year: 2018 end-page: 204 ident: b0255 article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions publication-title: Knowledge-Based Systems – volume: 20 start-page: 415 year: 2017 end-page: 425 ident: b0085 article-title: Locally adaptive k parameter selection for nearest neighbor classifier: one nearest cluster publication-title: Pattern Analysis and Applications – volume: 172 start-page: 371 year: 2016 end-page: 381 ident: b0135 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing – volume: 32 start-page: 335 year: 2020 end-page: 344 ident: b0210 article-title: Improved salp swarm algorithm for feature selection publication-title: Journal of King Saud University-Computer and Information Sciences – year: 2020 ident: b0030 article-title: Introduction to machine learning – reference: Bayraktar, Z., Komurcu, M., & Werner, D. H. (2010). Wind driven optimization (wdo): A novel nature-inspired optimization algorithm and its application to electromagnetics. In 2010 IEEE antennas and propagation society international symposium, IEEE (pp. 1–4). – volume: 7 start-page: 39496 year: 2019 end-page: 39508 ident: b0035 article-title: Binary optimization using hybrid grey wolf optimization for feature selection publication-title: IEEE Access – volume: 163 start-page: 283 year: 2019 end-page: 304 ident: b0450 article-title: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem publication-title: Knowledge-Based Systems – reference: Frank, A. (2010) Uci machine learning repository, – volume: 154 start-page: 43 year: 2018 end-page: 67 ident: b0140 article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems publication-title: Knowledge-Based Systems – volume: 418 start-page: 383 year: 2017 end-page: 404 ident: b0335 article-title: Landscape-based adaptive operator selection mechanism for differential evolution publication-title: Information Sciences – reference: Sallam, K. M., Elsayed, S. M., Chakrabortty, R. K. & Ryan, M. J. (2020). Improved multi-operator differential evolution algorithm for solving unconstrained problems. In 2020 IEEE Congress on Evolutionary Computation (CEC), IEEE (pp. 1–8). – volume: 6 start-page: 109 year: 1995 end-page: 133 ident: b0145 article-title: Greedy randomized adaptive search procedures publication-title: Journal of Global Optimization – reference: Rachmawanto, E. H., Anarqi, G. R., & Sari, C .A. et al. (2018). Handwriting recognition using eccentricity and metric feature extraction based on k-nearest neighbors. In 2018 International Seminar on Application for Technology of Information and Communication, IEEE (pp. 411–416). – volume: 74 start-page: 634 year: 2019 end-page: 642 ident: b0305 article-title: Feature selection based on artificial bee colony and gradient boosting decision tree publication-title: Applied Soft Computing – volume: 81 start-page: 148 year: 2019 end-page: 155 ident: b0360 article-title: Firefly algorithm based feature selection for network intrusion detection publication-title: Computers & Security – volume: 146 start-page: 113176 year: 2020 ident: b0170 article-title: A novel wrapper feature selection algorithm based on iterated greedy metaheuristic for sentiment classification publication-title: Expert Systems with Applications – reference: . – start-page: 1 year: 2020 end-page: 19 ident: b0275 article-title: An mr image classification scheme based on fourier moment analysis and linear support vector machine publication-title: Journal of Information and Optimization Sciences – volume: 127 start-page: 548 year: 2018 end-page: 558 ident: b0080 article-title: Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification publication-title: Renewable Energy – volume: 184 start-page: 102 year: 2019 end-page: 111 ident: b0435 article-title: Hybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasets publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 211 start-page: 106560 year: 2021 ident: b0120 article-title: Bepo: a novel binary emperor penguin optimizer for automatic feature selection publication-title: Knowledge-Based Systems – volume: 116 start-page: 227 year: 2019 end-page: 242 ident: b0055 article-title: Merit-guided dynamic feature selection filter for data streams publication-title: Expert Systems with Applications – volume: 333 start-page: 407 year: 2019 end-page: 418 ident: b0175 article-title: A new multi-objective wrapper method for feature selection–accuracy and stability analysis for bci publication-title: Neurocomputing – volume: 212 start-page: 106553 year: 2021 ident: b0380 article-title: A hyper learning binary dragonfly algorithm for feature selection: A covid-19 case study publication-title: Knowledge-Based Systems – volume: 88 start-page: 370 year: 2019 end-page: 382 ident: b0290 article-title: Structured sparsity regularized multiple kernel learning for alzheimer’s disease diagnosis publication-title: Pattern recognition – volume: 2021 year: 2021 ident: b0420 article-title: A feature selection method by using chaotic cuckoo search optimization algorithm with elitist preservation and uniform mutation for data classification publication-title: Discrete Dynamics in Nature and Society – reference: De Souza, R. C. T., dos Santos Coelho, L., De Macedo, C. A., & Pierezan, J. (2018). A v-shaped binary crow search algorithm for feature selection. In 2018 IEEE congress on evolutionary computation (CEC), IEEE, 2018 (pp. 1–8). – ident: 10.1016/j.cie.2021.107904_b0065 doi: 10.1109/APS.2010.5562213 – start-page: 107470 year: 2020 ident: 10.1016/j.cie.2021.107904_b0110 article-title: Binary coyote optimization algorithm for feature selection publication-title: Pattern Recognition doi: 10.1016/j.patcog.2020.107470 – volume: 71 start-page: 964 year: 2018 ident: 10.1016/j.cie.2021.107904_b0025 article-title: Asynchronous accelerating multi-leader salp chains for feature selection publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.07.040 – volume: 116 start-page: 227 year: 2019 ident: 10.1016/j.cie.2021.107904_b0055 article-title: Merit-guided dynamic feature selection filter for data streams publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.09.031 – volume: 8 start-page: 248 issue: 1 year: 2017 ident: 10.1016/j.cie.2021.107904_b0280 article-title: Wind-driven optimization technique for estimation of solar photovoltaic parameters publication-title: IEEE Journal of Photovoltaics doi: 10.1109/JPHOTOV.2017.2769000 – volume: 80 start-page: 340 year: 2017 ident: 10.1016/j.cie.2021.107904_b0100 article-title: A feature weighted support vector machine and k-nearest neighbor algorithm for stock market indices prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.02.044 – start-page: 1 year: 2020 ident: 10.1016/j.cie.2021.107904_b0005 article-title: A hybrid harris hawks optimization algorithm with simulated annealing for feature selection publication-title: Artificial Intelligence Review – volume: 59 start-page: 1275 issue: 4 year: 2011 ident: 10.1016/j.cie.2021.107904_b0185 article-title: Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy publication-title: IEEE Transactions on Antennas and Propagation doi: 10.1109/TAP.2011.2109350 – start-page: 1 year: 2020 ident: 10.1016/j.cie.2021.107904_b0275 article-title: An mr image classification scheme based on fourier moment analysis and linear support vector machine publication-title: Journal of Information and Optimization Sciences – volume: 128 start-page: 140 year: 2019 ident: 10.1016/j.cie.2021.107904_b0105 article-title: Hybrid particle swarm optimization with spiral-shaped mechanism for feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.03.039 – volume: 62 start-page: 441 year: 2018 ident: 10.1016/j.cie.2021.107904_b0265 article-title: Whale optimization approaches for wrapper feature selection publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.11.006 – volume: 85 start-page: 168 year: 2018 ident: 10.1016/j.cie.2021.107904_b0400 article-title: Benchmarking relief-based feature selection methods for bioinformatics data mining publication-title: Journal of biomedical informatics doi: 10.1016/j.jbi.2018.07.015 – year: 2021 ident: 10.1016/j.cie.2021.107904_b0015 article-title: An improved binary grey-wolf optimizer with simulated annealing for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3117853 – start-page: 1 year: 2021 ident: 10.1016/j.cie.2021.107904_b0230 article-title: A simultaneous moth flame optimizer feature selection approach based on levy flight and selection operators for medical diagnosis publication-title: Arabian Journal for Science and Engineering – start-page: 1 year: 2020 ident: 10.1016/j.cie.2021.107904_b0180 article-title: Classification of tweets data based on polarity using improved rbf kernel of svm publication-title: International Journal of Information Technology – volume: 209 start-page: 237 issue: 1–2 year: 1998 ident: 10.1016/j.cie.2021.107904_b0040 article-title: On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems publication-title: Theoretical Computer Science doi: 10.1016/S0304-3975(97)00115-1 – ident: 10.1016/j.cie.2021.107904_b0060 doi: 10.4108/eai.3-12-2015.2262424 – volume: 655 start-page: 1 year: 2016 ident: 10.1016/j.cie.2021.107904_b0325 article-title: Modern meta-heuristics based on nonlinear physics processes: A review of models and design procedures publication-title: Physics Reports doi: 10.1016/j.physrep.2016.08.001 – year: 2020 ident: 10.1016/j.cie.2021.107904_b0030 – volume: 211 start-page: 106560 year: 2021 ident: 10.1016/j.cie.2021.107904_b0120 article-title: Bepo: a novel binary emperor penguin optimizer for automatic feature selection publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106560 – ident: 10.1016/j.cie.2021.107904_b0300 doi: 10.1109/ISEMANTIC.2018.8549804 – ident: 10.1016/j.cie.2021.107904_b0365 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.cie.2021.107904_b0430 article-title: No free lunch theorems for optimization publication-title: IEEE transactions on evolutionary computation doi: 10.1109/4235.585893 – volume: 48 start-page: 3462 issue: 10 year: 2018 ident: 10.1016/j.cie.2021.107904_b0350 article-title: A novel chaotic salp swarm algorithm for global optimization and feature selection publication-title: Applied Intelligence doi: 10.1007/s10489-018-1158-6 – volume: 24 start-page: 17457 issue: 22 year: 2020 ident: 10.1016/j.cie.2021.107904_b0410 article-title: Ecg signal processing and knn classifier-based abnormality detection by vh-doctor for remote cardiac healthcare monitoring publication-title: Soft Computing doi: 10.1007/s00500-020-05191-1 – volume: 44 start-page: 9653 issue: 11 year: 2019 ident: 10.1016/j.cie.2021.107904_b0330 article-title: On some improved versions of whale optimization algorithm publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-019-04016-0 – volume: 74 start-page: 634 year: 2019 ident: 10.1016/j.cie.2021.107904_b0305 article-title: Feature selection based on artificial bee colony and gradient boosting decision tree publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.10.036 – volume: 14 start-page: 8026 issue: 21 year: 2019 ident: 10.1016/j.cie.2021.107904_b0220 article-title: Alternative approach of wind driven optimization for flood control rule curves publication-title: Journal of Engineering and Applied Sciences doi: 10.36478/jeasci.2019.8026.8033 – volume: 81 start-page: 148 year: 2019 ident: 10.1016/j.cie.2021.107904_b0360 article-title: Firefly algorithm based feature selection for network intrusion detection publication-title: Computers & Security doi: 10.1016/j.cose.2018.11.005 – start-page: 1 year: 2020 ident: 10.1016/j.cie.2021.107904_b0155 article-title: Use of a k-nearest neighbors model to predict the development of type 2 diabetes within 2 years in an obese, hypertensive population publication-title: Medical & Biological Engineering & Computing – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 10.1016/j.cie.2021.107904_b0235 article-title: Optimization by simulated annealing publication-title: science doi: 10.1126/science.220.4598.671 – volume: 161 start-page: 185 year: 2018 ident: 10.1016/j.cie.2021.107904_b0255 article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.08.003 – volume: 32 start-page: 335 issue: 3 year: 2020 ident: 10.1016/j.cie.2021.107904_b0210 article-title: Improved salp swarm algorithm for feature selection publication-title: Journal of King Saud University-Computer and Information Sciences doi: 10.1016/j.jksuci.2018.06.003 – volume: 61 start-page: 2745 issue: 5 year: 2013 ident: 10.1016/j.cie.2021.107904_b0070 article-title: The wind driven optimization technique and its application in electromagnetics publication-title: IEEE transactions on antennas and propagation doi: 10.1109/TAP.2013.2238654 – volume: Vol. 65 year: 2012 ident: 10.1016/j.cie.2021.107904_b0460 – volume: 76 start-page: 16 year: 2019 ident: 10.1016/j.cie.2021.107904_b0390 article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.11.047 – volume: 44 start-page: 3374 issue: 11 year: 2006 ident: 10.1016/j.cie.2021.107904_b0075 article-title: Toward an optimal svm classification system for hyperspectral remote sensing images publication-title: IEEE Transactions on geoscience and remote sensing doi: 10.1109/TGRS.2006.880628 – volume: 100 start-page: 104210 year: 2021 ident: 10.1016/j.cie.2021.107904_b0315 article-title: Review of swarm intelligence-based feature selection methods publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2021.104210 – ident: 10.1016/j.cie.2021.107904_b0130 doi: 10.1111/exsy.12786 – volume: 2021 year: 2021 ident: 10.1016/j.cie.2021.107904_b0420 article-title: A feature selection method by using chaotic cuckoo search optimization algorithm with elitist preservation and uniform mutation for data classification publication-title: Discrete Dynamics in Nature and Society – volume: 88 start-page: 370 year: 2019 ident: 10.1016/j.cie.2021.107904_b0290 article-title: Structured sparsity regularized multiple kernel learning for alzheimer’s disease diagnosis publication-title: Pattern recognition doi: 10.1016/j.patcog.2018.11.027 – volume: 172 start-page: 371 year: 2016 ident: 10.1016/j.cie.2021.107904_b0135 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – volume: 40 start-page: 16 issue: 1 year: 2014 ident: 10.1016/j.cie.2021.107904_b0090 article-title: A survey on feature selection methods publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2013.11.024 – start-page: 251 year: 2020 ident: 10.1016/j.cie.2021.107904_b0370 article-title: Binary harris hawks optimizer for high-dimensional, low sample size feature selection – volume: 139 start-page: 1 year: 2020 ident: 10.1016/j.cie.2021.107904_b0010 article-title: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.112824 – volume: 333 start-page: 407 year: 2019 ident: 10.1016/j.cie.2021.107904_b0175 article-title: A new multi-objective wrapper method for feature selection–accuracy and stability analysis for bci publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.017 – volume: 7 start-page: 26343 year: 2019 ident: 10.1016/j.cie.2021.107904_b0050 article-title: A new hybrid algorithm based on grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897325 – volume: 212 start-page: 106553 year: 2021 ident: 10.1016/j.cie.2021.107904_b0380 article-title: A hyper learning binary dragonfly algorithm for feature selection: A covid-19 case study publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106553 – volume: 145 start-page: 25 year: 2018 ident: 10.1016/j.cie.2021.107904_b0260 article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.12.037 – volume: 50 start-page: 158 year: 2019 ident: 10.1016/j.cie.2021.107904_b0445 article-title: Feature selection with multi-view data: A survey publication-title: Information Fusion doi: 10.1016/j.inffus.2018.11.019 – volume: 119 start-page: 61 year: 2019 ident: 10.1016/j.cie.2021.107904_b0440 article-title: Efficient feature selection method using real-valued grasshopper optimization algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.10.021 – volume: 163 start-page: 283 year: 2019 ident: 10.1016/j.cie.2021.107904_b0450 article-title: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.08.030 – ident: 10.1016/j.cie.2021.107904_b0295 doi: 10.1109/ICIC50835.2020.9288653 – volume: 418 start-page: 383 year: 2017 ident: 10.1016/j.cie.2021.107904_b0335 article-title: Landscape-based adaptive operator selection mechanism for differential evolution publication-title: Information Sciences doi: 10.1016/j.ins.2017.08.028 – start-page: 7 year: 1987 ident: 10.1016/j.cie.2021.107904_b0405 article-title: Simulated annealing – volume: 8 start-page: 194303 year: 2020 ident: 10.1016/j.cie.2021.107904_b0385 article-title: Dynamic butterfly optimization algorithm for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3033757 – year: 2002 ident: 10.1016/j.cie.2021.107904_b0355 – ident: 10.1016/j.cie.2021.107904_b0115 doi: 10.1109/CEC.2018.8477975 – volume: 26 start-page: 933 issue: 5 year: 2015 ident: 10.1016/j.cie.2021.107904_b0245 article-title: Scheduling fms problems with heuristic search function and transition-timed petri nets publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-014-0943-2 – volume: 116 start-page: 147 year: 2019 ident: 10.1016/j.cie.2021.107904_b0045 article-title: Binary butterfly optimization approaches for feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.08.051 – volume: 146 start-page: 113176 year: 2020 ident: 10.1016/j.cie.2021.107904_b0170 article-title: A novel wrapper feature selection algorithm based on iterated greedy metaheuristic for sentiment classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113176 – ident: 10.1016/j.cie.2021.107904_b0240 doi: 10.1145/3434581.3434679 – ident: 10.1016/j.cie.2021.107904_b0340 doi: 10.1109/CEC48606.2020.9185577 – volume: 31 start-page: 171 issue: 1 year: 2019 ident: 10.1016/j.cie.2021.107904_b0345 article-title: Feature selection via a novel chaotic crow search algorithm publication-title: Neural Computing and Applications doi: 10.1007/s00521-017-2988-6 – volume: 2020 year: 2020 ident: 10.1016/j.cie.2021.107904_b0190 article-title: Modified support vector machine for detecting stress level using eeg signals publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2020/8860841 – ident: 10.1016/j.cie.2021.107904_b0285 doi: 10.1109/ICDAR.2011.144 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.cie.2021.107904_b0310 article-title: Gsa: a gravitational search algorithm publication-title: Information sciences doi: 10.1016/j.ins.2009.03.004 – volume: 6 start-page: 109 issue: 2 year: 1995 ident: 10.1016/j.cie.2021.107904_b0145 article-title: Greedy randomized adaptive search procedures publication-title: Journal of Global Optimization doi: 10.1007/BF01096763 – volume: 54 start-page: S146 issue: 6 year: 2017 ident: 10.1016/j.cie.2021.107904_b0215 article-title: Perspectives for a new realization of the pascal by optical methods publication-title: Metrologia doi: 10.1088/1681-7575/aa8a4d – year: 2021 ident: 10.1016/j.cie.2021.107904_b0165 article-title: Adaptive dynamic meta-heuristics for feature selection and classification in diagnostic accuracy of transformer faults publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3083593 – year: 2008 ident: 10.1016/j.cie.2021.107904_b0320 – ident: 10.1016/j.cie.2021.107904_b0195 doi: 10.1109/ICEC.1996.542381 – volume: 168 start-page: 39 year: 2019 ident: 10.1016/j.cie.2021.107904_b0425 article-title: A feature selection approach for hyperspectral image based on modified ant lion optimizer publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.12.031 – ident: 10.1016/j.cie.2021.107904_b0225 doi: 10.1063/5.0028662 – volume: 7 start-page: 39496 year: 2019 ident: 10.1016/j.cie.2021.107904_b0035 article-title: Binary optimization using hybrid grey wolf optimization for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906757 – volume: 154 start-page: 43 year: 2018 ident: 10.1016/j.cie.2021.107904_b0140 article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.05.009 – volume: 101 start-page: 646 year: 2019 ident: 10.1016/j.cie.2021.107904_b0205 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.07.015 – volume: 117 start-page: 267 year: 2019 ident: 10.1016/j.cie.2021.107904_b0250 article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.09.015 – ident: 10.1016/j.cie.2021.107904_b0125 doi: 10.1109/ICOASE.2019.8723728 – volume: 101 start-page: 107 year: 2020 ident: 10.1016/j.cie.2021.107904_b0160 article-title: Identifying the best data-driven feature selection method for boosting reproducibility in classification tasks publication-title: Pattern Recognition doi: 10.1016/j.patcog.2019.107183 – ident: 10.1016/j.cie.2021.107904_b0150 – ident: 10.1016/j.cie.2021.107904_b0200 doi: 10.1088/1757-899X/732/1/012043 – volume: 2 start-page: 1 issue: 4 year: 2021 ident: 10.1016/j.cie.2021.107904_b0095 article-title: Hybrid binary dragonfly algorithm with simulated annealing for feature selection publication-title: SN computer science doi: 10.1007/s42979-021-00687-5 – volume: 93 start-page: 13 year: 2017 ident: 10.1016/j.cie.2021.107904_b0375 article-title: A ba-based algorithm for parameter optimization of support vector machine publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2016.10.007 – volume: 127 start-page: 548 year: 2018 ident: 10.1016/j.cie.2021.107904_b0080 article-title: Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification publication-title: Renewable Energy doi: 10.1016/j.renene.2018.05.008 – volume: 19 start-page: 3 issue: 1 year: 2019 ident: 10.1016/j.cie.2021.107904_b0415 article-title: A review of feature selection and its methods publication-title: Cybernetics and Information Technologies doi: 10.2478/cait-2019-0001 – volume: 7 start-page: 14908 year: 2018 ident: 10.1016/j.cie.2021.107904_b0455 article-title: A novel hybrid algorithm for feature selection based on whale optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2879848 – volume: 9 start-page: 60136 year: 2021 ident: 10.1016/j.cie.2021.107904_b0020 article-title: An efficient marine predators algorithm for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3073261 – volume: 20 start-page: 415 issue: 2 year: 2017 ident: 10.1016/j.cie.2021.107904_b0085 article-title: Locally adaptive k parameter selection for nearest neighbor classifier: one nearest cluster publication-title: Pattern Analysis and Applications doi: 10.1007/s10044-015-0504-0 – volume: 124 start-page: 139 year: 2018 ident: 10.1016/j.cie.2021.107904_b0270 article-title: Scaling feature selection method for enhancing the classification performance of support vector machines in text mining publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2018.07.008 – volume: 52 start-page: 885 issue: 5 year: 2016 ident: 10.1016/j.cie.2021.107904_b0395 article-title: Helmholtz principle based supervised and unsupervised feature selection methods for text mining publication-title: Information Processing & Management doi: 10.1016/j.ipm.2016.03.007 – volume: 184 start-page: 102 year: 2019 ident: 10.1016/j.cie.2021.107904_b0435 article-title: Hybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasets publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2018.11.010 |
| SSID | ssj0004591 |
| Score | 2.4693692 |
| Snippet | •An improved Binary Adaptive Wind Driven Optimization algorithm (iBAWDO) is proposed.•Improvements include the crossover technique and Simulated Annealing (SA)... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107904 |
| SubjectTerms | Combinatorial optimization Dimensionality reduction Feature selection Machine learning Meta-heuristics Supervised classification Wind Driven Optimization algorithm (WDO) |
| Title | Improved Binary Adaptive Wind Driven Optimization Algorithm-Based Dimensionality Reduction for Supervised Classification |
| URI | https://dx.doi.org/10.1016/j.cie.2021.107904 |
| Volume | 167 |
| WOSCitedRecordID | wos000779067000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj5swELaibA_toY9tq25f8qGnIiIggOHIVul7t5WybXNDxpgmq8BGSVjlH_VvdszYwKYPtZV6QZGFA8p8GX8ez3xDyDPBQ48HjNuhCJjt-7m0s5AHdiGE60o3ynkjX_z5PTs9jWaz-ONg8M3UwlwuWVVFu128-q-mhjEwtiqd_Qtzt18KA_AZjA5XMDtc_8jwGCYAHnmMpbZJzldNftCXhco6Xiv3Zn2AoVKXYFrJ8uvFerGdl_YxrGlwj1L8R7UO5Og5Ssw2KYnTeqXci7qvaaipUo066xrNA90rYtMga9G1B5Gd_GF38JRbk6V9Ao4NA69JubaSUZsYhBhM5rBsW6_a4ak6ACh1ORsvrZNRB52KqwDIvAnVvqvLOq_7sQ3YFreZhBhwM0U3XYYTFno5tiKOuISh345YDJNRw7Z17Njo44dFAuMV5yNwniN4qgsjLMYmyHva21P1rIajKg0kR5X4H3gsiKMhOUjeTGZve8L02JzRvJs5QG9SCfce9HMK1KM1Z7fJTb0foQni6A4ZyOqQ3NJ7E6o9_-aQ3OgJV94lOwMyiiCjBmRUgYwiyGgfZHQPZPQqyGgLMgogox3I6FWQ3SOfXk7OXry2dQ8PW3gx29qiYJ50pBd6UkoP6Hwo3Cz0wD9ETqxKkzIgR4Ubi3GWS49JKWK_CLnwIxGBD2Hj-2RYXVTyAaFcbY3zAhhuDjTaDznzgb4WIsuEI8eBc0Qc87OmQgvcqz4ry9RkMp7DuEyVJVK0xBF53k5ZobrL7272ja1STU-RdqYArF9Pe_hv0x6R690_4jEZbte1fEKuicvtYrN-quH3HQAhttY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Binary+Adaptive+Wind+Driven+Optimization+Algorithm-Based+Dimensionality+Reduction+for+Supervised+Classification&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Abd+El-Mageed%2C+Amr+A.&rft.au=Gad%2C+Ahmed+G.&rft.au=Sallam%2C+Karam+M.&rft.au=Munasinghe%2C+Kumudu&rft.date=2022-05-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=167&rft_id=info:doi/10.1016%2Fj.cie.2021.107904&rft.externalDocID=S0360835221008081 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |