Improved Binary Adaptive Wind Driven Optimization Algorithm-Based Dimensionality Reduction for Supervised Classification

•An improved Binary Adaptive Wind Driven Optimization algorithm (iBAWDO) is proposed.•Improvements include the crossover technique and Simulated Annealing (SA) algorithm.•iBAWDO is employed for wrapper feature selection in supervised classification.•iBAWDO was highly competitive, based on two popula...

Full description

Saved in:
Bibliographic Details
Published in:Computers & industrial engineering Vol. 167; p. 107904
Main Authors: Abd El-Mageed, Amr A., Gad, Ahmed G., Sallam, Karam M., Munasinghe, Kumudu, Abohany, Amr A.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.05.2022
Subjects:
ISSN:0360-8352, 1879-0550
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •An improved Binary Adaptive Wind Driven Optimization algorithm (iBAWDO) is proposed.•Improvements include the crossover technique and Simulated Annealing (SA) algorithm.•iBAWDO is employed for wrapper feature selection in supervised classification.•iBAWDO was highly competitive, based on two popular classifiers, k-NN and SVM.•A Wilcoxon’s nonparametric test affirmed the supremacy of final results at α = 0.05. Typically, Feature Selection (FS) is adopted as a critical preprocessing step in most pattern recognition and data mining tasks. It helps to avoid the acute impact of irrelevant and redundant features on the performance of the classification model under consideration. To tackle this problem, researchers have proposed different methods for selecting the most significant features to improve the overall classification accuracy for a given dataset by extracting relevant information. Realistically, for a given dataset with a large number of features, conventional methods usually struggle to find good solutions. Therefore, in this study, a meta-heuristic algorithm called the Wind Driven Optimization (WDO) is enhanced and then cloned into a binary variant, the improved Binary Adaptive WDO (iBAWDO). The proposed iBAWDO would manage to select the most relevant (near-optimal) features while reducing the computational cost and enhancing (or even maintaining) the final classification accuracy. An evolutionary crossover technique as well as the Simulated Annealing algorithm (SA) are incorporated into the original WDO algorithm to enhance its search ability for feasible regions as well as exploitation within these regions, respectively. To assess the relevance of the features selected, two popular classifiers, k-Nearest Neighbor (k-NN) and Support Vector Machine (SVM), are adopted as fitness evaluators. The proposed iBAWDO algorithm was validated on 18 multi-scale benchmark datasets against binary versions of 11 well-known meta-heuristic approaches: Binary version of the original WDO (BWDO), Binary Particle Swarm Optimization (BPSO), Binary Bat Algorithm (BBA), Binary Grey Wolf Optimization (BGWO), Binary Whale Optimization Algorithm (BWOA), Binary Grasshopper Optimization Algorithm (BGOA), Binary Sailfish Optimizer (BSFO), Binary Harris Hawks optimization (BHHO), Binary Bird Swarm Algorithm (BBSA), Binary Atom Search Optimization (BASO), and Binary Henry Gas Solubility Optimization (BHGSO). A Wilcoxon’s rank-sum non-parametric test was conducted at a 5% significance level to statistically affirm the high competitiveness of the proposed method. Overall, the experimental results revealed that the proposed method is significantly effective on both small- and large-dimensional datasets.
AbstractList •An improved Binary Adaptive Wind Driven Optimization algorithm (iBAWDO) is proposed.•Improvements include the crossover technique and Simulated Annealing (SA) algorithm.•iBAWDO is employed for wrapper feature selection in supervised classification.•iBAWDO was highly competitive, based on two popular classifiers, k-NN and SVM.•A Wilcoxon’s nonparametric test affirmed the supremacy of final results at α = 0.05. Typically, Feature Selection (FS) is adopted as a critical preprocessing step in most pattern recognition and data mining tasks. It helps to avoid the acute impact of irrelevant and redundant features on the performance of the classification model under consideration. To tackle this problem, researchers have proposed different methods for selecting the most significant features to improve the overall classification accuracy for a given dataset by extracting relevant information. Realistically, for a given dataset with a large number of features, conventional methods usually struggle to find good solutions. Therefore, in this study, a meta-heuristic algorithm called the Wind Driven Optimization (WDO) is enhanced and then cloned into a binary variant, the improved Binary Adaptive WDO (iBAWDO). The proposed iBAWDO would manage to select the most relevant (near-optimal) features while reducing the computational cost and enhancing (or even maintaining) the final classification accuracy. An evolutionary crossover technique as well as the Simulated Annealing algorithm (SA) are incorporated into the original WDO algorithm to enhance its search ability for feasible regions as well as exploitation within these regions, respectively. To assess the relevance of the features selected, two popular classifiers, k-Nearest Neighbor (k-NN) and Support Vector Machine (SVM), are adopted as fitness evaluators. The proposed iBAWDO algorithm was validated on 18 multi-scale benchmark datasets against binary versions of 11 well-known meta-heuristic approaches: Binary version of the original WDO (BWDO), Binary Particle Swarm Optimization (BPSO), Binary Bat Algorithm (BBA), Binary Grey Wolf Optimization (BGWO), Binary Whale Optimization Algorithm (BWOA), Binary Grasshopper Optimization Algorithm (BGOA), Binary Sailfish Optimizer (BSFO), Binary Harris Hawks optimization (BHHO), Binary Bird Swarm Algorithm (BBSA), Binary Atom Search Optimization (BASO), and Binary Henry Gas Solubility Optimization (BHGSO). A Wilcoxon’s rank-sum non-parametric test was conducted at a 5% significance level to statistically affirm the high competitiveness of the proposed method. Overall, the experimental results revealed that the proposed method is significantly effective on both small- and large-dimensional datasets.
ArticleNumber 107904
Author Abd El-Mageed, Amr A.
Munasinghe, Kumudu
Gad, Ahmed G.
Abohany, Amr A.
Sallam, Karam M.
Author_xml – sequence: 1
  givenname: Amr A.
  surname: Abd El-Mageed
  fullname: Abd El-Mageed, Amr A.
  email: amr.atef@commerce.sohag.edu.eg
  organization: Faculty of Commerce, Information Systems Department, Sohag University, Sohag, Egypt
– sequence: 2
  givenname: Ahmed G.
  orcidid: 0000-0002-2671-041X
  surname: Gad
  fullname: Gad, Ahmed G.
  email: ahmed.gad@fci.kfs.edu.eg
  organization: Faculty of Computers and Information, Kafrelsheikh University, Kafrelsheikh, Egypt
– sequence: 3
  givenname: Karam M.
  surname: Sallam
  fullname: Sallam, Karam M.
  email: karam_sallam@zu.edu.eg
  organization: Faculty of Computers and Information, Zagazig University, Zagazig, Egypt
– sequence: 4
  givenname: Kumudu
  surname: Munasinghe
  fullname: Munasinghe, Kumudu
  email: kumudu.munasinghe@canberra.edu.au
  organization: School of IT and Systems, University of Canberra, ACT 2601, Australia
– sequence: 5
  givenname: Amr A.
  surname: Abohany
  fullname: Abohany, Amr A.
  email: amrabohany8@gmail.com
  organization: Faculty of Computers and Information, Kafrelsheikh University, Kafrelsheikh, Egypt
BookMark eNp9kMlOwzAQhi1UJNrCA3DLC6TYzuJYnLqwVKpUiUUcLdeZwFTZZKcR5elxW04ceprt_0Yz_4gM6qYGQm4ZnTDK0rvtxCBMOOXM10LS-IIMWSZkSJOEDsiQRikNsyjhV2Tk3JZSGieSDcn3smpt00MezLDWdh9Mc9122EPwgXUeLKxP62DtWxX-6A6bOpiWn43F7qsKZ9p5cIEV1M5PdIndPniBfGeOwqKxweuuBdvjQTcvtXNYoDmuuSaXhS4d3PzFMXl_fHibP4er9dNyPl2FhkvRhaYQHCjwlAMAlwlLDduknOsko5LHPN4IlhVMmmiTAxcARsZFqk2cmUwnQkRjIk57jW2cs1Aog93xgs5qLBWj6mCg2vo-qIOB6mSgJ9k_srVYeY_OMvcnBvxLPYJVzktqAzlaMJ3KGzxD_wLLro1z
CitedBy_id crossref_primary_10_1007_s00521_023_08761_0
crossref_primary_10_3390_a17070297
crossref_primary_10_1016_j_chemolab_2022_104574
crossref_primary_10_1371_journal_pone_0307228
crossref_primary_10_1016_j_cie_2023_109300
crossref_primary_10_1016_j_knosys_2024_111616
crossref_primary_10_3390_biomimetics9050298
crossref_primary_10_3390_math12152364
crossref_primary_10_1186_s40537_025_01125_6
crossref_primary_10_3390_math11010129
crossref_primary_10_1109_ACCESS_2022_3198987
crossref_primary_10_1109_ACCESS_2024_3449998
crossref_primary_10_1016_j_asoc_2023_110032
crossref_primary_10_3390_a17010026
crossref_primary_10_1038_s41598_024_63328_w
crossref_primary_10_1016_j_aeue_2024_155653
crossref_primary_10_3390_a17080342
crossref_primary_10_1186_s40537_024_00895_9
crossref_primary_10_1007_s00521_024_09590_5
Cites_doi 10.1109/APS.2010.5562213
10.1016/j.patcog.2020.107470
10.1016/j.asoc.2018.07.040
10.1016/j.eswa.2018.09.031
10.1109/JPHOTOV.2017.2769000
10.1016/j.eswa.2017.02.044
10.1109/TAP.2011.2109350
10.1016/j.eswa.2019.03.039
10.1016/j.asoc.2017.11.006
10.1016/j.jbi.2018.07.015
10.1109/ACCESS.2021.3117853
10.1016/S0304-3975(97)00115-1
10.4108/eai.3-12-2015.2262424
10.1016/j.physrep.2016.08.001
10.1016/j.knosys.2020.106560
10.1109/ISEMANTIC.2018.8549804
10.1109/4235.585893
10.1007/s10489-018-1158-6
10.1007/s00500-020-05191-1
10.1007/s13369-019-04016-0
10.1016/j.asoc.2018.10.036
10.36478/jeasci.2019.8026.8033
10.1016/j.cose.2018.11.005
10.1126/science.220.4598.671
10.1016/j.knosys.2018.08.003
10.1016/j.jksuci.2018.06.003
10.1109/TAP.2013.2238654
10.1016/j.asoc.2018.11.047
10.1109/TGRS.2006.880628
10.1016/j.engappai.2021.104210
10.1111/exsy.12786
10.1016/j.patcog.2018.11.027
10.1016/j.neucom.2015.06.083
10.1016/j.compeleceng.2013.11.024
10.1016/j.eswa.2019.112824
10.1016/j.neucom.2019.01.017
10.1109/ACCESS.2019.2897325
10.1016/j.knosys.2020.106553
10.1016/j.knosys.2017.12.037
10.1016/j.inffus.2018.11.019
10.1016/j.eswa.2018.10.021
10.1016/j.knosys.2018.08.030
10.1109/ICIC50835.2020.9288653
10.1016/j.ins.2017.08.028
10.1109/ACCESS.2020.3033757
10.1109/CEC.2018.8477975
10.1007/s10845-014-0943-2
10.1016/j.eswa.2018.08.051
10.1016/j.eswa.2020.113176
10.1145/3434581.3434679
10.1109/CEC48606.2020.9185577
10.1007/s00521-017-2988-6
10.1155/2020/8860841
10.1109/ICDAR.2011.144
10.1016/j.ins.2009.03.004
10.1007/BF01096763
10.1088/1681-7575/aa8a4d
10.1109/ACCESS.2021.3083593
10.1109/ICEC.1996.542381
10.1016/j.knosys.2018.12.031
10.1063/5.0028662
10.1109/ACCESS.2019.2906757
10.1016/j.knosys.2018.05.009
10.1016/j.future.2019.07.015
10.1016/j.eswa.2018.09.015
10.1109/ICOASE.2019.8723728
10.1016/j.patcog.2019.107183
10.1088/1757-899X/732/1/012043
10.1007/s42979-021-00687-5
10.1016/j.patrec.2016.10.007
10.1016/j.renene.2018.05.008
10.2478/cait-2019-0001
10.1109/ACCESS.2018.2879848
10.1109/ACCESS.2021.3073261
10.1007/s10044-015-0504-0
10.1016/j.cie.2018.07.008
10.1016/j.ipm.2016.03.007
10.1016/j.chemolab.2018.11.010
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2021.107904
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
ExternalDocumentID 10_1016_j_cie_2021_107904
S0360835221008081
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-cf72e0e262eee29516c1b622a58092424b718f19c3bde27eec94f6ac48c8a5773
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000779067000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-8352
IngestDate Sat Nov 29 07:20:15 EST 2025
Tue Nov 18 22:38:28 EST 2025
Fri Feb 23 02:40:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dimensionality reduction
Feature selection
Wind Driven Optimization algorithm (WDO)
Machine learning
Combinatorial optimization
Supervised classification
Meta-heuristics
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-cf72e0e262eee29516c1b622a58092424b718f19c3bde27eec94f6ac48c8a5773
ORCID 0000-0002-2671-041X
ParticipantIDs crossref_citationtrail_10_1016_j_cie_2021_107904
crossref_primary_10_1016_j_cie_2021_107904
elsevier_sciencedirect_doi_10_1016_j_cie_2021_107904
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Alpaydin (b0030) 2020
Neumann, L., & Matas, J. (2011). Text localization in real-world images using efficiently pruned exhaustive search. In 2011 International Conference on Document Analysis and Recognition, IEEE (pp. 687–691).
Rao, Shi, Rodrigue, Feng, Xia, Elhoseny, Yuan, Gu (b0305) 2019; 74
Khamees, M., & Rashed, A. A. -B. (2020) Hybrid sca-cs optimization algorithm for feature selection in classification problems. In AIP Conference Proceedings, Vol. 2290, AIP Publishing LLC (p. 040001).
Faris, Mafarja, Heidari, Aljarah, Ala’M, Mirjalili, Fujita (b0140) 2018; 154
Sayed, Khoriba, Haggag (b0350) 2018; 48
Selvakumar, Muneeswaran (b0360) 2019; 81
Garcia-Carretero, Vigil-Medina, Mora-Jimenez, Soguero-Ruiz, Barquero-Perez, Ramos-Lopez (b0155) 2020
Abd Elminaam, Nabil, Ibraheem, Houssein (b0020) 2021; 9
Chen, Hao (b0100) 2017; 80
Georges, Mhiri, Rekik, Initiative (b0160) 2020; 101
Al-Tashi, Kadir, Rais, Mirjalili, Alhussian (b0035) 2019; 7
Mafarja, Aljarah, Heidari, Hammouri, Faris, Ala’M, Mirjalili (b0260) 2018; 145
Aljarah, Mafarja, Heidari, Faris, Zhang, Mirjalili (b0025) 2018; 71
Ghoneim, Farrag, Rashed, El-kenawy, Ibrahim (b0165) 2021
Tubishat, Alswaitti, Mirjalili, Al-Garadi, Rana (b0385) 2020; 8
Sallam, K. M., Elsayed, S. M., Chakrabortty, R. K. & Ryan, M. J. (2020). Improved multi-operator differential evolution algorithm for solving unconstrained problems. In 2020 IEEE Congress on Evolutionary Computation (CEC), IEEE (pp. 1–8).
Khurma, Aljarah, Sharieh (b0230) 2021
Gregory, Bayraktar, Werner (b0185) 2011; 59
Too, Mirjalili (b0380) 2021; 212
Yan, Ma, Luo, Patel (b0435) 2019; 184
Arora, Anand (b0045) 2019; 116
de Souza, de Macedo, dos Santos Coelho, Pierezan, Mariani (b0110) 2020
Harijanto, B., Amalia, E., & Mentari, M. (2020). Recognition of the character on the map captured by the camera using k-nearest neighbor. In IOP Conference Series: Materials Science and Engineering, Vol. 732, IOP Publishing (p. 012043).
Hansen, N., Ostermeier, A. (1996). Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. In Proceedings of IEEE international conference on evolutionary computation, IEEE (pp. 312–317).
Kirkpatrick, Gelatt, Vecchi (b0235) 1983; 220
Bayraktar, Komurcu, Bossard, Werner (b0070) 2013; 61
Dhiman, Oliva, Kaur, Singh, Vimal, Sharma, Cengiz (b0120) 2021; 211
Mafarja, Aljarah, Faris, Hammouri, Ala’M, Mirjalili (b0250) 2019; 117
Rashedi, Nezamabadi-Pour, Saryazdi (b0310) 2009; 179
Urbanowicz, Olson, Schmitt, Meeker, Moore (b0400) 2018; 85
Zhigljavsky (b0460) 2012; Vol. 65
.
Manochandar, Punniyamoorthy (b0270) 2018; 124
Mathew, Rani, Kumar, Wang, Binns, Busawon (b0280) 2017; 8
Hegazy, Makhlouf, El-Tawel (b0210) 2020; 32
Salgotra, Singh, Saha (b0330) 2019; 44
Zheng, Li, Wang, Chen, Xu, Fan, Cui (b0455) 2018; 7
González, Ortega, Damas, Martín-Smith, Gan (b0175) 2019; 333
Abdel-Basset, El-Shahat, El-henawy, de Albuquerque, Mirjalili (b0010) 2020; 139
Wolpert, Macready (b0430) 1997; 1
Frank, A. (2010) Uci machine learning repository
Zhang, Nie, Li, Wei (b0445) 2019; 50
Abdel-Basset, Ding, El-Shahat (b0005) 2020
Bazi, Melgani (b0075) 2006; 44
Gokalp, Tasci, Ugur (b0170) 2020; 146
Bulut, Amasyali (b0085) 2017; 20
Thaher, Heidari, Mafarja, Dong, Mirjalili (b0370) 2020
Chandrashekar, Sahin (b0090) 2014; 40
Tu, Chen, Liu (b0390) 2019; 76
Chantar, Tubishat, Essgaer, Mirjalili (b0095) 2021; 2
Wang, Gao, Li, Wang (b0420) 2021; 2021
Belaout, Krim, Mellit, Talbi, Arabi (b0080) 2018; 127
Amaldi, Kann (b0040) 1998; 209
Schölkopf, Smola, Bach (b0355) 2002
Rutkowski (b0320) 2008
Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b0205) 2019; 101
De Souza, R. C. T., dos Santos Coelho, L., De Macedo, C. A., & Pierezan, J. (2018). A v-shaped binary crow search algorithm for feature selection. In 2018 IEEE congress on evolutionary computation (CEC), IEEE, 2018 (pp. 1–8).
Bayraktar, Z., Komurcu, M., & Werner, D. H. (2010). Wind driven optimization (wdo): A novel nature-inspired optimization algorithm and its application to electromagnetics. In 2010 IEEE antennas and propagation society international symposium, IEEE (pp. 1–4).
Mastromichalakis, Chountasis (b0275) 2020
Tang, J., Alelyani, S. & Liu, H. (2014). Feature selection for classification: A review, Data classification: Algorithms and applications, 37.
Gupta, Alam, Agarwal (b0190) 2020; 2020
Pratama, F. I., & Budianita, A. (2020). Optimization of k-nn classification in human gait recognition. In 2020 Fifth International Conference on Informatics and Computing (ICIC), IEEE, 2020 (pp. 1–5).
Tutkan, Ganiz, Akyokuş (b0395) 2016; 52
Rostami, Berahmand, Nasiri, Forouzande (b0315) 2021; 100
Zakeri, Hokmabadi (b0440) 2019; 119
Mafarja, Aljarah, Heidari, Faris, Fournier-Viger, Li, Mirjalili (b0255) 2018; 161
Van Laarhoven, Aarts (b0405) 1987
Rachmawanto, E. H., Anarqi, G. R., & Sari, C .A. et al. (2018). Handwriting recognition using eccentricity and metric feature extraction based on k-nearest neighbors. In 2018 International Seminar on Application for Technology of Information and Communication, IEEE (pp. 411–416).
Venkataramanaiah, Kamala (b0410) 2020; 24
Li, S. (2020). Global face pose detection based on an improved pso-svm method. In Proceedings of the 2020 International Conference on Aviation Safety and Information Technology, 2020 (pp. 549–553).
Sallam, Elsayed, Sarker, Essam (b0335) 2017; 418
Feo, Resende (b0145) 1995; 6
Bayraktar, Z., Komurcu, M. (2016). Adaptive wind driven optimization. In Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS) (pp. 124–127).
Peng, Zhu, Wang, An, Shen (b0290) 2019; 88
Arora, Singh, Sharma, Sharma, Anand (b0050) 2019; 7
Emary, Zawbaa, Hassanien (b0135) 2016; 172
Salcedo-Sanz (b0325) 2016; 655
Jousten, Hendricks, Barker, Douglas, Eckel, Egan, Fedchak, Flügge, Gaiser, Olson (b0215) 2017; 54
Venkatesh, Anuradha (b0415) 2019; 19
EL-Hasnony, I. M., Elhoseny, M., & Tarek, Z. (2021). A hybrid feature selection model based on butterfly optimization algorithm: Covid-19 as a case study. Expert Systems, e12786.
Wang, Wu, Wang, Xiang, Huang (b0425) 2019; 168
Barddal, Enembreck, Gomes, Bifet, Pfahringer (b0055) 2019; 116
Zhao, Wang, Zhang (b0450) 2019; 163
Chen, Zhou, Yuan (b0105) 2019; 128
Li, Wu, Feng, Rong (b0245) 2015; 26
Mafarja, Mirjalili (b0265) 2018; 62
Kangrang, Techarungruengsakul, Hormwichian, Sriwanpheng (b0220) 2019; 14
Dino, H. I., Abdulrazzaq, M. B. (2019). Facial expression classification based on svm, knn and mlp classifiers. In 2019 International Conference on Advanced Science and Engineering (ICOASE), IEEE (pp. 70–75).
Abdel-Basset, Sallam, Mohamed, Elgendi, Munasinghe, ELkomy (b0015) 2021
Tharwat, Hassanien, Elnaghi (b0375) 2017; 93
Gopi, Jyothi, Narayana, Sandeep (b0180) 2020
Sayed, Hassanien, Azar (b0345) 2019; 31
Salcedo-Sanz (10.1016/j.cie.2021.107904_b0325) 2016; 655
Sayed (10.1016/j.cie.2021.107904_b0350) 2018; 48
Bulut (10.1016/j.cie.2021.107904_b0085) 2017; 20
Ghoneim (10.1016/j.cie.2021.107904_b0165) 2021
Tharwat (10.1016/j.cie.2021.107904_b0375) 2017; 93
Amaldi (10.1016/j.cie.2021.107904_b0040) 1998; 209
Venkataramanaiah (10.1016/j.cie.2021.107904_b0410) 2020; 24
Van Laarhoven (10.1016/j.cie.2021.107904_b0405) 1987
Alpaydin (10.1016/j.cie.2021.107904_b0030) 2020
Mafarja (10.1016/j.cie.2021.107904_b0255) 2018; 161
Zhigljavsky (10.1016/j.cie.2021.107904_b0460) 2012; Vol. 65
Wang (10.1016/j.cie.2021.107904_b0420) 2021; 2021
de Souza (10.1016/j.cie.2021.107904_b0110) 2020
Gopi (10.1016/j.cie.2021.107904_b0180) 2020
10.1016/j.cie.2021.107904_b0200
10.1016/j.cie.2021.107904_b0365
10.1016/j.cie.2021.107904_b0125
Emary (10.1016/j.cie.2021.107904_b0135) 2016; 172
Khurma (10.1016/j.cie.2021.107904_b0230) 2021
Kirkpatrick (10.1016/j.cie.2021.107904_b0235) 1983; 220
Mathew (10.1016/j.cie.2021.107904_b0280) 2017; 8
Schölkopf (10.1016/j.cie.2021.107904_b0355) 2002
10.1016/j.cie.2021.107904_b0240
Peng (10.1016/j.cie.2021.107904_b0290) 2019; 88
10.1016/j.cie.2021.107904_b0285
Arora (10.1016/j.cie.2021.107904_b0045) 2019; 116
Urbanowicz (10.1016/j.cie.2021.107904_b0400) 2018; 85
Chantar (10.1016/j.cie.2021.107904_b0095) 2021; 2
Salgotra (10.1016/j.cie.2021.107904_b0330) 2019; 44
Sallam (10.1016/j.cie.2021.107904_b0335) 2017; 418
Abdel-Basset (10.1016/j.cie.2021.107904_b0015) 2021
González (10.1016/j.cie.2021.107904_b0175) 2019; 333
Bayraktar (10.1016/j.cie.2021.107904_b0070) 2013; 61
Zhao (10.1016/j.cie.2021.107904_b0450) 2019; 163
Barddal (10.1016/j.cie.2021.107904_b0055) 2019; 116
10.1016/j.cie.2021.107904_b0150
10.1016/j.cie.2021.107904_b0195
Kangrang (10.1016/j.cie.2021.107904_b0220) 2019; 14
Sayed (10.1016/j.cie.2021.107904_b0345) 2019; 31
Selvakumar (10.1016/j.cie.2021.107904_b0360) 2019; 81
Zhang (10.1016/j.cie.2021.107904_b0445) 2019; 50
Chen (10.1016/j.cie.2021.107904_b0100) 2017; 80
Tutkan (10.1016/j.cie.2021.107904_b0395) 2016; 52
Mafarja (10.1016/j.cie.2021.107904_b0250) 2019; 117
Abdel-Basset (10.1016/j.cie.2021.107904_b0010) 2020; 139
Mafarja (10.1016/j.cie.2021.107904_b0260) 2018; 145
Aljarah (10.1016/j.cie.2021.107904_b0025) 2018; 71
10.1016/j.cie.2021.107904_b0115
Hashim (10.1016/j.cie.2021.107904_b0205) 2019; 101
Rutkowski (10.1016/j.cie.2021.107904_b0320) 2008
Thaher (10.1016/j.cie.2021.107904_b0370) 2020
Wolpert (10.1016/j.cie.2021.107904_b0430) 1997; 1
Hegazy (10.1016/j.cie.2021.107904_b0210) 2020; 32
Venkatesh (10.1016/j.cie.2021.107904_b0415) 2019; 19
Manochandar (10.1016/j.cie.2021.107904_b0270) 2018; 124
Gokalp (10.1016/j.cie.2021.107904_b0170) 2020; 146
Rashedi (10.1016/j.cie.2021.107904_b0310) 2009; 179
Tubishat (10.1016/j.cie.2021.107904_b0385) 2020; 8
Faris (10.1016/j.cie.2021.107904_b0140) 2018; 154
Li (10.1016/j.cie.2021.107904_b0245) 2015; 26
Mastromichalakis (10.1016/j.cie.2021.107904_b0275) 2020
Rostami (10.1016/j.cie.2021.107904_b0315) 2021; 100
Mafarja (10.1016/j.cie.2021.107904_b0265) 2018; 62
Chandrashekar (10.1016/j.cie.2021.107904_b0090) 2014; 40
Yan (10.1016/j.cie.2021.107904_b0435) 2019; 184
Georges (10.1016/j.cie.2021.107904_b0160) 2020; 101
10.1016/j.cie.2021.107904_b0060
Feo (10.1016/j.cie.2021.107904_b0145) 1995; 6
Rao (10.1016/j.cie.2021.107904_b0305) 2019; 74
10.1016/j.cie.2021.107904_b0300
10.1016/j.cie.2021.107904_b0225
10.1016/j.cie.2021.107904_b0065
10.1016/j.cie.2021.107904_b0340
Zakeri (10.1016/j.cie.2021.107904_b0440) 2019; 119
Al-Tashi (10.1016/j.cie.2021.107904_b0035) 2019; 7
Abdel-Basset (10.1016/j.cie.2021.107904_b0005) 2020
Zheng (10.1016/j.cie.2021.107904_b0455) 2018; 7
Tu (10.1016/j.cie.2021.107904_b0390) 2019; 76
Dhiman (10.1016/j.cie.2021.107904_b0120) 2021; 211
Gregory (10.1016/j.cie.2021.107904_b0185) 2011; 59
Bazi (10.1016/j.cie.2021.107904_b0075) 2006; 44
Garcia-Carretero (10.1016/j.cie.2021.107904_b0155) 2020
Wang (10.1016/j.cie.2021.107904_b0425) 2019; 168
Gupta (10.1016/j.cie.2021.107904_b0190) 2020; 2020
Too (10.1016/j.cie.2021.107904_b0380) 2021; 212
Chen (10.1016/j.cie.2021.107904_b0105) 2019; 128
Arora (10.1016/j.cie.2021.107904_b0050) 2019; 7
Jousten (10.1016/j.cie.2021.107904_b0215) 2017; 54
Abd Elminaam (10.1016/j.cie.2021.107904_b0020) 2021; 9
Belaout (10.1016/j.cie.2021.107904_b0080) 2018; 127
10.1016/j.cie.2021.107904_b0130
10.1016/j.cie.2021.107904_b0295
References_xml – volume: 128
  start-page: 140
  year: 2019
  end-page: 156
  ident: b0105
  article-title: Hybrid particle swarm optimization with spiral-shaped mechanism for feature selection
  publication-title: Expert Systems with Applications
– volume: 101
  start-page: 646
  year: 2019
  end-page: 667
  ident: b0205
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Generation Computer Systems
– volume: 8
  start-page: 194303
  year: 2020
  end-page: 194314
  ident: b0385
  article-title: Dynamic butterfly optimization algorithm for feature selection
  publication-title: IEEE Access
– volume: 62
  start-page: 441
  year: 2018
  end-page: 453
  ident: b0265
  article-title: Whale optimization approaches for wrapper feature selection
  publication-title: Applied Soft Computing
– volume: 93
  start-page: 13
  year: 2017
  end-page: 22
  ident: b0375
  article-title: A ba-based algorithm for parameter optimization of support vector machine
  publication-title: Pattern Recognition Letters
– volume: 54
  start-page: S146
  year: 2017
  ident: b0215
  article-title: Perspectives for a new realization of the pascal by optical methods
  publication-title: Metrologia
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: b0235
  article-title: Optimization by simulated annealing
  publication-title: science
– volume: 139
  start-page: 1
  year: 2020
  end-page: 14
  ident: b0010
  article-title: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection
  publication-title: Expert Systems with Applications
– year: 2008
  ident: b0320
  article-title: Computational intelligence: methods and techniques
– year: 2002
  ident: b0355
  article-title: Learning with kernels: support vector machines, regularization, optimization, and beyond
– start-page: 251
  year: 2020
  end-page: 272
  ident: b0370
  article-title: Binary harris hawks optimizer for high-dimensional, low sample size feature selection
  publication-title: Evolutionary Machine Learning Techniques
– reference: Khamees, M., & Rashed, A. A. -B. (2020) Hybrid sca-cs optimization algorithm for feature selection in classification problems. In AIP Conference Proceedings, Vol. 2290, AIP Publishing LLC (p. 040001).
– volume: 145
  start-page: 25
  year: 2018
  end-page: 45
  ident: b0260
  article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems
  publication-title: Knowledge-Based Systems
– volume: 2
  start-page: 1
  year: 2021
  end-page: 11
  ident: b0095
  article-title: Hybrid binary dragonfly algorithm with simulated annealing for feature selection
  publication-title: SN computer science
– start-page: 1
  year: 2021
  end-page: 26
  ident: b0230
  article-title: A simultaneous moth flame optimizer feature selection approach based on levy flight and selection operators for medical diagnosis
  publication-title: Arabian Journal for Science and Engineering
– start-page: 1
  year: 2020
  end-page: 12
  ident: b0155
  article-title: Use of a k-nearest neighbors model to predict the development of type 2 diabetes within 2 years in an obese, hypertensive population
  publication-title: Medical & Biological Engineering & Computing
– volume: 119
  start-page: 61
  year: 2019
  end-page: 72
  ident: b0440
  article-title: Efficient feature selection method using real-valued grasshopper optimization algorithm
  publication-title: Expert Systems with Applications
– volume: 19
  start-page: 3
  year: 2019
  end-page: 26
  ident: b0415
  article-title: A review of feature selection and its methods
  publication-title: Cybernetics and Information Technologies
– volume: 9
  start-page: 60136
  year: 2021
  end-page: 60153
  ident: b0020
  article-title: An efficient marine predators algorithm for feature selection
  publication-title: IEEE Access
– volume: 61
  start-page: 2745
  year: 2013
  end-page: 2757
  ident: b0070
  article-title: The wind driven optimization technique and its application in electromagnetics
  publication-title: IEEE transactions on antennas and propagation
– volume: 116
  start-page: 147
  year: 2019
  end-page: 160
  ident: b0045
  article-title: Binary butterfly optimization approaches for feature selection
  publication-title: Expert Systems with Applications
– volume: 8
  start-page: 248
  year: 2017
  end-page: 256
  ident: b0280
  article-title: Wind-driven optimization technique for estimation of solar photovoltaic parameters
  publication-title: IEEE Journal of Photovoltaics
– volume: 50
  start-page: 158
  year: 2019
  end-page: 167
  ident: b0445
  article-title: Feature selection with multi-view data: A survey
  publication-title: Information Fusion
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b0430
  article-title: No free lunch theorems for optimization
  publication-title: IEEE transactions on evolutionary computation
– volume: 31
  start-page: 171
  year: 2019
  end-page: 188
  ident: b0345
  article-title: Feature selection via a novel chaotic crow search algorithm
  publication-title: Neural Computing and Applications
– reference: Dino, H. I., Abdulrazzaq, M. B. (2019). Facial expression classification based on svm, knn and mlp classifiers. In 2019 International Conference on Advanced Science and Engineering (ICOASE), IEEE (pp. 70–75).
– volume: 24
  start-page: 17457
  year: 2020
  end-page: 17466
  ident: b0410
  article-title: Ecg signal processing and knn classifier-based abnormality detection by vh-doctor for remote cardiac healthcare monitoring
  publication-title: Soft Computing
– volume: 76
  start-page: 16
  year: 2019
  end-page: 30
  ident: b0390
  article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection
  publication-title: Applied Soft Computing
– start-page: 1
  year: 2020
  end-page: 16
  ident: b0180
  article-title: Classification of tweets data based on polarity using improved rbf kernel of svm
  publication-title: International Journal of Information Technology
– start-page: 7
  year: 1987
  end-page: 15
  ident: b0405
  article-title: Simulated annealing
  publication-title: Simulated annealing: Theory and applications
– volume: 40
  start-page: 16
  year: 2014
  end-page: 28
  ident: b0090
  article-title: A survey on feature selection methods
  publication-title: Computers & Electrical Engineering
– volume: 80
  start-page: 340
  year: 2017
  end-page: 355
  ident: b0100
  article-title: A feature weighted support vector machine and k-nearest neighbor algorithm for stock market indices prediction
  publication-title: Expert Systems with Applications
– volume: 48
  start-page: 3462
  year: 2018
  end-page: 3481
  ident: b0350
  article-title: A novel chaotic salp swarm algorithm for global optimization and feature selection
  publication-title: Applied Intelligence
– volume: 117
  start-page: 267
  year: 2019
  end-page: 286
  ident: b0250
  article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems
  publication-title: Expert Systems with Applications
– year: 2021
  ident: b0015
  article-title: An improved binary grey-wolf optimizer with simulated annealing for feature selection
  publication-title: IEEE Access
– reference: Hansen, N., Ostermeier, A. (1996). Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. In Proceedings of IEEE international conference on evolutionary computation, IEEE (pp. 312–317).
– volume: 14
  start-page: 8026
  year: 2019
  end-page: 8033
  ident: b0220
  article-title: Alternative approach of wind driven optimization for flood control rule curves
  publication-title: Journal of Engineering and Applied Sciences
– volume: 44
  start-page: 9653
  year: 2019
  end-page: 9691
  ident: b0330
  article-title: On some improved versions of whale optimization algorithm
  publication-title: Arabian Journal for Science and Engineering
– reference: Tang, J., Alelyani, S. & Liu, H. (2014). Feature selection for classification: A review, Data classification: Algorithms and applications, 37.
– volume: 85
  start-page: 168
  year: 2018
  end-page: 188
  ident: b0400
  article-title: Benchmarking relief-based feature selection methods for bioinformatics data mining
  publication-title: Journal of biomedical informatics
– reference: Harijanto, B., Amalia, E., & Mentari, M. (2020). Recognition of the character on the map captured by the camera using k-nearest neighbor. In IOP Conference Series: Materials Science and Engineering, Vol. 732, IOP Publishing (p. 012043).
– volume: 26
  start-page: 933
  year: 2015
  end-page: 944
  ident: b0245
  article-title: Scheduling fms problems with heuristic search function and transition-timed petri nets
  publication-title: Journal of Intelligent Manufacturing
– volume: 2020
  year: 2020
  ident: b0190
  article-title: Modified support vector machine for detecting stress level using eeg signals
  publication-title: Computational Intelligence and Neuroscience
– volume: 655
  start-page: 1
  year: 2016
  end-page: 70
  ident: b0325
  article-title: Modern meta-heuristics based on nonlinear physics processes: A review of models and design procedures
  publication-title: Physics Reports
– volume: 71
  start-page: 964
  year: 2018
  end-page: 979
  ident: b0025
  article-title: Asynchronous accelerating multi-leader salp chains for feature selection
  publication-title: Applied Soft Computing
– volume: 7
  start-page: 26343
  year: 2019
  end-page: 26361
  ident: b0050
  article-title: A new hybrid algorithm based on grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection
  publication-title: IEEE Access
– volume: Vol. 65
  year: 2012
  ident: b0460
  publication-title: Theory of global random search
– reference: Bayraktar, Z., Komurcu, M. (2016). Adaptive wind driven optimization. In Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS) (pp. 124–127).
– start-page: 107470
  year: 2020
  ident: b0110
  article-title: Binary coyote optimization algorithm for feature selection
  publication-title: Pattern Recognition
– reference: EL-Hasnony, I. M., Elhoseny, M., & Tarek, Z. (2021). A hybrid feature selection model based on butterfly optimization algorithm: Covid-19 as a case study. Expert Systems, e12786.
– volume: 124
  start-page: 139
  year: 2018
  end-page: 156
  ident: b0270
  article-title: Scaling feature selection method for enhancing the classification performance of support vector machines in text mining
  publication-title: Computers & Industrial Engineering
– start-page: 1
  year: 2020
  end-page: 45
  ident: b0005
  article-title: A hybrid harris hawks optimization algorithm with simulated annealing for feature selection
  publication-title: Artificial Intelligence Review
– volume: 209
  start-page: 237
  year: 1998
  end-page: 260
  ident: b0040
  article-title: On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems
  publication-title: Theoretical Computer Science
– volume: 44
  start-page: 3374
  year: 2006
  end-page: 3385
  ident: b0075
  article-title: Toward an optimal svm classification system for hyperspectral remote sensing images
  publication-title: IEEE Transactions on geoscience and remote sensing
– volume: 101
  start-page: 107
  year: 2020
  end-page: 183
  ident: b0160
  article-title: Identifying the best data-driven feature selection method for boosting reproducibility in classification tasks
  publication-title: Pattern Recognition
– reference: Li, S. (2020). Global face pose detection based on an improved pso-svm method. In Proceedings of the 2020 International Conference on Aviation Safety and Information Technology, 2020 (pp. 549–553).
– reference: Neumann, L., & Matas, J. (2011). Text localization in real-world images using efficiently pruned exhaustive search. In 2011 International Conference on Document Analysis and Recognition, IEEE (pp. 687–691).
– volume: 168
  start-page: 39
  year: 2019
  end-page: 48
  ident: b0425
  article-title: A feature selection approach for hyperspectral image based on modified ant lion optimizer
  publication-title: Knowledge-Based Systems
– reference: Pratama, F. I., & Budianita, A. (2020). Optimization of k-nn classification in human gait recognition. In 2020 Fifth International Conference on Informatics and Computing (ICIC), IEEE, 2020 (pp. 1–5).
– volume: 52
  start-page: 885
  year: 2016
  end-page: 910
  ident: b0395
  article-title: Helmholtz principle based supervised and unsupervised feature selection methods for text mining
  publication-title: Information Processing & Management
– year: 2021
  ident: b0165
  article-title: Adaptive dynamic meta-heuristics for feature selection and classification in diagnostic accuracy of transformer faults
  publication-title: IEEE Access
– volume: 7
  start-page: 14908
  year: 2018
  end-page: 14923
  ident: b0455
  article-title: A novel hybrid algorithm for feature selection based on whale optimization algorithm
  publication-title: IEEE Access
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b0310
  article-title: Gsa: a gravitational search algorithm
  publication-title: Information sciences
– volume: 100
  start-page: 104210
  year: 2021
  ident: b0315
  article-title: Review of swarm intelligence-based feature selection methods
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 59
  start-page: 1275
  year: 2011
  end-page: 1285
  ident: b0185
  article-title: Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy
  publication-title: IEEE Transactions on Antennas and Propagation
– volume: 161
  start-page: 185
  year: 2018
  end-page: 204
  ident: b0255
  article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions
  publication-title: Knowledge-Based Systems
– volume: 20
  start-page: 415
  year: 2017
  end-page: 425
  ident: b0085
  article-title: Locally adaptive k parameter selection for nearest neighbor classifier: one nearest cluster
  publication-title: Pattern Analysis and Applications
– volume: 172
  start-page: 371
  year: 2016
  end-page: 381
  ident: b0135
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
– volume: 32
  start-page: 335
  year: 2020
  end-page: 344
  ident: b0210
  article-title: Improved salp swarm algorithm for feature selection
  publication-title: Journal of King Saud University-Computer and Information Sciences
– year: 2020
  ident: b0030
  article-title: Introduction to machine learning
– reference: Bayraktar, Z., Komurcu, M., & Werner, D. H. (2010). Wind driven optimization (wdo): A novel nature-inspired optimization algorithm and its application to electromagnetics. In 2010 IEEE antennas and propagation society international symposium, IEEE (pp. 1–4).
– volume: 7
  start-page: 39496
  year: 2019
  end-page: 39508
  ident: b0035
  article-title: Binary optimization using hybrid grey wolf optimization for feature selection
  publication-title: IEEE Access
– volume: 163
  start-page: 283
  year: 2019
  end-page: 304
  ident: b0450
  article-title: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem
  publication-title: Knowledge-Based Systems
– reference: Frank, A. (2010) Uci machine learning repository,
– volume: 154
  start-page: 43
  year: 2018
  end-page: 67
  ident: b0140
  article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems
  publication-title: Knowledge-Based Systems
– volume: 418
  start-page: 383
  year: 2017
  end-page: 404
  ident: b0335
  article-title: Landscape-based adaptive operator selection mechanism for differential evolution
  publication-title: Information Sciences
– reference: Sallam, K. M., Elsayed, S. M., Chakrabortty, R. K. & Ryan, M. J. (2020). Improved multi-operator differential evolution algorithm for solving unconstrained problems. In 2020 IEEE Congress on Evolutionary Computation (CEC), IEEE (pp. 1–8).
– volume: 6
  start-page: 109
  year: 1995
  end-page: 133
  ident: b0145
  article-title: Greedy randomized adaptive search procedures
  publication-title: Journal of Global Optimization
– reference: Rachmawanto, E. H., Anarqi, G. R., & Sari, C .A. et al. (2018). Handwriting recognition using eccentricity and metric feature extraction based on k-nearest neighbors. In 2018 International Seminar on Application for Technology of Information and Communication, IEEE (pp. 411–416).
– volume: 74
  start-page: 634
  year: 2019
  end-page: 642
  ident: b0305
  article-title: Feature selection based on artificial bee colony and gradient boosting decision tree
  publication-title: Applied Soft Computing
– volume: 81
  start-page: 148
  year: 2019
  end-page: 155
  ident: b0360
  article-title: Firefly algorithm based feature selection for network intrusion detection
  publication-title: Computers & Security
– volume: 146
  start-page: 113176
  year: 2020
  ident: b0170
  article-title: A novel wrapper feature selection algorithm based on iterated greedy metaheuristic for sentiment classification
  publication-title: Expert Systems with Applications
– reference: .
– start-page: 1
  year: 2020
  end-page: 19
  ident: b0275
  article-title: An mr image classification scheme based on fourier moment analysis and linear support vector machine
  publication-title: Journal of Information and Optimization Sciences
– volume: 127
  start-page: 548
  year: 2018
  end-page: 558
  ident: b0080
  article-title: Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification
  publication-title: Renewable Energy
– volume: 184
  start-page: 102
  year: 2019
  end-page: 111
  ident: b0435
  article-title: Hybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasets
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 211
  start-page: 106560
  year: 2021
  ident: b0120
  article-title: Bepo: a novel binary emperor penguin optimizer for automatic feature selection
  publication-title: Knowledge-Based Systems
– volume: 116
  start-page: 227
  year: 2019
  end-page: 242
  ident: b0055
  article-title: Merit-guided dynamic feature selection filter for data streams
  publication-title: Expert Systems with Applications
– volume: 333
  start-page: 407
  year: 2019
  end-page: 418
  ident: b0175
  article-title: A new multi-objective wrapper method for feature selection–accuracy and stability analysis for bci
  publication-title: Neurocomputing
– volume: 212
  start-page: 106553
  year: 2021
  ident: b0380
  article-title: A hyper learning binary dragonfly algorithm for feature selection: A covid-19 case study
  publication-title: Knowledge-Based Systems
– volume: 88
  start-page: 370
  year: 2019
  end-page: 382
  ident: b0290
  article-title: Structured sparsity regularized multiple kernel learning for alzheimer’s disease diagnosis
  publication-title: Pattern recognition
– volume: 2021
  year: 2021
  ident: b0420
  article-title: A feature selection method by using chaotic cuckoo search optimization algorithm with elitist preservation and uniform mutation for data classification
  publication-title: Discrete Dynamics in Nature and Society
– reference: De Souza, R. C. T., dos Santos Coelho, L., De Macedo, C. A., & Pierezan, J. (2018). A v-shaped binary crow search algorithm for feature selection. In 2018 IEEE congress on evolutionary computation (CEC), IEEE, 2018 (pp. 1–8).
– ident: 10.1016/j.cie.2021.107904_b0065
  doi: 10.1109/APS.2010.5562213
– start-page: 107470
  year: 2020
  ident: 10.1016/j.cie.2021.107904_b0110
  article-title: Binary coyote optimization algorithm for feature selection
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2020.107470
– volume: 71
  start-page: 964
  year: 2018
  ident: 10.1016/j.cie.2021.107904_b0025
  article-title: Asynchronous accelerating multi-leader salp chains for feature selection
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.07.040
– volume: 116
  start-page: 227
  year: 2019
  ident: 10.1016/j.cie.2021.107904_b0055
  article-title: Merit-guided dynamic feature selection filter for data streams
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.09.031
– volume: 8
  start-page: 248
  issue: 1
  year: 2017
  ident: 10.1016/j.cie.2021.107904_b0280
  article-title: Wind-driven optimization technique for estimation of solar photovoltaic parameters
  publication-title: IEEE Journal of Photovoltaics
  doi: 10.1109/JPHOTOV.2017.2769000
– volume: 80
  start-page: 340
  year: 2017
  ident: 10.1016/j.cie.2021.107904_b0100
  article-title: A feature weighted support vector machine and k-nearest neighbor algorithm for stock market indices prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.02.044
– start-page: 1
  year: 2020
  ident: 10.1016/j.cie.2021.107904_b0005
  article-title: A hybrid harris hawks optimization algorithm with simulated annealing for feature selection
  publication-title: Artificial Intelligence Review
– volume: 59
  start-page: 1275
  issue: 4
  year: 2011
  ident: 10.1016/j.cie.2021.107904_b0185
  article-title: Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy
  publication-title: IEEE Transactions on Antennas and Propagation
  doi: 10.1109/TAP.2011.2109350
– start-page: 1
  year: 2020
  ident: 10.1016/j.cie.2021.107904_b0275
  article-title: An mr image classification scheme based on fourier moment analysis and linear support vector machine
  publication-title: Journal of Information and Optimization Sciences
– volume: 128
  start-page: 140
  year: 2019
  ident: 10.1016/j.cie.2021.107904_b0105
  article-title: Hybrid particle swarm optimization with spiral-shaped mechanism for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.03.039
– volume: 62
  start-page: 441
  year: 2018
  ident: 10.1016/j.cie.2021.107904_b0265
  article-title: Whale optimization approaches for wrapper feature selection
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.11.006
– volume: 85
  start-page: 168
  year: 2018
  ident: 10.1016/j.cie.2021.107904_b0400
  article-title: Benchmarking relief-based feature selection methods for bioinformatics data mining
  publication-title: Journal of biomedical informatics
  doi: 10.1016/j.jbi.2018.07.015
– year: 2021
  ident: 10.1016/j.cie.2021.107904_b0015
  article-title: An improved binary grey-wolf optimizer with simulated annealing for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3117853
– start-page: 1
  year: 2021
  ident: 10.1016/j.cie.2021.107904_b0230
  article-title: A simultaneous moth flame optimizer feature selection approach based on levy flight and selection operators for medical diagnosis
  publication-title: Arabian Journal for Science and Engineering
– start-page: 1
  year: 2020
  ident: 10.1016/j.cie.2021.107904_b0180
  article-title: Classification of tweets data based on polarity using improved rbf kernel of svm
  publication-title: International Journal of Information Technology
– volume: 209
  start-page: 237
  issue: 1–2
  year: 1998
  ident: 10.1016/j.cie.2021.107904_b0040
  article-title: On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems
  publication-title: Theoretical Computer Science
  doi: 10.1016/S0304-3975(97)00115-1
– ident: 10.1016/j.cie.2021.107904_b0060
  doi: 10.4108/eai.3-12-2015.2262424
– volume: 655
  start-page: 1
  year: 2016
  ident: 10.1016/j.cie.2021.107904_b0325
  article-title: Modern meta-heuristics based on nonlinear physics processes: A review of models and design procedures
  publication-title: Physics Reports
  doi: 10.1016/j.physrep.2016.08.001
– year: 2020
  ident: 10.1016/j.cie.2021.107904_b0030
– volume: 211
  start-page: 106560
  year: 2021
  ident: 10.1016/j.cie.2021.107904_b0120
  article-title: Bepo: a novel binary emperor penguin optimizer for automatic feature selection
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106560
– ident: 10.1016/j.cie.2021.107904_b0300
  doi: 10.1109/ISEMANTIC.2018.8549804
– ident: 10.1016/j.cie.2021.107904_b0365
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.cie.2021.107904_b0430
  article-title: No free lunch theorems for optimization
  publication-title: IEEE transactions on evolutionary computation
  doi: 10.1109/4235.585893
– volume: 48
  start-page: 3462
  issue: 10
  year: 2018
  ident: 10.1016/j.cie.2021.107904_b0350
  article-title: A novel chaotic salp swarm algorithm for global optimization and feature selection
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-018-1158-6
– volume: 24
  start-page: 17457
  issue: 22
  year: 2020
  ident: 10.1016/j.cie.2021.107904_b0410
  article-title: Ecg signal processing and knn classifier-based abnormality detection by vh-doctor for remote cardiac healthcare monitoring
  publication-title: Soft Computing
  doi: 10.1007/s00500-020-05191-1
– volume: 44
  start-page: 9653
  issue: 11
  year: 2019
  ident: 10.1016/j.cie.2021.107904_b0330
  article-title: On some improved versions of whale optimization algorithm
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-019-04016-0
– volume: 74
  start-page: 634
  year: 2019
  ident: 10.1016/j.cie.2021.107904_b0305
  article-title: Feature selection based on artificial bee colony and gradient boosting decision tree
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.10.036
– volume: 14
  start-page: 8026
  issue: 21
  year: 2019
  ident: 10.1016/j.cie.2021.107904_b0220
  article-title: Alternative approach of wind driven optimization for flood control rule curves
  publication-title: Journal of Engineering and Applied Sciences
  doi: 10.36478/jeasci.2019.8026.8033
– volume: 81
  start-page: 148
  year: 2019
  ident: 10.1016/j.cie.2021.107904_b0360
  article-title: Firefly algorithm based feature selection for network intrusion detection
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2018.11.005
– start-page: 1
  year: 2020
  ident: 10.1016/j.cie.2021.107904_b0155
  article-title: Use of a k-nearest neighbors model to predict the development of type 2 diabetes within 2 years in an obese, hypertensive population
  publication-title: Medical & Biological Engineering & Computing
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 10.1016/j.cie.2021.107904_b0235
  article-title: Optimization by simulated annealing
  publication-title: science
  doi: 10.1126/science.220.4598.671
– volume: 161
  start-page: 185
  year: 2018
  ident: 10.1016/j.cie.2021.107904_b0255
  article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.08.003
– volume: 32
  start-page: 335
  issue: 3
  year: 2020
  ident: 10.1016/j.cie.2021.107904_b0210
  article-title: Improved salp swarm algorithm for feature selection
  publication-title: Journal of King Saud University-Computer and Information Sciences
  doi: 10.1016/j.jksuci.2018.06.003
– volume: 61
  start-page: 2745
  issue: 5
  year: 2013
  ident: 10.1016/j.cie.2021.107904_b0070
  article-title: The wind driven optimization technique and its application in electromagnetics
  publication-title: IEEE transactions on antennas and propagation
  doi: 10.1109/TAP.2013.2238654
– volume: Vol. 65
  year: 2012
  ident: 10.1016/j.cie.2021.107904_b0460
– volume: 76
  start-page: 16
  year: 2019
  ident: 10.1016/j.cie.2021.107904_b0390
  article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.11.047
– volume: 44
  start-page: 3374
  issue: 11
  year: 2006
  ident: 10.1016/j.cie.2021.107904_b0075
  article-title: Toward an optimal svm classification system for hyperspectral remote sensing images
  publication-title: IEEE Transactions on geoscience and remote sensing
  doi: 10.1109/TGRS.2006.880628
– volume: 100
  start-page: 104210
  year: 2021
  ident: 10.1016/j.cie.2021.107904_b0315
  article-title: Review of swarm intelligence-based feature selection methods
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2021.104210
– ident: 10.1016/j.cie.2021.107904_b0130
  doi: 10.1111/exsy.12786
– volume: 2021
  year: 2021
  ident: 10.1016/j.cie.2021.107904_b0420
  article-title: A feature selection method by using chaotic cuckoo search optimization algorithm with elitist preservation and uniform mutation for data classification
  publication-title: Discrete Dynamics in Nature and Society
– volume: 88
  start-page: 370
  year: 2019
  ident: 10.1016/j.cie.2021.107904_b0290
  article-title: Structured sparsity regularized multiple kernel learning for alzheimer’s disease diagnosis
  publication-title: Pattern recognition
  doi: 10.1016/j.patcog.2018.11.027
– volume: 172
  start-page: 371
  year: 2016
  ident: 10.1016/j.cie.2021.107904_b0135
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– volume: 40
  start-page: 16
  issue: 1
  year: 2014
  ident: 10.1016/j.cie.2021.107904_b0090
  article-title: A survey on feature selection methods
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2013.11.024
– start-page: 251
  year: 2020
  ident: 10.1016/j.cie.2021.107904_b0370
  article-title: Binary harris hawks optimizer for high-dimensional, low sample size feature selection
– volume: 139
  start-page: 1
  year: 2020
  ident: 10.1016/j.cie.2021.107904_b0010
  article-title: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.112824
– volume: 333
  start-page: 407
  year: 2019
  ident: 10.1016/j.cie.2021.107904_b0175
  article-title: A new multi-objective wrapper method for feature selection–accuracy and stability analysis for bci
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.017
– volume: 7
  start-page: 26343
  year: 2019
  ident: 10.1016/j.cie.2021.107904_b0050
  article-title: A new hybrid algorithm based on grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2897325
– volume: 212
  start-page: 106553
  year: 2021
  ident: 10.1016/j.cie.2021.107904_b0380
  article-title: A hyper learning binary dragonfly algorithm for feature selection: A covid-19 case study
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106553
– volume: 145
  start-page: 25
  year: 2018
  ident: 10.1016/j.cie.2021.107904_b0260
  article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.12.037
– volume: 50
  start-page: 158
  year: 2019
  ident: 10.1016/j.cie.2021.107904_b0445
  article-title: Feature selection with multi-view data: A survey
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.11.019
– volume: 119
  start-page: 61
  year: 2019
  ident: 10.1016/j.cie.2021.107904_b0440
  article-title: Efficient feature selection method using real-valued grasshopper optimization algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.10.021
– volume: 163
  start-page: 283
  year: 2019
  ident: 10.1016/j.cie.2021.107904_b0450
  article-title: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.08.030
– ident: 10.1016/j.cie.2021.107904_b0295
  doi: 10.1109/ICIC50835.2020.9288653
– volume: 418
  start-page: 383
  year: 2017
  ident: 10.1016/j.cie.2021.107904_b0335
  article-title: Landscape-based adaptive operator selection mechanism for differential evolution
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.08.028
– start-page: 7
  year: 1987
  ident: 10.1016/j.cie.2021.107904_b0405
  article-title: Simulated annealing
– volume: 8
  start-page: 194303
  year: 2020
  ident: 10.1016/j.cie.2021.107904_b0385
  article-title: Dynamic butterfly optimization algorithm for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3033757
– year: 2002
  ident: 10.1016/j.cie.2021.107904_b0355
– ident: 10.1016/j.cie.2021.107904_b0115
  doi: 10.1109/CEC.2018.8477975
– volume: 26
  start-page: 933
  issue: 5
  year: 2015
  ident: 10.1016/j.cie.2021.107904_b0245
  article-title: Scheduling fms problems with heuristic search function and transition-timed petri nets
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-014-0943-2
– volume: 116
  start-page: 147
  year: 2019
  ident: 10.1016/j.cie.2021.107904_b0045
  article-title: Binary butterfly optimization approaches for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.08.051
– volume: 146
  start-page: 113176
  year: 2020
  ident: 10.1016/j.cie.2021.107904_b0170
  article-title: A novel wrapper feature selection algorithm based on iterated greedy metaheuristic for sentiment classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113176
– ident: 10.1016/j.cie.2021.107904_b0240
  doi: 10.1145/3434581.3434679
– ident: 10.1016/j.cie.2021.107904_b0340
  doi: 10.1109/CEC48606.2020.9185577
– volume: 31
  start-page: 171
  issue: 1
  year: 2019
  ident: 10.1016/j.cie.2021.107904_b0345
  article-title: Feature selection via a novel chaotic crow search algorithm
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-017-2988-6
– volume: 2020
  year: 2020
  ident: 10.1016/j.cie.2021.107904_b0190
  article-title: Modified support vector machine for detecting stress level using eeg signals
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2020/8860841
– ident: 10.1016/j.cie.2021.107904_b0285
  doi: 10.1109/ICDAR.2011.144
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.cie.2021.107904_b0310
  article-title: Gsa: a gravitational search algorithm
  publication-title: Information sciences
  doi: 10.1016/j.ins.2009.03.004
– volume: 6
  start-page: 109
  issue: 2
  year: 1995
  ident: 10.1016/j.cie.2021.107904_b0145
  article-title: Greedy randomized adaptive search procedures
  publication-title: Journal of Global Optimization
  doi: 10.1007/BF01096763
– volume: 54
  start-page: S146
  issue: 6
  year: 2017
  ident: 10.1016/j.cie.2021.107904_b0215
  article-title: Perspectives for a new realization of the pascal by optical methods
  publication-title: Metrologia
  doi: 10.1088/1681-7575/aa8a4d
– year: 2021
  ident: 10.1016/j.cie.2021.107904_b0165
  article-title: Adaptive dynamic meta-heuristics for feature selection and classification in diagnostic accuracy of transformer faults
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3083593
– year: 2008
  ident: 10.1016/j.cie.2021.107904_b0320
– ident: 10.1016/j.cie.2021.107904_b0195
  doi: 10.1109/ICEC.1996.542381
– volume: 168
  start-page: 39
  year: 2019
  ident: 10.1016/j.cie.2021.107904_b0425
  article-title: A feature selection approach for hyperspectral image based on modified ant lion optimizer
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.12.031
– ident: 10.1016/j.cie.2021.107904_b0225
  doi: 10.1063/5.0028662
– volume: 7
  start-page: 39496
  year: 2019
  ident: 10.1016/j.cie.2021.107904_b0035
  article-title: Binary optimization using hybrid grey wolf optimization for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906757
– volume: 154
  start-page: 43
  year: 2018
  ident: 10.1016/j.cie.2021.107904_b0140
  article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.05.009
– volume: 101
  start-page: 646
  year: 2019
  ident: 10.1016/j.cie.2021.107904_b0205
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.07.015
– volume: 117
  start-page: 267
  year: 2019
  ident: 10.1016/j.cie.2021.107904_b0250
  article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.09.015
– ident: 10.1016/j.cie.2021.107904_b0125
  doi: 10.1109/ICOASE.2019.8723728
– volume: 101
  start-page: 107
  year: 2020
  ident: 10.1016/j.cie.2021.107904_b0160
  article-title: Identifying the best data-driven feature selection method for boosting reproducibility in classification tasks
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2019.107183
– ident: 10.1016/j.cie.2021.107904_b0150
– ident: 10.1016/j.cie.2021.107904_b0200
  doi: 10.1088/1757-899X/732/1/012043
– volume: 2
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.cie.2021.107904_b0095
  article-title: Hybrid binary dragonfly algorithm with simulated annealing for feature selection
  publication-title: SN computer science
  doi: 10.1007/s42979-021-00687-5
– volume: 93
  start-page: 13
  year: 2017
  ident: 10.1016/j.cie.2021.107904_b0375
  article-title: A ba-based algorithm for parameter optimization of support vector machine
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2016.10.007
– volume: 127
  start-page: 548
  year: 2018
  ident: 10.1016/j.cie.2021.107904_b0080
  article-title: Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2018.05.008
– volume: 19
  start-page: 3
  issue: 1
  year: 2019
  ident: 10.1016/j.cie.2021.107904_b0415
  article-title: A review of feature selection and its methods
  publication-title: Cybernetics and Information Technologies
  doi: 10.2478/cait-2019-0001
– volume: 7
  start-page: 14908
  year: 2018
  ident: 10.1016/j.cie.2021.107904_b0455
  article-title: A novel hybrid algorithm for feature selection based on whale optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2879848
– volume: 9
  start-page: 60136
  year: 2021
  ident: 10.1016/j.cie.2021.107904_b0020
  article-title: An efficient marine predators algorithm for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3073261
– volume: 20
  start-page: 415
  issue: 2
  year: 2017
  ident: 10.1016/j.cie.2021.107904_b0085
  article-title: Locally adaptive k parameter selection for nearest neighbor classifier: one nearest cluster
  publication-title: Pattern Analysis and Applications
  doi: 10.1007/s10044-015-0504-0
– volume: 124
  start-page: 139
  year: 2018
  ident: 10.1016/j.cie.2021.107904_b0270
  article-title: Scaling feature selection method for enhancing the classification performance of support vector machines in text mining
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.07.008
– volume: 52
  start-page: 885
  issue: 5
  year: 2016
  ident: 10.1016/j.cie.2021.107904_b0395
  article-title: Helmholtz principle based supervised and unsupervised feature selection methods for text mining
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2016.03.007
– volume: 184
  start-page: 102
  year: 2019
  ident: 10.1016/j.cie.2021.107904_b0435
  article-title: Hybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasets
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2018.11.010
SSID ssj0004591
Score 2.4693692
Snippet •An improved Binary Adaptive Wind Driven Optimization algorithm (iBAWDO) is proposed.•Improvements include the crossover technique and Simulated Annealing (SA)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107904
SubjectTerms Combinatorial optimization
Dimensionality reduction
Feature selection
Machine learning
Meta-heuristics
Supervised classification
Wind Driven Optimization algorithm (WDO)
Title Improved Binary Adaptive Wind Driven Optimization Algorithm-Based Dimensionality Reduction for Supervised Classification
URI https://dx.doi.org/10.1016/j.cie.2021.107904
Volume 167
WOSCitedRecordID wos000779067000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj5swELaibA_toY9tq25f8qGnIiIggOHIVul7t5WybXNDxpgmq8BGSVjlH_VvdszYwKYPtZV6QZGFA8p8GX8ez3xDyDPBQ48HjNuhCJjt-7m0s5AHdiGE60o3ynkjX_z5PTs9jWaz-ONg8M3UwlwuWVVFu128-q-mhjEwtiqd_Qtzt18KA_AZjA5XMDtc_8jwGCYAHnmMpbZJzldNftCXhco6Xiv3Zn2AoVKXYFrJ8uvFerGdl_YxrGlwj1L8R7UO5Og5Ssw2KYnTeqXci7qvaaipUo066xrNA90rYtMga9G1B5Gd_GF38JRbk6V9Ao4NA69JubaSUZsYhBhM5rBsW6_a4ak6ACh1ORsvrZNRB52KqwDIvAnVvqvLOq_7sQ3YFreZhBhwM0U3XYYTFno5tiKOuISh345YDJNRw7Z17Njo44dFAuMV5yNwniN4qgsjLMYmyHva21P1rIajKg0kR5X4H3gsiKMhOUjeTGZve8L02JzRvJs5QG9SCfce9HMK1KM1Z7fJTb0foQni6A4ZyOqQ3NJ7E6o9_-aQ3OgJV94lOwMyiiCjBmRUgYwiyGgfZHQPZPQqyGgLMgogox3I6FWQ3SOfXk7OXry2dQ8PW3gx29qiYJ50pBd6UkoP6Hwo3Cz0wD9ETqxKkzIgR4Ubi3GWS49JKWK_CLnwIxGBD2Hj-2RYXVTyAaFcbY3zAhhuDjTaDznzgb4WIsuEI8eBc0Qc87OmQgvcqz4ry9RkMp7DuEyVJVK0xBF53k5ZobrL7272ja1STU-RdqYArF9Pe_hv0x6R690_4jEZbte1fEKuicvtYrN-quH3HQAhttY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Binary+Adaptive+Wind+Driven+Optimization+Algorithm-Based+Dimensionality+Reduction+for+Supervised+Classification&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Abd+El-Mageed%2C+Amr+A.&rft.au=Gad%2C+Ahmed+G.&rft.au=Sallam%2C+Karam+M.&rft.au=Munasinghe%2C+Kumudu&rft.date=2022-05-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=167&rft_id=info:doi/10.1016%2Fj.cie.2021.107904&rft.externalDocID=S0360835221008081
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon