Bamboo-derived carbon material inherently doped with SiC and nitrogen for flexible supercapacitors
•Novel SiC/Pyrrolic-N doped carbon material have been synthesized from bamboo.•Inherent SiO2 moieties in natural bamboo has been used as a sacrificial template.•The synergy of SiC and Pyrrolic-N has been demonstrated for Faradaic redox reactions.•Natural bamboo-based carbon materials deliver capacit...
Saved in:
| Published in: | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 433; p. 133738 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.04.2022
|
| Subjects: | |
| ISSN: | 1385-8947, 1873-3212 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Novel SiC/Pyrrolic-N doped carbon material have been synthesized from bamboo.•Inherent SiO2 moieties in natural bamboo has been used as a sacrificial template.•The synergy of SiC and Pyrrolic-N has been demonstrated for Faradaic redox reactions.•Natural bamboo-based carbon materials deliver capacitance of 369 F g−1 at 0.5 A g−1.•Bamboo-based carbon materials deliver 100% capacitance retention after 5000 cycles.
It is still challenging to prepare porous carbon materials following a facile, green and universal sacrificial template method from renewable biomass. For this purpose, bio-renewable bamboo is a natural silicon reservoir containing a significant amount of inherent silica that can act as a natural sacrificial template for the formation of porous carbon materials as well as a dopant. Herein, we firstly report the SiC/N dual doped bio-renewable carbon material via a facile, natural sacrificial template method. In this newly developed method, the inherently available SiO2 nanoparticles have been utilized as the natural sacrificial template for creating the multi-porous architecture as well as for the generation of structural defects in the form of SiC nano-species. Additionally, the inherent nitrogen functional groups give rise to the formation of only pyrrolic-N species after pyrolysis. Furthermore, dual doping of SiC and pyrrolic-N species stimulate the faradaic redox reaction during the charge/discharge process and further increase the rate capability at higher current density with excellent electrochemical stability. Hence, the synergistic effect of SiC and N-pyrrolic dually doped carbon network gives rise to the formation of promising electrode material towards supercapacitors. Benefiting from the above unique features, the supercapacitor with the SNAC-1 electrode material delivers excellent capacitive behavior (369 F g−1 at 0.5 A g−1) in 1 M H2SO4 electrolyte with 100% capacitance retention after 5000 charge–discharge cycles. More prominently, the all-solid state, symmetric supercapacitors assembled by SNAC-1 show outstanding capacitance of 162 F g−1 at 0.5 A g−1 and reveal high energy density (∼5.41 W h kg−1 at 0.5 kW kg−1 power density) and excellent cyclic stability. This work provides an ideal sustainable solution from bamboo source to prepare porous SiC/N composites for cost-effective supercapacitor’s electrode materials. |
|---|---|
| AbstractList | •Novel SiC/Pyrrolic-N doped carbon material have been synthesized from bamboo.•Inherent SiO2 moieties in natural bamboo has been used as a sacrificial template.•The synergy of SiC and Pyrrolic-N has been demonstrated for Faradaic redox reactions.•Natural bamboo-based carbon materials deliver capacitance of 369 F g−1 at 0.5 A g−1.•Bamboo-based carbon materials deliver 100% capacitance retention after 5000 cycles.
It is still challenging to prepare porous carbon materials following a facile, green and universal sacrificial template method from renewable biomass. For this purpose, bio-renewable bamboo is a natural silicon reservoir containing a significant amount of inherent silica that can act as a natural sacrificial template for the formation of porous carbon materials as well as a dopant. Herein, we firstly report the SiC/N dual doped bio-renewable carbon material via a facile, natural sacrificial template method. In this newly developed method, the inherently available SiO2 nanoparticles have been utilized as the natural sacrificial template for creating the multi-porous architecture as well as for the generation of structural defects in the form of SiC nano-species. Additionally, the inherent nitrogen functional groups give rise to the formation of only pyrrolic-N species after pyrolysis. Furthermore, dual doping of SiC and pyrrolic-N species stimulate the faradaic redox reaction during the charge/discharge process and further increase the rate capability at higher current density with excellent electrochemical stability. Hence, the synergistic effect of SiC and N-pyrrolic dually doped carbon network gives rise to the formation of promising electrode material towards supercapacitors. Benefiting from the above unique features, the supercapacitor with the SNAC-1 electrode material delivers excellent capacitive behavior (369 F g−1 at 0.5 A g−1) in 1 M H2SO4 electrolyte with 100% capacitance retention after 5000 charge–discharge cycles. More prominently, the all-solid state, symmetric supercapacitors assembled by SNAC-1 show outstanding capacitance of 162 F g−1 at 0.5 A g−1 and reveal high energy density (∼5.41 W h kg−1 at 0.5 kW kg−1 power density) and excellent cyclic stability. This work provides an ideal sustainable solution from bamboo source to prepare porous SiC/N composites for cost-effective supercapacitor’s electrode materials. |
| ArticleNumber | 133738 |
| Author | Lin, Changmei Ni, Yonghao Cao, Shilin Ma, Xiaojuan Abbas, Syed Comail Huang, Hai Deng, Qidu Hua, Zifeng |
| Author_xml | – sequence: 1 givenname: Syed Comail surname: Abbas fullname: Abbas, Syed Comail organization: College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China – sequence: 2 givenname: Changmei surname: Lin fullname: Lin, Changmei organization: College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China – sequence: 3 givenname: Zifeng surname: Hua fullname: Hua, Zifeng organization: College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China – sequence: 4 givenname: Qidu surname: Deng fullname: Deng, Qidu organization: College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China – sequence: 5 givenname: Hai surname: Huang fullname: Huang, Hai organization: College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China – sequence: 6 givenname: Yonghao surname: Ni fullname: Ni, Yonghao organization: College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China – sequence: 7 givenname: Shilin surname: Cao fullname: Cao, Shilin email: scutcsl@163.com organization: College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China – sequence: 8 givenname: Xiaojuan surname: Ma fullname: Ma, Xiaojuan email: 1212juanjuan@163.com organization: College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China |
| BookMark | eNp9kMtOwzAQRS1UJNrCB7DzDyT4kcaJWEHFS6rEAlhbjj2mjlK7sk2hf0-qsmLR1YxGc0ZzzwxNfPCA0DUlJSW0vulLDX3JCKMl5Vzw5gxNaSN4wRllk7HnzaJo2kpcoFlKPSGkbmk7Rd292nQhFAai24HBWsUueLxReRyoATu_hgg-D3tswnZc-HZ5jd_cEitvsHc5hk_w2IaI7QA_rhsAp68tRK22SrscYrpE51YNCa7-6hx9PD68L5-L1evTy_JuVWjWilxozRek052xgndC18xUHAyFjmuhSQtQKUZ5xZkh3DRjKttoYZiyxMCC2prPET3e1TGkFMHKbXQbFfeSEnmQJHs5SpIHSfIoaWTEP2b8WWUXfI7KDSfJ2yMJY6SdgyiTduA1GBdBZ2mCO0H_An2Dhdk |
| CitedBy_id | crossref_primary_10_1007_s10853_025_11079_y crossref_primary_10_1039_D5TA03865K crossref_primary_10_1039_D4TA08522A crossref_primary_10_1016_j_diamond_2023_109956 crossref_primary_10_1002_eom2_12434 crossref_primary_10_1016_j_est_2024_114613 crossref_primary_10_1016_j_indcrop_2024_118708 crossref_primary_10_1016_j_jcis_2023_12_153 crossref_primary_10_1016_j_jelechem_2024_118243 crossref_primary_10_1016_j_jpowsour_2024_235027 crossref_primary_10_1002_sus2_217 crossref_primary_10_1016_j_diamond_2023_110612 crossref_primary_10_1016_j_est_2023_109268 crossref_primary_10_1016_j_jallcom_2024_178331 crossref_primary_10_1021_acsaem_5c00606 crossref_primary_10_1016_j_fuel_2024_133584 crossref_primary_10_1016_j_chemosphere_2024_142400 crossref_primary_10_1016_j_est_2025_118276 crossref_primary_10_1016_j_colsurfa_2022_130596 crossref_primary_10_1016_j_ijbiomac_2023_128759 crossref_primary_10_1002_tcr_202300361 crossref_primary_10_3390_nano13010150 crossref_primary_10_1021_acsami_5c03173 crossref_primary_10_1016_j_jpowsour_2024_235216 crossref_primary_10_1016_j_jpowsour_2025_236404 crossref_primary_10_1039_D3NR05050E crossref_primary_10_1016_j_ijbiomac_2023_128365 crossref_primary_10_3390_polym14204261 crossref_primary_10_1016_j_jelechem_2023_117845 crossref_primary_10_1016_j_biteb_2024_101765 crossref_primary_10_1016_j_carbpol_2023_121570 crossref_primary_10_1016_j_est_2022_105047 crossref_primary_10_1016_j_ccr_2024_216018 crossref_primary_10_1016_j_jcis_2023_03_056 crossref_primary_10_3389_fbael_2024_1422400 crossref_primary_10_3390_inorganics11020081 crossref_primary_10_1016_j_electacta_2023_142410 crossref_primary_10_1007_s10854_022_09811_4 crossref_primary_10_1016_j_energy_2022_126247 crossref_primary_10_3390_f14112266 crossref_primary_10_1016_j_est_2023_109326 crossref_primary_10_1246_cl_220225 crossref_primary_10_1002_adfm_202403448 crossref_primary_10_1016_j_jallcom_2022_166534 crossref_primary_10_1016_j_biombioe_2025_107673 crossref_primary_10_1016_j_est_2025_117244 crossref_primary_10_1016_j_carbpol_2022_120353 crossref_primary_10_1016_j_est_2024_112944 crossref_primary_10_1016_j_renene_2024_120598 crossref_primary_10_1021_acsaelm_5c01129 crossref_primary_10_1002_cphc_202400957 crossref_primary_10_1007_s11581_025_06219_y crossref_primary_10_1016_j_fub_2024_100021 crossref_primary_10_1016_j_mtchem_2024_101988 crossref_primary_10_1016_j_cej_2025_166275 crossref_primary_10_1016_j_diamond_2023_110208 crossref_primary_10_1016_j_ceramint_2025_09_142 crossref_primary_10_1016_j_jpowsour_2025_236947 |
| Cites_doi | 10.1039/C9TA11618D 10.1023/B:JOPO.0000046353.24308.86 10.1016/j.jcis.2020.04.029 10.1039/C5EE03109E 10.1016/j.micromeso.2020.110032 10.1039/c1ee01249e 10.1016/j.apsusc.2019.145014 10.1016/j.electacta.2018.03.129 10.1016/j.jeurceramsoc.2019.06.022 10.1002/anie.201807571 10.1016/j.materresbull.2018.03.006 10.1016/j.carbon.2018.09.009 10.1002/adfm.202008901 10.1038/s41598-020-71649-9 10.1002/cssc.201403486 10.1016/j.jpowsour.2017.05.108 10.1021/sc500069h 10.1007/s40843-017-9169-4 10.1016/j.electacta.2019.134941 10.1016/j.matdes.2016.06.015 10.1016/j.jpowsour.2018.12.089 10.1038/s41598-017-06730-x 10.1038/s41467-020-17727-y 10.1002/adfm.201400590 10.1007/s11664-007-0366-3 10.1016/j.electacta.2015.04.082 10.1016/j.jpowsour.2021.229886 10.1039/C4EE01075B 10.1002/aenm.201900073 10.1016/j.cap.2014.09.021 10.1038/srep31704 10.1016/j.carbon.2020.01.020 10.1021/acssuschemeng.8b01189 10.1016/j.apsusc.2020.146497 10.1039/C6TA02078J 10.1016/j.jpowsour.2020.227794 10.1016/j.carbpol.2017.06.004 10.1016/j.electacta.2016.05.127 10.1002/nano.202000011 10.1039/C6RA12283C 10.1002/adfm.200801057 10.1007/s10008-011-1435-3 10.1016/j.jpowsour.2017.12.081 10.1039/C8MH00474A 10.1016/j.rser.2015.12.249 10.1016/j.nanoen.2017.07.033 10.1016/j.carbon.2020.11.069 10.1016/j.carbon.2015.05.013 10.1002/celc.201701365 10.1016/j.cplett.2003.11.031 10.1016/j.carbon.2019.09.018 10.1016/j.electacta.2016.10.184 10.1021/acssuschemeng.7b04396 10.1039/D1TA02281D 10.1002/smll.201801857 10.1016/j.jcis.2018.11.070 10.1039/D1EE00166C 10.1016/j.cej.2018.05.061 10.1039/C9TA04421C 10.1021/acs.energyfuels.9b04505 10.1039/C4NR04486J 10.1016/j.jpowsour.2014.12.102 10.1039/C7GC01681F |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cej.2021.133738 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-3212 |
| ExternalDocumentID | 10_1016_j_cej_2021_133738 S1385894721053122 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- 9DU AATTM AAXKI AAYWO AAYXX ABXDB ACLOT ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP CITATION EFKBS EJD FEDTE FGOYB HVGLF HZ~ R2- SEW ZY4 ~HD |
| ID | FETCH-LOGICAL-c297t-cc350bcbdf73b7c62d43ed1eb3c7c09ee4a213432d03d8212f8c7d2af0de51f63 |
| ISICitedReferencesCount | 79 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819839100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1385-8947 |
| IngestDate | Sat Nov 29 07:01:31 EST 2025 Tue Nov 18 22:30:50 EST 2025 Fri Feb 23 02:39:39 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | SC Nitrogen-doping EDCL Natural sacrificial template Flexible supercapacitor Self-doping Silicon doping Bamboo |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-cc350bcbdf73b7c62d43ed1eb3c7c09ee4a213432d03d8212f8c7d2af0de51f63 |
| ParticipantIDs | crossref_primary_10_1016_j_cej_2021_133738 crossref_citationtrail_10_1016_j_cej_2021_133738 elsevier_sciencedirect_doi_10_1016_j_cej_2021_133738 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 2022-04-00 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wang, Liu, Wang, Wang, Guo, Yi (b0215) 2020; 506 Zhang, Cai, Chen, Yang, Xu, Fang, Yu (b0165) 2018; 6 González, Goikolea, Barrena, Mysyk (b0010) 2016; 58 Wen, Chi, Wenelska, Wen, Chen, Mijowska (b0030) 2020; 10 Wei, Wei, Gao, Li (b0110) 2015; 169 Gong, Li, Luo, Fu, Pan (b0160) 2017; 19 Sevilla, Yu, Zhao, Ania, Titiricic (b0250) 2014; 2 Du, Liu, Hu, Yu, Zhang, Hou, Chen (b0120) 2018; 6 Wu, Zheng, Jin, Tian, Yang (b0195) 2015; 92 Kuang, Xu, Chen, Huang, Sun, Cai, Yu (b0150) 2020; 521 Chen, Zhang, Zhang, Dong, Guo, Mu, Fei (b0225) 2017; 7 Wang, Wang, Peng, Wang, Wang, Wang, Zhao (b0080) 2018; 348 Wang, Sung, Li, Kim (b0235) 2004; 11 Raymundo-Piñero, Cadek, Béguin (b0060) 2009; 19 Abbas, Ding, Liu, Huang, Bu, Wu, Lv, Ghausi, Wang (b0240) 2016; 4 Zhang, Chen, Wang, Zhao, Kong (b0135) 2020; 297 Liu, Zhang, Wang, Wei, Qiu, Fan (b0065) 2020; 1 Heuser, Yang, Hof, Schulte, Schönherr, Jiang (b0245) 2018; 14 Choudhary, Ansari, Purty (b0050) 2020; 29 Ding, Liu, Bu, Huang, Lv, Wu, Abbas, Wang (b0315) 2016; 6 zhou, Li, Dong, Chen, Han, Xu, Yao, Shang, Liu, Cui (b0155) 2012; 16 Zhou, Bao, Wu, Yang, Wang (b0115) 2017; 173 Ghausi, Xie, Li, Wang, Yang, Wu, Wang, Dai (b0275) 2018; 57 Wang, Yan, Fan (b0070) 2016; 9 Yang, Yang, Song, Gao, Su, Shao (b0205) 2017; 359 Li, Li, Liu, Chen, Wang, Gao, Shao, Tian, Lin, Yang (b0170) 2021; 31 Deng, Abbas, Li, Lv, Ma, Cao, Ni, Zhao (b0040) 2020; 574 Zhang, Han, Li, Lei, Shang, Wang, Wang, Zhang, Zhang, Feng (b0200) 2016; 222 Feng, Bai, Liu, Li, Yang, Wang, Wu (b0075) 2021; 14 Tsai, Lai, Medina, Lin, Shih, Chen, Liang, Chueh (b0310) 2014; 6 Zequine, Ranaweera, Wang, Singh, Tripathi, Srivastava, Gupta, Ramasamy, Kahol, Dvornic, Gupta (b0260) 2016; 6 Gawbah, Marouf, Alsabah, Orsod, Elbadawi (b0285) 2017; 2 Chen, Huang, Liang, Gao, Yu (b0190) 2014; 24 Abbas, Peng, Wu, Anandhababu, Babu, Huang, Ghausi, Wu, Wang (b0305) 2018; 5 Huang, Abbas, Deng, Ni, Cao, Ma (b0055) 2021; 498 Gu, Liu, Hou, Ni (b0020) 2021; 9 Wang, Zhang, Li, Ma, Ma (b0105) 2020; 451 Jiao, Wan, Li (b0265) 2016; 107 Yang, Yang, Wang, Guan, Guan, Wang (b0085) 2020; 34 Zhang, Chen, Chen, Guo (b0145) 2018; 102 Shang, An, Zhang, Shen, Baker, Liu, Liu, Yang, Cao, Xu, Liu, Ni (b0025) 2020; 161 Armaroli, Balzani (b0005) 2011; 4 Tian, Wang, Cao, Yang, Guo, Liu, Li, Wang, Li, Xu, Wang, Wang, Hou (b0210) 2020; 11 Sennu, Arun, Madhavi, Aravindan, Lee (b0045) 2019; 414 Lv, Zeng, Abbas, Guan, Luo, Chen, Wang (b0015) 2019; 7 Zhou, Shen, Li, Zhang, Zhao, Bi, Wang, Cui, Zhuo (b0320) 2016; 209 Dutta, Bhaumik, Wu (b0220) 2014; 7 Yang, Jang, Jeong (b0255) 2014; 14 Zou, Deng, Chen, Qian, Yang, Li, Chen (b0280) 2018; 378 Liu, Yao, Liu (b0290) 2008; 37 Li, Liu, Fang, Wang, Chen, Gao, Ji, Yang, Fang (b0175) 2019; 9 Yu, Park, Yeon, Park (b0300) 2015; 278 Wang, Qu, Gao, Tang, Liu, He, Huang (b0140) 2019; 155 Chen, Zhou, Luo, Wu, Li, Fan, Zhao (b0270) 2019; 325 He, Fu, Zhao, Gao, Xing, Zhang, Xue (b0035) 2017; 39 Chen, Wei, Chen, Yao, Lin, Han (b0185) 2018; 271 Liu, Chen, Cui, Yin, Zhang (b0100) 2018; 4 Zhang, Lin, Lin, Yin, Lu, Liu, Zhao (b0325) 2015; 8 Jiang, Sheng, Fan (b0095) 2018; 61 Yu, Hou, Namin, Ni, Liu, Yu, Liu, Wu, Nie (b0090) 2021; 173 Chen, Tan, Liu, Liu, Li, Gu, Zhang, Ye, Yang, Yang (b0125) 2020; 8 Yang, Miao, Xie, Zhang, An (b0295) 2004; 383 Yu, Ma, Chen, Dong (b0130) 2019; 537 Li, Liu, Chen, Fang, Liang, Wei, Wang, Yang, Ji, Mai (b0180) 2018; 5 Soto, García-Rosales, Echeberria (b0230) 2019; 39 Zhu, Chen, zhang, Zhao, Wang (b0330) 2018; 140 Deng (10.1016/j.cej.2021.133738_b0040) 2020; 574 Wang (10.1016/j.cej.2021.133738_b0080) 2018; 348 Yang (10.1016/j.cej.2021.133738_b0295) 2004; 383 Chen (10.1016/j.cej.2021.133738_b0225) 2017; 7 Li (10.1016/j.cej.2021.133738_b0170) 2021; 31 Tsai (10.1016/j.cej.2021.133738_b0310) 2014; 6 Yu (10.1016/j.cej.2021.133738_b0090) 2021; 173 Wei (10.1016/j.cej.2021.133738_b0110) 2015; 169 Dutta (10.1016/j.cej.2021.133738_b0220) 2014; 7 Abbas (10.1016/j.cej.2021.133738_b0305) 2018; 5 Ding (10.1016/j.cej.2021.133738_b0315) 2016; 6 Jiang (10.1016/j.cej.2021.133738_b0095) 2018; 61 Zhang (10.1016/j.cej.2021.133738_b0200) 2016; 222 Lv (10.1016/j.cej.2021.133738_b0015) 2019; 7 Zou (10.1016/j.cej.2021.133738_b0280) 2018; 378 Zhang (10.1016/j.cej.2021.133738_b0145) 2018; 102 zhou (10.1016/j.cej.2021.133738_b0155) 2012; 16 Gong (10.1016/j.cej.2021.133738_b0160) 2017; 19 Wang (10.1016/j.cej.2021.133738_b0215) 2020; 506 Zhang (10.1016/j.cej.2021.133738_b0325) 2015; 8 Liu (10.1016/j.cej.2021.133738_b0065) 2020; 1 Sennu (10.1016/j.cej.2021.133738_b0045) 2019; 414 Zhang (10.1016/j.cej.2021.133738_b0135) 2020; 297 Gu (10.1016/j.cej.2021.133738_b0020) 2021; 9 Kuang (10.1016/j.cej.2021.133738_b0150) 2020; 521 Abbas (10.1016/j.cej.2021.133738_b0240) 2016; 4 Li (10.1016/j.cej.2021.133738_b0180) 2018; 5 Yu (10.1016/j.cej.2021.133738_b0130) 2019; 537 Liu (10.1016/j.cej.2021.133738_b0290) 2008; 37 Zhang (10.1016/j.cej.2021.133738_b0165) 2018; 6 Soto (10.1016/j.cej.2021.133738_b0230) 2019; 39 Heuser (10.1016/j.cej.2021.133738_b0245) 2018; 14 Wang (10.1016/j.cej.2021.133738_b0070) 2016; 9 Wang (10.1016/j.cej.2021.133738_b0105) 2020; 451 Wu (10.1016/j.cej.2021.133738_b0195) 2015; 92 Feng (10.1016/j.cej.2021.133738_b0075) 2021; 14 Jiao (10.1016/j.cej.2021.133738_b0265) 2016; 107 Chen (10.1016/j.cej.2021.133738_b0270) 2019; 325 Liu (10.1016/j.cej.2021.133738_b0100) 2018; 4 Ghausi (10.1016/j.cej.2021.133738_b0275) 2018; 57 Armaroli (10.1016/j.cej.2021.133738_b0005) 2011; 4 Shang (10.1016/j.cej.2021.133738_b0025) 2020; 161 Sevilla (10.1016/j.cej.2021.133738_b0250) 2014; 2 Zhu (10.1016/j.cej.2021.133738_b0330) 2018; 140 Zhou (10.1016/j.cej.2021.133738_b0115) 2017; 173 González (10.1016/j.cej.2021.133738_b0010) 2016; 58 Zhou (10.1016/j.cej.2021.133738_b0320) 2016; 209 Du (10.1016/j.cej.2021.133738_b0120) 2018; 6 Wang (10.1016/j.cej.2021.133738_b0235) 2004; 11 Wen (10.1016/j.cej.2021.133738_b0030) 2020; 10 Choudhary (10.1016/j.cej.2021.133738_b0050) 2020; 29 Zequine (10.1016/j.cej.2021.133738_b0260) 2016; 6 Yang (10.1016/j.cej.2021.133738_b0255) 2014; 14 Gawbah (10.1016/j.cej.2021.133738_b0285) 2017; 2 He (10.1016/j.cej.2021.133738_b0035) 2017; 39 Raymundo-Piñero (10.1016/j.cej.2021.133738_b0060) 2009; 19 Chen (10.1016/j.cej.2021.133738_b0190) 2014; 24 Tian (10.1016/j.cej.2021.133738_b0210) 2020; 11 Yang (10.1016/j.cej.2021.133738_b0205) 2017; 359 Yu (10.1016/j.cej.2021.133738_b0300) 2015; 278 Chen (10.1016/j.cej.2021.133738_b0185) 2018; 271 Yang (10.1016/j.cej.2021.133738_b0085) 2020; 34 Chen (10.1016/j.cej.2021.133738_b0125) 2020; 8 Huang (10.1016/j.cej.2021.133738_b0055) 2021; 498 Li (10.1016/j.cej.2021.133738_b0175) 2019; 9 Wang (10.1016/j.cej.2021.133738_b0140) 2019; 155 |
| References_xml | – volume: 222 start-page: 141 year: 2016 end-page: 148 ident: b0200 article-title: Phosphorus and sulfur dual doped hierarchic porous carbons with superior supercapacitance performance publication-title: Electrochim. Acta – volume: 6 start-page: 13861 year: 2014 end-page: 13869 ident: b0310 article-title: Scalable graphene synthesised by plasma-assisted selective reaction on silicon carbide for device applications publication-title: Nanoscale – volume: 34 start-page: 5032 year: 2020 end-page: 5043 ident: b0085 article-title: Multi-Heteroatom-Doped Carbon Materials for Solid-State Hybrid Supercapacitors with a Superhigh Cycling Performance publication-title: Energy Fuels – volume: 19 start-page: 1032 year: 2009 end-page: 1039 ident: b0060 article-title: Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds publication-title: Adv. Funct. Mater. – volume: 2 start-page: 9 year: 2017 ident: b0285 article-title: Synthesis of Silica, Silicon Carbide and Carbon from Wheat Bran and Converting Its Crystal Structure Using Nd: YAG Laser publication-title: Future – volume: 451 year: 2020 ident: b0105 article-title: Recent progress of biomass-derived carbon materials for supercapacitors publication-title: J. Power Sources – volume: 29 year: 2020 ident: b0050 article-title: Robust electrochemical performance of polypyrrole (PPy) and polyindole (PIn) based hybrid electrode materials for supercapacitor application: A review publication-title: J. Storage Mater. – volume: 173 start-page: 321 year: 2017 end-page: 329 ident: b0115 article-title: Chitin based heteroatom-doped porous carbon as electrode materials for supercapacitors publication-title: Carbohydr. Polym. – volume: 209 start-page: 557 year: 2016 end-page: 564 ident: b0320 article-title: Porous carbon materials with dual N, S-doping and uniform ultra-microporosity for high performance supercapacitors publication-title: Electrochim. Acta – volume: 8 start-page: 5773 year: 2020 end-page: 5811 ident: b0125 article-title: Biomass-derived porous graphitic carbon materials for energy and environmental applications publication-title: J. Mater. Chem. A – volume: 7 start-page: 7362 year: 2017 ident: b0225 article-title: A novel hierarchical porous nitrogen-doped carbon derived from bamboo shoot for high performance supercapacitor publication-title: Sci. Rep. – volume: 102 start-page: 391 year: 2018 end-page: 398 ident: b0145 article-title: Activated biomass carbon made from bamboo as electrode material for supercapacitors publication-title: Mater. Res. Bull. – volume: 359 start-page: 556 year: 2017 end-page: 567 ident: b0205 article-title: Supercapacitance of nitrogen-sulfur-oxygen co-doped 3D hierarchical porous carbon in aqueous and organic electrolyte publication-title: J. Power Sources – volume: 1 start-page: 244 year: 2020 end-page: 262 ident: b0065 article-title: High-efficiency utilization of carbon materials for supercapacitors publication-title: Nano Select – volume: 2 start-page: 1049 year: 2014 end-page: 1055 ident: b0250 article-title: Surface modification of CNTs with N-doped carbon: an effective way of enhancing their performance in supercapacitors publication-title: ACS Sustainable Chem. Eng. – volume: 4 start-page: 3193 year: 2011 end-page: 3222 ident: b0005 article-title: Towards an electricity-powered world publication-title: Energy Environ. Sci. – volume: 4 start-page: 53 year: 2018 ident: b0100 article-title: Design and preparation of biomass-derived carbon materials for supercapacitors: A review publication-title: C – volume: 10 start-page: 14631 year: 2020 ident: b0030 article-title: Eucalyptus derived heteroatom-doped hierarchical porous carbons as electrode materials in supercapacitors publication-title: Sci. Rep. – volume: 14 start-page: 1616 year: 2014 end-page: 1620 ident: b0255 article-title: Bamboo-based activated carbon for supercapacitor applications publication-title: Curr. Appl Phys. – volume: 155 start-page: 706 year: 2019 end-page: 726 ident: b0140 article-title: Biomass derived carbon as binder-free electrode materials for supercapacitors publication-title: Carbon – volume: 11 start-page: 3884 year: 2020 ident: b0210 article-title: Single-site pyrrolic-nitrogen-doped sp2-hybridized carbon materials and their pseudocapacitance publication-title: Nat. Commun. – volume: 5 start-page: 883 year: 2018 end-page: 889 ident: b0180 article-title: Single-crystalline integrated 4H-SiC nanochannel array electrode: toward high-performance capacitive energy storage for robust wide-temperature operation publication-title: Mater. Horiz. – volume: 6 start-page: 93318 year: 2016 end-page: 93324 ident: b0315 article-title: Scalable synthesis of nano-sandwich N-doped carbon materials with hierarchical-structure for energy conversion and storage publication-title: RSC Adv. – volume: 498 year: 2021 ident: b0055 article-title: An all-paper, scalable and flexible supercapacitor based on vertically aligned polyaniline (PANI) nano-dendrites@fibers publication-title: J. Power Sources – volume: 271 start-page: 49 year: 2018 end-page: 57 ident: b0185 article-title: N/P co-doped hierarchical porous carbon materials for superior performance supercapacitors publication-title: Electrochim. Acta – volume: 39 start-page: 3949 year: 2019 end-page: 3958 ident: b0230 article-title: Production of porous SiC by liquid phase sintering using graphite as sacrificial phase: Influence of SiO2 and graphite on the sintering mechanisms publication-title: J. Eur. Ceram. Soc. – volume: 574 start-page: 33 year: 2020 end-page: 42 ident: b0040 article-title: Chemically modified self-doped biocarbon via novel sulfonation assisted sacrificial template method for high performance flexible all solid-state supercapacitor publication-title: J. Colloid Interface Sci. – volume: 92 start-page: 327 year: 2015 end-page: 338 ident: b0195 article-title: Ternary doping of phosphorus, nitrogen, and sulfur into porous carbon for enhancing electrocatalytic oxygen reduction publication-title: Carbon – volume: 6 start-page: 31704 year: 2016 ident: b0260 article-title: High performance and flexible supercapacitors based on carbonized bamboo fibers for wide temperature applications publication-title: Sci. Rep. – volume: 11 start-page: 265 year: 2004 end-page: 271 ident: b0235 article-title: Fabrication of porous SiC ceramics with special morphologies by sacrificing template method publication-title: J. Porous Mater. – volume: 7 start-page: 16876 year: 2019 end-page: 16882 ident: b0015 article-title: Electrochemically scalable production of bilayer fluorographene nanosheets for solid-state supercapacitors publication-title: J. Mater. Chem. A – volume: 414 start-page: 96 year: 2019 end-page: 102 ident: b0045 article-title: All carbon based high energy lithium-ion capacitors from biomass: The role of crystallinity publication-title: J. Power Sources – volume: 14 start-page: 2036 year: 2021 end-page: 2089 ident: b0075 article-title: Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials publication-title: Energy Environ. Sci. – volume: 537 start-page: 569 year: 2019 end-page: 578 ident: b0130 article-title: KOH activation of wax gourd-derived carbon materials with high porosity and heteroatom content for aqueous or all-solid-state supercapacitors publication-title: J. Colloid Interface Sci. – volume: 506 year: 2020 ident: b0215 article-title: Free-standing honeycomb-like N doped carbon foam derived from coal tar pitch for high-performance supercapacitor publication-title: Appl. Surf. Sci. – volume: 9 start-page: 729 year: 2016 end-page: 762 ident: b0070 article-title: Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities publication-title: Energy Environ. Sci. – volume: 325 year: 2019 ident: b0270 article-title: Preparation and characterization of heteroatom self-doped activated biocarbons as hydrogen storage and supercapacitor electrode materials publication-title: Electrochim. Acta – volume: 161 start-page: 62 year: 2020 end-page: 70 ident: b0025 article-title: Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor publication-title: Carbon – volume: 107 start-page: 26 year: 2016 end-page: 32 ident: b0265 article-title: Synthesis of carbon fiber aerogel from natural bamboo fiber and its application as a green high-efficiency and recyclable adsorbent publication-title: Mater. Des. – volume: 521 year: 2020 ident: b0150 article-title: In situ construction of bamboo charcoal derived SiOx embedded in hierarchical porous carbon framework as stable anode material for superior lithium storage publication-title: Appl. Surf. Sci. – volume: 6 start-page: 9930 year: 2018 end-page: 9939 ident: b0165 article-title: 3D porous silicon/N-doped carbon composite derived from bamboo charcoal as high-performance anode material for lithium-ion batteries publication-title: ACS Sustainable Chem. Eng. – volume: 14 start-page: 1801857 year: 2018 ident: b0245 article-title: 3D 3C-SiC/graphene hybrid nanolaminate films for high-performance supercapacitors publication-title: Small – volume: 39 start-page: 590 year: 2017 end-page: 600 ident: b0035 article-title: All-solid-state flexible self-charging power cell basing on piezo-electrolyte for harvesting/storing body-motion energy and powering wearable electronics publication-title: Nano Energy – volume: 61 start-page: 133 year: 2018 end-page: 158 ident: b0095 article-title: Biomass-derived carbon materials with structural diversities and their applications in energy storage publication-title: Sci. China Mater. – volume: 57 start-page: 13135 year: 2018 end-page: 13139 ident: b0275 article-title: CO2 overall splitting by a bifunctional metal-free electrocatalyst publication-title: Angew. Chem. Int. Ed. – volume: 169 start-page: 186 year: 2015 end-page: 194 ident: b0110 article-title: Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors publication-title: Electrochim. Acta – volume: 378 start-page: 579 year: 2018 end-page: 588 ident: b0280 article-title: Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors publication-title: J. Power Sources – volume: 140 start-page: 404 year: 2018 end-page: 412 ident: b0330 article-title: A biomass-derived nitrogen-doped porous carbon for high-energy supercapacitor publication-title: Carbon – volume: 173 start-page: 800 year: 2021 end-page: 808 ident: b0090 article-title: Pre-cryocrushing of natural carbon precursors to prepare nitrogen, sulfur co-doped porous microcellular carbon as an efficient ORR catalyst publication-title: Carbon – volume: 9 start-page: 14233 year: 2021 end-page: 14264 ident: b0020 article-title: Lignocellulose-derived hydrogel/aerogel-based flexible quasi-solid-state supercapacitors with high-performance: a review publication-title: J. Mater. Chem. A – volume: 31 start-page: 2008901 year: 2021 ident: b0170 article-title: Robust high-temperature supercapacitors based on SiC nanowires publication-title: Adv. Funct. Mater. – volume: 6 start-page: 4008 year: 2018 end-page: 4015 ident: b0120 article-title: Raw-cotton-derived N-doped carbon fiber aerogel as an efficient electrode for electrochemical capacitors publication-title: ACS Sustainable Chem. Eng. – volume: 297 year: 2020 ident: b0135 article-title: Regulatory pore structure of biomass-based carbon for supercapacitor applications publication-title: Microporous Mesoporous Mater. – volume: 348 start-page: 850 year: 2018 end-page: 859 ident: b0080 article-title: Nitrogen-doped biomass-based hierarchical porous carbon with large mesoporous volume for application in energy storage publication-title: Chem. Eng. J. – volume: 5 start-page: 1186 year: 2018 end-page: 1190 ident: b0305 article-title: Novel N-Mo2C active sites for efficient solar-to-hydrogen generation publication-title: ChemElectroChem – volume: 278 start-page: 484 year: 2015 end-page: 489 ident: b0300 article-title: Three-dimensional, sulfur-incorporated graphene aerogels for the enhanced performances of pseudocapacitive electrodes publication-title: J. Power Sources – volume: 58 start-page: 1189 year: 2016 end-page: 1206 ident: b0010 article-title: Review on supercapacitors: Technologies and materials publication-title: Renew. Sustain. Energy Rev. – volume: 37 start-page: 874 year: 2008 end-page: 879 ident: b0290 article-title: Effect of SiC nanoparticle additions on microstructure and microhardness of Sn-Ag-Cu solder alloy publication-title: J. Electron. Mater. – volume: 4 start-page: 7924 year: 2016 end-page: 7929 ident: b0240 article-title: Si–C–F decorated porous carbon materials: a new class of electrocatalysts for the oxygen reduction reaction publication-title: J. Mater. Chem. A – volume: 7 start-page: 3574 year: 2014 end-page: 3592 ident: b0220 article-title: Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications publication-title: Energy Environ. Sci. – volume: 8 start-page: 2114 year: 2015 end-page: 2122 ident: b0325 article-title: 3 D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method publication-title: ChemSusChem – volume: 16 start-page: 877 year: 2012 end-page: 882 ident: b0155 article-title: A renewable bamboo carbon/polyaniline composite for a high-performance supercapacitor electrode material publication-title: J. Solid State Electrochem. – volume: 9 start-page: 1900073 year: 2019 ident: b0175 article-title: All-solid-state on-chip supercapacitors based on free-standing 4H-SiC nanowire arrays publication-title: Adv. Energy Mater. – volume: 383 start-page: 441 year: 2004 end-page: 444 ident: b0295 article-title: Synthesis of silicon carbide nanorods by catalyst-assisted pyrolysis of polymeric precursor publication-title: Chem. Phys. Lett. – volume: 24 start-page: 5104 year: 2014 end-page: 5111 ident: b0190 article-title: Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors publication-title: Adv. Funct. Mater. – volume: 19 start-page: 4132 year: 2017 end-page: 4140 ident: b0160 article-title: Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors publication-title: Green Chem. – volume: 8 start-page: 5773 issue: 12 year: 2020 ident: 10.1016/j.cej.2021.133738_b0125 article-title: Biomass-derived porous graphitic carbon materials for energy and environmental applications publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11618D – volume: 11 start-page: 265 issue: 4 year: 2004 ident: 10.1016/j.cej.2021.133738_b0235 article-title: Fabrication of porous SiC ceramics with special morphologies by sacrificing template method publication-title: J. Porous Mater. doi: 10.1023/B:JOPO.0000046353.24308.86 – volume: 574 start-page: 33 year: 2020 ident: 10.1016/j.cej.2021.133738_b0040 article-title: Chemically modified self-doped biocarbon via novel sulfonation assisted sacrificial template method for high performance flexible all solid-state supercapacitor publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.04.029 – volume: 9 start-page: 729 issue: 3 year: 2016 ident: 10.1016/j.cej.2021.133738_b0070 article-title: Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03109E – volume: 297 year: 2020 ident: 10.1016/j.cej.2021.133738_b0135 article-title: Regulatory pore structure of biomass-based carbon for supercapacitor applications publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2020.110032 – volume: 4 start-page: 3193 issue: 9 year: 2011 ident: 10.1016/j.cej.2021.133738_b0005 article-title: Towards an electricity-powered world publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01249e – volume: 506 year: 2020 ident: 10.1016/j.cej.2021.133738_b0215 article-title: Free-standing honeycomb-like N doped carbon foam derived from coal tar pitch for high-performance supercapacitor publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.145014 – volume: 29 year: 2020 ident: 10.1016/j.cej.2021.133738_b0050 article-title: Robust electrochemical performance of polypyrrole (PPy) and polyindole (PIn) based hybrid electrode materials for supercapacitor application: A review publication-title: J. Storage Mater. – volume: 271 start-page: 49 year: 2018 ident: 10.1016/j.cej.2021.133738_b0185 article-title: N/P co-doped hierarchical porous carbon materials for superior performance supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.03.129 – volume: 39 start-page: 3949 issue: 14 year: 2019 ident: 10.1016/j.cej.2021.133738_b0230 article-title: Production of porous SiC by liquid phase sintering using graphite as sacrificial phase: Influence of SiO2 and graphite on the sintering mechanisms publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2019.06.022 – volume: 57 start-page: 13135 issue: 40 year: 2018 ident: 10.1016/j.cej.2021.133738_b0275 article-title: CO2 overall splitting by a bifunctional metal-free electrocatalyst publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201807571 – volume: 102 start-page: 391 year: 2018 ident: 10.1016/j.cej.2021.133738_b0145 article-title: Activated biomass carbon made from bamboo as electrode material for supercapacitors publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2018.03.006 – volume: 140 start-page: 404 year: 2018 ident: 10.1016/j.cej.2021.133738_b0330 article-title: A biomass-derived nitrogen-doped porous carbon for high-energy supercapacitor publication-title: Carbon doi: 10.1016/j.carbon.2018.09.009 – volume: 31 start-page: 2008901 issue: 8 year: 2021 ident: 10.1016/j.cej.2021.133738_b0170 article-title: Robust high-temperature supercapacitors based on SiC nanowires publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202008901 – volume: 2 start-page: 9 year: 2017 ident: 10.1016/j.cej.2021.133738_b0285 article-title: Synthesis of Silica, Silicon Carbide and Carbon from Wheat Bran and Converting Its Crystal Structure Using Nd: YAG Laser publication-title: Future – volume: 10 start-page: 14631 issue: 1 year: 2020 ident: 10.1016/j.cej.2021.133738_b0030 article-title: Eucalyptus derived heteroatom-doped hierarchical porous carbons as electrode materials in supercapacitors publication-title: Sci. Rep. doi: 10.1038/s41598-020-71649-9 – volume: 8 start-page: 2114 issue: 12 year: 2015 ident: 10.1016/j.cej.2021.133738_b0325 article-title: 3 D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method publication-title: ChemSusChem doi: 10.1002/cssc.201403486 – volume: 359 start-page: 556 year: 2017 ident: 10.1016/j.cej.2021.133738_b0205 article-title: Supercapacitance of nitrogen-sulfur-oxygen co-doped 3D hierarchical porous carbon in aqueous and organic electrolyte publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.05.108 – volume: 2 start-page: 1049 issue: 4 year: 2014 ident: 10.1016/j.cej.2021.133738_b0250 article-title: Surface modification of CNTs with N-doped carbon: an effective way of enhancing their performance in supercapacitors publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/sc500069h – volume: 61 start-page: 133 issue: 2 year: 2018 ident: 10.1016/j.cej.2021.133738_b0095 article-title: Biomass-derived carbon materials with structural diversities and their applications in energy storage publication-title: Sci. China Mater. doi: 10.1007/s40843-017-9169-4 – volume: 325 year: 2019 ident: 10.1016/j.cej.2021.133738_b0270 article-title: Preparation and characterization of heteroatom self-doped activated biocarbons as hydrogen storage and supercapacitor electrode materials publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.134941 – volume: 107 start-page: 26 year: 2016 ident: 10.1016/j.cej.2021.133738_b0265 article-title: Synthesis of carbon fiber aerogel from natural bamboo fiber and its application as a green high-efficiency and recyclable adsorbent publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.06.015 – volume: 414 start-page: 96 year: 2019 ident: 10.1016/j.cej.2021.133738_b0045 article-title: All carbon based high energy lithium-ion capacitors from biomass: The role of crystallinity publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.12.089 – volume: 7 start-page: 7362 issue: 1 year: 2017 ident: 10.1016/j.cej.2021.133738_b0225 article-title: A novel hierarchical porous nitrogen-doped carbon derived from bamboo shoot for high performance supercapacitor publication-title: Sci. Rep. doi: 10.1038/s41598-017-06730-x – volume: 11 start-page: 3884 issue: 1 year: 2020 ident: 10.1016/j.cej.2021.133738_b0210 article-title: Single-site pyrrolic-nitrogen-doped sp2-hybridized carbon materials and their pseudocapacitance publication-title: Nat. Commun. doi: 10.1038/s41467-020-17727-y – volume: 24 start-page: 5104 issue: 32 year: 2014 ident: 10.1016/j.cej.2021.133738_b0190 article-title: Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400590 – volume: 37 start-page: 874 issue: 6 year: 2008 ident: 10.1016/j.cej.2021.133738_b0290 article-title: Effect of SiC nanoparticle additions on microstructure and microhardness of Sn-Ag-Cu solder alloy publication-title: J. Electron. Mater. doi: 10.1007/s11664-007-0366-3 – volume: 169 start-page: 186 year: 2015 ident: 10.1016/j.cej.2021.133738_b0110 article-title: Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.04.082 – volume: 498 year: 2021 ident: 10.1016/j.cej.2021.133738_b0055 article-title: An all-paper, scalable and flexible supercapacitor based on vertically aligned polyaniline (PANI) nano-dendrites@fibers publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.229886 – volume: 7 start-page: 3574 issue: 11 year: 2014 ident: 10.1016/j.cej.2021.133738_b0220 article-title: Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01075B – volume: 9 start-page: 1900073 issue: 17 year: 2019 ident: 10.1016/j.cej.2021.133738_b0175 article-title: All-solid-state on-chip supercapacitors based on free-standing 4H-SiC nanowire arrays publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900073 – volume: 14 start-page: 1616 issue: 12 year: 2014 ident: 10.1016/j.cej.2021.133738_b0255 article-title: Bamboo-based activated carbon for supercapacitor applications publication-title: Curr. Appl Phys. doi: 10.1016/j.cap.2014.09.021 – volume: 6 start-page: 31704 issue: 1 year: 2016 ident: 10.1016/j.cej.2021.133738_b0260 article-title: High performance and flexible supercapacitors based on carbonized bamboo fibers for wide temperature applications publication-title: Sci. Rep. doi: 10.1038/srep31704 – volume: 161 start-page: 62 year: 2020 ident: 10.1016/j.cej.2021.133738_b0025 article-title: Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor publication-title: Carbon doi: 10.1016/j.carbon.2020.01.020 – volume: 4 start-page: 53 issue: 4 year: 2018 ident: 10.1016/j.cej.2021.133738_b0100 article-title: Design and preparation of biomass-derived carbon materials for supercapacitors: A review publication-title: C – volume: 6 start-page: 9930 issue: 8 year: 2018 ident: 10.1016/j.cej.2021.133738_b0165 article-title: 3D porous silicon/N-doped carbon composite derived from bamboo charcoal as high-performance anode material for lithium-ion batteries publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b01189 – volume: 521 year: 2020 ident: 10.1016/j.cej.2021.133738_b0150 article-title: In situ construction of bamboo charcoal derived SiOx embedded in hierarchical porous carbon framework as stable anode material for superior lithium storage publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146497 – volume: 4 start-page: 7924 issue: 20 year: 2016 ident: 10.1016/j.cej.2021.133738_b0240 article-title: Si–C–F decorated porous carbon materials: a new class of electrocatalysts for the oxygen reduction reaction publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02078J – volume: 451 year: 2020 ident: 10.1016/j.cej.2021.133738_b0105 article-title: Recent progress of biomass-derived carbon materials for supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.227794 – volume: 173 start-page: 321 year: 2017 ident: 10.1016/j.cej.2021.133738_b0115 article-title: Chitin based heteroatom-doped porous carbon as electrode materials for supercapacitors publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.06.004 – volume: 209 start-page: 557 year: 2016 ident: 10.1016/j.cej.2021.133738_b0320 article-title: Porous carbon materials with dual N, S-doping and uniform ultra-microporosity for high performance supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.05.127 – volume: 1 start-page: 244 issue: 2 year: 2020 ident: 10.1016/j.cej.2021.133738_b0065 article-title: High-efficiency utilization of carbon materials for supercapacitors publication-title: Nano Select doi: 10.1002/nano.202000011 – volume: 6 start-page: 93318 issue: 96 year: 2016 ident: 10.1016/j.cej.2021.133738_b0315 article-title: Scalable synthesis of nano-sandwich N-doped carbon materials with hierarchical-structure for energy conversion and storage publication-title: RSC Adv. doi: 10.1039/C6RA12283C – volume: 19 start-page: 1032 issue: 7 year: 2009 ident: 10.1016/j.cej.2021.133738_b0060 article-title: Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200801057 – volume: 16 start-page: 877 issue: 3 year: 2012 ident: 10.1016/j.cej.2021.133738_b0155 article-title: A renewable bamboo carbon/polyaniline composite for a high-performance supercapacitor electrode material publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-011-1435-3 – volume: 378 start-page: 579 year: 2018 ident: 10.1016/j.cej.2021.133738_b0280 article-title: Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.12.081 – volume: 5 start-page: 883 issue: 5 year: 2018 ident: 10.1016/j.cej.2021.133738_b0180 article-title: Single-crystalline integrated 4H-SiC nanochannel array electrode: toward high-performance capacitive energy storage for robust wide-temperature operation publication-title: Mater. Horiz. doi: 10.1039/C8MH00474A – volume: 58 start-page: 1189 year: 2016 ident: 10.1016/j.cej.2021.133738_b0010 article-title: Review on supercapacitors: Technologies and materials publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.249 – volume: 39 start-page: 590 year: 2017 ident: 10.1016/j.cej.2021.133738_b0035 article-title: All-solid-state flexible self-charging power cell basing on piezo-electrolyte for harvesting/storing body-motion energy and powering wearable electronics publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.033 – volume: 173 start-page: 800 year: 2021 ident: 10.1016/j.cej.2021.133738_b0090 article-title: Pre-cryocrushing of natural carbon precursors to prepare nitrogen, sulfur co-doped porous microcellular carbon as an efficient ORR catalyst publication-title: Carbon doi: 10.1016/j.carbon.2020.11.069 – volume: 92 start-page: 327 year: 2015 ident: 10.1016/j.cej.2021.133738_b0195 article-title: Ternary doping of phosphorus, nitrogen, and sulfur into porous carbon for enhancing electrocatalytic oxygen reduction publication-title: Carbon doi: 10.1016/j.carbon.2015.05.013 – volume: 5 start-page: 1186 issue: 8 year: 2018 ident: 10.1016/j.cej.2021.133738_b0305 article-title: Novel N-Mo2C active sites for efficient solar-to-hydrogen generation publication-title: ChemElectroChem doi: 10.1002/celc.201701365 – volume: 383 start-page: 441 issue: 5-6 year: 2004 ident: 10.1016/j.cej.2021.133738_b0295 article-title: Synthesis of silicon carbide nanorods by catalyst-assisted pyrolysis of polymeric precursor publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2003.11.031 – volume: 155 start-page: 706 year: 2019 ident: 10.1016/j.cej.2021.133738_b0140 article-title: Biomass derived carbon as binder-free electrode materials for supercapacitors publication-title: Carbon doi: 10.1016/j.carbon.2019.09.018 – volume: 222 start-page: 141 year: 2016 ident: 10.1016/j.cej.2021.133738_b0200 article-title: Phosphorus and sulfur dual doped hierarchic porous carbons with superior supercapacitance performance publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.10.184 – volume: 6 start-page: 4008 issue: 3 year: 2018 ident: 10.1016/j.cej.2021.133738_b0120 article-title: Raw-cotton-derived N-doped carbon fiber aerogel as an efficient electrode for electrochemical capacitors publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b04396 – volume: 9 start-page: 14233 issue: 25 year: 2021 ident: 10.1016/j.cej.2021.133738_b0020 article-title: Lignocellulose-derived hydrogel/aerogel-based flexible quasi-solid-state supercapacitors with high-performance: a review publication-title: J. Mater. Chem. A doi: 10.1039/D1TA02281D – volume: 14 start-page: 1801857 issue: 45 year: 2018 ident: 10.1016/j.cej.2021.133738_b0245 article-title: 3D 3C-SiC/graphene hybrid nanolaminate films for high-performance supercapacitors publication-title: Small doi: 10.1002/smll.201801857 – volume: 537 start-page: 569 year: 2019 ident: 10.1016/j.cej.2021.133738_b0130 article-title: KOH activation of wax gourd-derived carbon materials with high porosity and heteroatom content for aqueous or all-solid-state supercapacitors publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.11.070 – volume: 14 start-page: 2036 issue: 4 year: 2021 ident: 10.1016/j.cej.2021.133738_b0075 article-title: Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00166C – volume: 348 start-page: 850 year: 2018 ident: 10.1016/j.cej.2021.133738_b0080 article-title: Nitrogen-doped biomass-based hierarchical porous carbon with large mesoporous volume for application in energy storage publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.05.061 – volume: 7 start-page: 16876 issue: 28 year: 2019 ident: 10.1016/j.cej.2021.133738_b0015 article-title: Electrochemically scalable production of bilayer fluorographene nanosheets for solid-state supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C9TA04421C – volume: 34 start-page: 5032 issue: 4 year: 2020 ident: 10.1016/j.cej.2021.133738_b0085 article-title: Multi-Heteroatom-Doped Carbon Materials for Solid-State Hybrid Supercapacitors with a Superhigh Cycling Performance publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.9b04505 – volume: 6 start-page: 13861 issue: 22 year: 2014 ident: 10.1016/j.cej.2021.133738_b0310 article-title: Scalable graphene synthesised by plasma-assisted selective reaction on silicon carbide for device applications publication-title: Nanoscale doi: 10.1039/C4NR04486J – volume: 278 start-page: 484 year: 2015 ident: 10.1016/j.cej.2021.133738_b0300 article-title: Three-dimensional, sulfur-incorporated graphene aerogels for the enhanced performances of pseudocapacitive electrodes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.12.102 – volume: 19 start-page: 4132 issue: 17 year: 2017 ident: 10.1016/j.cej.2021.133738_b0160 article-title: Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors publication-title: Green Chem. doi: 10.1039/C7GC01681F |
| SSID | ssj0006919 |
| Score | 2.6060233 |
| Snippet | •Novel SiC/Pyrrolic-N doped carbon material have been synthesized from bamboo.•Inherent SiO2 moieties in natural bamboo has been used as a sacrificial... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 133738 |
| SubjectTerms | Bamboo Flexible supercapacitor Natural sacrificial template Nitrogen-doping Self-doping Silicon doping |
| Title | Bamboo-derived carbon material inherently doped with SiC and nitrogen for flexible supercapacitors |
| URI | https://dx.doi.org/10.1016/j.cej.2021.133738 |
| Volume | 433 |
| WOSCitedRecordID | wos000819839100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3212 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006919 issn: 1385-8947 databaseCode: AIEXJ dateStart: 19970115 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqXQ5wQDzF8pIPnECp4jiJ4-OCFgFarUBdUMUlil-Qqk2rbFvt8mv4qYzjOMl2AQESl6iK6jjyfB1_ns58g9CzVHECjl8EiiRFEEtJAiGByMVEp_Y4UMimf8qnY3Zykk2n_P1o9N3XwmznrKqy83O--q-mhntgbFs6-xfm7h4KN-AzGB2uYHa4_pHhXxYLYM6Bgrm2wCZlUQuwMBBT7Rp0VF9thd96fvFCLVc--XxSuiRO-IHXS3h0k31orFimraw626x0LWFblaVtzjMktJ3ggO6FDTs5CtsupLBpPy5sOoGpvrnq4jYSwdNhJEIIV102ubBh5-VikP5xXPrkgOrLQpc9GBvu-7k0ut2BLSfXzn99KNVmGNSA83CfC9NE2q5U2zTOmWZJkHGn0DnW7l7GaEAjcsmjx05b48ru4AIVs7HUszHMSsZwQGdOXGZHdHti57JTwYkYvFQEm_x-xBIOrn__8O3R9F2326e8aR7TvZv_57zJIdyZ6OfcZ8BnTm-hm-1BBB86AN1GI13dQTcG8pR3kbgMJeyghD2UcA8l3EAJWyhhgBIGC2MPJQxQwh5KeAdK99DH10enr94EbU-OQEacrQMpaRIKKZRhVDCZRiqmWhEtqGQy5FrHhdUIpJEKqcrALiaTTEWFCZVOiEnpfbRXLSv9AGFiTGh4wYkkVtA25IqH3ESaW86YSn2AQr9auWwF623flHnuMxNnOSxwbhc4dwt8gJ53Q1ZOreV3X469CfKWbjoamQNefj3s4b8Ne4Su90B_jPbW9UY_Qdfkdl2e1U9bVP0AWB6kMA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bamboo-derived+carbon+material+inherently+doped+with+SiC+and+nitrogen+for+flexible+supercapacitors&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Abbas%2C+Syed+Comail&rft.au=Lin%2C+Changmei&rft.au=Hua%2C+Zifeng&rft.au=Deng%2C+Qidu&rft.date=2022-04-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=433&rft_id=info:doi/10.1016%2Fj.cej.2021.133738&rft.externalDocID=S1385894721053122 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |