Bamboo-derived carbon material inherently doped with SiC and nitrogen for flexible supercapacitors

•Novel SiC/Pyrrolic-N doped carbon material have been synthesized from bamboo.•Inherent SiO2 moieties in natural bamboo has been used as a sacrificial template.•The synergy of SiC and Pyrrolic-N has been demonstrated for Faradaic redox reactions.•Natural bamboo-based carbon materials deliver capacit...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 433; p. 133738
Main Authors: Abbas, Syed Comail, Lin, Changmei, Hua, Zifeng, Deng, Qidu, Huang, Hai, Ni, Yonghao, Cao, Shilin, Ma, Xiaojuan
Format: Journal Article
Language:English
Published: Elsevier B.V 01.04.2022
Subjects:
ISSN:1385-8947, 1873-3212
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Novel SiC/Pyrrolic-N doped carbon material have been synthesized from bamboo.•Inherent SiO2 moieties in natural bamboo has been used as a sacrificial template.•The synergy of SiC and Pyrrolic-N has been demonstrated for Faradaic redox reactions.•Natural bamboo-based carbon materials deliver capacitance of 369 F g−1 at 0.5 A g−1.•Bamboo-based carbon materials deliver 100% capacitance retention after 5000 cycles. It is still challenging to prepare porous carbon materials following a facile, green and universal sacrificial template method from renewable biomass. For this purpose, bio-renewable bamboo is a natural silicon reservoir containing a significant amount of inherent silica that can act as a natural sacrificial template for the formation of porous carbon materials as well as a dopant. Herein, we firstly report the SiC/N dual doped bio-renewable carbon material via a facile, natural sacrificial template method. In this newly developed method, the inherently available SiO2 nanoparticles have been utilized as the natural sacrificial template for creating the multi-porous architecture as well as for the generation of structural defects in the form of SiC nano-species. Additionally, the inherent nitrogen functional groups give rise to the formation of only pyrrolic-N species after pyrolysis. Furthermore, dual doping of SiC and pyrrolic-N species stimulate the faradaic redox reaction during the charge/discharge process and further increase the rate capability at higher current density with excellent electrochemical stability. Hence, the synergistic effect of SiC and N-pyrrolic dually doped carbon network gives rise to the formation of promising electrode material towards supercapacitors. Benefiting from the above unique features, the supercapacitor with the SNAC-1 electrode material delivers excellent capacitive behavior (369 F g−1 at 0.5 A g−1) in 1 M H2SO4 electrolyte with 100% capacitance retention after 5000 charge–discharge cycles. More prominently, the all-solid state, symmetric supercapacitors assembled by SNAC-1 show outstanding capacitance of 162 F g−1 at 0.5 A g−1 and reveal high energy density (∼5.41 W h kg−1 at 0.5 kW kg−1 power density) and excellent cyclic stability. This work provides an ideal sustainable solution from bamboo source to prepare porous SiC/N composites for cost-effective supercapacitor’s electrode materials.
AbstractList •Novel SiC/Pyrrolic-N doped carbon material have been synthesized from bamboo.•Inherent SiO2 moieties in natural bamboo has been used as a sacrificial template.•The synergy of SiC and Pyrrolic-N has been demonstrated for Faradaic redox reactions.•Natural bamboo-based carbon materials deliver capacitance of 369 F g−1 at 0.5 A g−1.•Bamboo-based carbon materials deliver 100% capacitance retention after 5000 cycles. It is still challenging to prepare porous carbon materials following a facile, green and universal sacrificial template method from renewable biomass. For this purpose, bio-renewable bamboo is a natural silicon reservoir containing a significant amount of inherent silica that can act as a natural sacrificial template for the formation of porous carbon materials as well as a dopant. Herein, we firstly report the SiC/N dual doped bio-renewable carbon material via a facile, natural sacrificial template method. In this newly developed method, the inherently available SiO2 nanoparticles have been utilized as the natural sacrificial template for creating the multi-porous architecture as well as for the generation of structural defects in the form of SiC nano-species. Additionally, the inherent nitrogen functional groups give rise to the formation of only pyrrolic-N species after pyrolysis. Furthermore, dual doping of SiC and pyrrolic-N species stimulate the faradaic redox reaction during the charge/discharge process and further increase the rate capability at higher current density with excellent electrochemical stability. Hence, the synergistic effect of SiC and N-pyrrolic dually doped carbon network gives rise to the formation of promising electrode material towards supercapacitors. Benefiting from the above unique features, the supercapacitor with the SNAC-1 electrode material delivers excellent capacitive behavior (369 F g−1 at 0.5 A g−1) in 1 M H2SO4 electrolyte with 100% capacitance retention after 5000 charge–discharge cycles. More prominently, the all-solid state, symmetric supercapacitors assembled by SNAC-1 show outstanding capacitance of 162 F g−1 at 0.5 A g−1 and reveal high energy density (∼5.41 W h kg−1 at 0.5 kW kg−1 power density) and excellent cyclic stability. This work provides an ideal sustainable solution from bamboo source to prepare porous SiC/N composites for cost-effective supercapacitor’s electrode materials.
ArticleNumber 133738
Author Lin, Changmei
Ni, Yonghao
Cao, Shilin
Ma, Xiaojuan
Abbas, Syed Comail
Huang, Hai
Deng, Qidu
Hua, Zifeng
Author_xml – sequence: 1
  givenname: Syed Comail
  surname: Abbas
  fullname: Abbas, Syed Comail
  organization: College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
– sequence: 2
  givenname: Changmei
  surname: Lin
  fullname: Lin, Changmei
  organization: College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
– sequence: 3
  givenname: Zifeng
  surname: Hua
  fullname: Hua, Zifeng
  organization: College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
– sequence: 4
  givenname: Qidu
  surname: Deng
  fullname: Deng, Qidu
  organization: College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
– sequence: 5
  givenname: Hai
  surname: Huang
  fullname: Huang, Hai
  organization: College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
– sequence: 6
  givenname: Yonghao
  surname: Ni
  fullname: Ni, Yonghao
  organization: College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
– sequence: 7
  givenname: Shilin
  surname: Cao
  fullname: Cao, Shilin
  email: scutcsl@163.com
  organization: College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
– sequence: 8
  givenname: Xiaojuan
  surname: Ma
  fullname: Ma, Xiaojuan
  email: 1212juanjuan@163.com
  organization: College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
BookMark eNp9kMtOwzAQRS1UJNrCB7DzDyT4kcaJWEHFS6rEAlhbjj2mjlK7sk2hf0-qsmLR1YxGc0ZzzwxNfPCA0DUlJSW0vulLDX3JCKMl5Vzw5gxNaSN4wRllk7HnzaJo2kpcoFlKPSGkbmk7Rd292nQhFAai24HBWsUueLxReRyoATu_hgg-D3tswnZc-HZ5jd_cEitvsHc5hk_w2IaI7QA_rhsAp68tRK22SrscYrpE51YNCa7-6hx9PD68L5-L1evTy_JuVWjWilxozRek052xgndC18xUHAyFjmuhSQtQKUZ5xZkh3DRjKttoYZiyxMCC2prPET3e1TGkFMHKbXQbFfeSEnmQJHs5SpIHSfIoaWTEP2b8WWUXfI7KDSfJ2yMJY6SdgyiTduA1GBdBZ2mCO0H_An2Dhdk
CitedBy_id crossref_primary_10_1007_s10853_025_11079_y
crossref_primary_10_1039_D5TA03865K
crossref_primary_10_1039_D4TA08522A
crossref_primary_10_1016_j_diamond_2023_109956
crossref_primary_10_1002_eom2_12434
crossref_primary_10_1016_j_est_2024_114613
crossref_primary_10_1016_j_indcrop_2024_118708
crossref_primary_10_1016_j_jcis_2023_12_153
crossref_primary_10_1016_j_jelechem_2024_118243
crossref_primary_10_1016_j_jpowsour_2024_235027
crossref_primary_10_1002_sus2_217
crossref_primary_10_1016_j_diamond_2023_110612
crossref_primary_10_1016_j_est_2023_109268
crossref_primary_10_1016_j_jallcom_2024_178331
crossref_primary_10_1021_acsaem_5c00606
crossref_primary_10_1016_j_fuel_2024_133584
crossref_primary_10_1016_j_chemosphere_2024_142400
crossref_primary_10_1016_j_est_2025_118276
crossref_primary_10_1016_j_colsurfa_2022_130596
crossref_primary_10_1016_j_ijbiomac_2023_128759
crossref_primary_10_1002_tcr_202300361
crossref_primary_10_3390_nano13010150
crossref_primary_10_1021_acsami_5c03173
crossref_primary_10_1016_j_jpowsour_2024_235216
crossref_primary_10_1016_j_jpowsour_2025_236404
crossref_primary_10_1039_D3NR05050E
crossref_primary_10_1016_j_ijbiomac_2023_128365
crossref_primary_10_3390_polym14204261
crossref_primary_10_1016_j_jelechem_2023_117845
crossref_primary_10_1016_j_biteb_2024_101765
crossref_primary_10_1016_j_carbpol_2023_121570
crossref_primary_10_1016_j_est_2022_105047
crossref_primary_10_1016_j_ccr_2024_216018
crossref_primary_10_1016_j_jcis_2023_03_056
crossref_primary_10_3389_fbael_2024_1422400
crossref_primary_10_3390_inorganics11020081
crossref_primary_10_1016_j_electacta_2023_142410
crossref_primary_10_1007_s10854_022_09811_4
crossref_primary_10_1016_j_energy_2022_126247
crossref_primary_10_3390_f14112266
crossref_primary_10_1016_j_est_2023_109326
crossref_primary_10_1246_cl_220225
crossref_primary_10_1002_adfm_202403448
crossref_primary_10_1016_j_jallcom_2022_166534
crossref_primary_10_1016_j_biombioe_2025_107673
crossref_primary_10_1016_j_est_2025_117244
crossref_primary_10_1016_j_carbpol_2022_120353
crossref_primary_10_1016_j_est_2024_112944
crossref_primary_10_1016_j_renene_2024_120598
crossref_primary_10_1021_acsaelm_5c01129
crossref_primary_10_1002_cphc_202400957
crossref_primary_10_1007_s11581_025_06219_y
crossref_primary_10_1016_j_fub_2024_100021
crossref_primary_10_1016_j_mtchem_2024_101988
crossref_primary_10_1016_j_cej_2025_166275
crossref_primary_10_1016_j_diamond_2023_110208
crossref_primary_10_1016_j_ceramint_2025_09_142
crossref_primary_10_1016_j_jpowsour_2025_236947
Cites_doi 10.1039/C9TA11618D
10.1023/B:JOPO.0000046353.24308.86
10.1016/j.jcis.2020.04.029
10.1039/C5EE03109E
10.1016/j.micromeso.2020.110032
10.1039/c1ee01249e
10.1016/j.apsusc.2019.145014
10.1016/j.electacta.2018.03.129
10.1016/j.jeurceramsoc.2019.06.022
10.1002/anie.201807571
10.1016/j.materresbull.2018.03.006
10.1016/j.carbon.2018.09.009
10.1002/adfm.202008901
10.1038/s41598-020-71649-9
10.1002/cssc.201403486
10.1016/j.jpowsour.2017.05.108
10.1021/sc500069h
10.1007/s40843-017-9169-4
10.1016/j.electacta.2019.134941
10.1016/j.matdes.2016.06.015
10.1016/j.jpowsour.2018.12.089
10.1038/s41598-017-06730-x
10.1038/s41467-020-17727-y
10.1002/adfm.201400590
10.1007/s11664-007-0366-3
10.1016/j.electacta.2015.04.082
10.1016/j.jpowsour.2021.229886
10.1039/C4EE01075B
10.1002/aenm.201900073
10.1016/j.cap.2014.09.021
10.1038/srep31704
10.1016/j.carbon.2020.01.020
10.1021/acssuschemeng.8b01189
10.1016/j.apsusc.2020.146497
10.1039/C6TA02078J
10.1016/j.jpowsour.2020.227794
10.1016/j.carbpol.2017.06.004
10.1016/j.electacta.2016.05.127
10.1002/nano.202000011
10.1039/C6RA12283C
10.1002/adfm.200801057
10.1007/s10008-011-1435-3
10.1016/j.jpowsour.2017.12.081
10.1039/C8MH00474A
10.1016/j.rser.2015.12.249
10.1016/j.nanoen.2017.07.033
10.1016/j.carbon.2020.11.069
10.1016/j.carbon.2015.05.013
10.1002/celc.201701365
10.1016/j.cplett.2003.11.031
10.1016/j.carbon.2019.09.018
10.1016/j.electacta.2016.10.184
10.1021/acssuschemeng.7b04396
10.1039/D1TA02281D
10.1002/smll.201801857
10.1016/j.jcis.2018.11.070
10.1039/D1EE00166C
10.1016/j.cej.2018.05.061
10.1039/C9TA04421C
10.1021/acs.energyfuels.9b04505
10.1039/C4NR04486J
10.1016/j.jpowsour.2014.12.102
10.1039/C7GC01681F
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2021.133738
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2021_133738
S1385894721053122
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
CITATION
EFKBS
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
ZY4
~HD
ID FETCH-LOGICAL-c297t-cc350bcbdf73b7c62d43ed1eb3c7c09ee4a213432d03d8212f8c7d2af0de51f63
ISICitedReferencesCount 79
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819839100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1385-8947
IngestDate Sat Nov 29 07:01:31 EST 2025
Tue Nov 18 22:30:50 EST 2025
Fri Feb 23 02:39:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords SC
Nitrogen-doping
EDCL
Natural sacrificial template
Flexible supercapacitor
Self-doping
Silicon doping
Bamboo
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-cc350bcbdf73b7c62d43ed1eb3c7c09ee4a213432d03d8212f8c7d2af0de51f63
ParticipantIDs crossref_primary_10_1016_j_cej_2021_133738
crossref_citationtrail_10_1016_j_cej_2021_133738
elsevier_sciencedirect_doi_10_1016_j_cej_2021_133738
PublicationCentury 2000
PublicationDate 2022-04-01
2022-04-00
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Liu, Wang, Wang, Guo, Yi (b0215) 2020; 506
Zhang, Cai, Chen, Yang, Xu, Fang, Yu (b0165) 2018; 6
González, Goikolea, Barrena, Mysyk (b0010) 2016; 58
Wen, Chi, Wenelska, Wen, Chen, Mijowska (b0030) 2020; 10
Wei, Wei, Gao, Li (b0110) 2015; 169
Gong, Li, Luo, Fu, Pan (b0160) 2017; 19
Sevilla, Yu, Zhao, Ania, Titiricic (b0250) 2014; 2
Du, Liu, Hu, Yu, Zhang, Hou, Chen (b0120) 2018; 6
Wu, Zheng, Jin, Tian, Yang (b0195) 2015; 92
Kuang, Xu, Chen, Huang, Sun, Cai, Yu (b0150) 2020; 521
Chen, Zhang, Zhang, Dong, Guo, Mu, Fei (b0225) 2017; 7
Wang, Wang, Peng, Wang, Wang, Wang, Zhao (b0080) 2018; 348
Wang, Sung, Li, Kim (b0235) 2004; 11
Raymundo-Piñero, Cadek, Béguin (b0060) 2009; 19
Abbas, Ding, Liu, Huang, Bu, Wu, Lv, Ghausi, Wang (b0240) 2016; 4
Zhang, Chen, Wang, Zhao, Kong (b0135) 2020; 297
Liu, Zhang, Wang, Wei, Qiu, Fan (b0065) 2020; 1
Heuser, Yang, Hof, Schulte, Schönherr, Jiang (b0245) 2018; 14
Choudhary, Ansari, Purty (b0050) 2020; 29
Ding, Liu, Bu, Huang, Lv, Wu, Abbas, Wang (b0315) 2016; 6
zhou, Li, Dong, Chen, Han, Xu, Yao, Shang, Liu, Cui (b0155) 2012; 16
Zhou, Bao, Wu, Yang, Wang (b0115) 2017; 173
Ghausi, Xie, Li, Wang, Yang, Wu, Wang, Dai (b0275) 2018; 57
Wang, Yan, Fan (b0070) 2016; 9
Yang, Yang, Song, Gao, Su, Shao (b0205) 2017; 359
Li, Li, Liu, Chen, Wang, Gao, Shao, Tian, Lin, Yang (b0170) 2021; 31
Deng, Abbas, Li, Lv, Ma, Cao, Ni, Zhao (b0040) 2020; 574
Zhang, Han, Li, Lei, Shang, Wang, Wang, Zhang, Zhang, Feng (b0200) 2016; 222
Feng, Bai, Liu, Li, Yang, Wang, Wu (b0075) 2021; 14
Tsai, Lai, Medina, Lin, Shih, Chen, Liang, Chueh (b0310) 2014; 6
Zequine, Ranaweera, Wang, Singh, Tripathi, Srivastava, Gupta, Ramasamy, Kahol, Dvornic, Gupta (b0260) 2016; 6
Gawbah, Marouf, Alsabah, Orsod, Elbadawi (b0285) 2017; 2
Chen, Huang, Liang, Gao, Yu (b0190) 2014; 24
Abbas, Peng, Wu, Anandhababu, Babu, Huang, Ghausi, Wu, Wang (b0305) 2018; 5
Huang, Abbas, Deng, Ni, Cao, Ma (b0055) 2021; 498
Gu, Liu, Hou, Ni (b0020) 2021; 9
Wang, Zhang, Li, Ma, Ma (b0105) 2020; 451
Jiao, Wan, Li (b0265) 2016; 107
Yang, Yang, Wang, Guan, Guan, Wang (b0085) 2020; 34
Zhang, Chen, Chen, Guo (b0145) 2018; 102
Shang, An, Zhang, Shen, Baker, Liu, Liu, Yang, Cao, Xu, Liu, Ni (b0025) 2020; 161
Armaroli, Balzani (b0005) 2011; 4
Tian, Wang, Cao, Yang, Guo, Liu, Li, Wang, Li, Xu, Wang, Wang, Hou (b0210) 2020; 11
Sennu, Arun, Madhavi, Aravindan, Lee (b0045) 2019; 414
Lv, Zeng, Abbas, Guan, Luo, Chen, Wang (b0015) 2019; 7
Zhou, Shen, Li, Zhang, Zhao, Bi, Wang, Cui, Zhuo (b0320) 2016; 209
Dutta, Bhaumik, Wu (b0220) 2014; 7
Yang, Jang, Jeong (b0255) 2014; 14
Zou, Deng, Chen, Qian, Yang, Li, Chen (b0280) 2018; 378
Liu, Yao, Liu (b0290) 2008; 37
Li, Liu, Fang, Wang, Chen, Gao, Ji, Yang, Fang (b0175) 2019; 9
Yu, Park, Yeon, Park (b0300) 2015; 278
Wang, Qu, Gao, Tang, Liu, He, Huang (b0140) 2019; 155
Chen, Zhou, Luo, Wu, Li, Fan, Zhao (b0270) 2019; 325
He, Fu, Zhao, Gao, Xing, Zhang, Xue (b0035) 2017; 39
Chen, Wei, Chen, Yao, Lin, Han (b0185) 2018; 271
Liu, Chen, Cui, Yin, Zhang (b0100) 2018; 4
Zhang, Lin, Lin, Yin, Lu, Liu, Zhao (b0325) 2015; 8
Jiang, Sheng, Fan (b0095) 2018; 61
Yu, Hou, Namin, Ni, Liu, Yu, Liu, Wu, Nie (b0090) 2021; 173
Chen, Tan, Liu, Liu, Li, Gu, Zhang, Ye, Yang, Yang (b0125) 2020; 8
Yang, Miao, Xie, Zhang, An (b0295) 2004; 383
Yu, Ma, Chen, Dong (b0130) 2019; 537
Li, Liu, Chen, Fang, Liang, Wei, Wang, Yang, Ji, Mai (b0180) 2018; 5
Soto, García-Rosales, Echeberria (b0230) 2019; 39
Zhu, Chen, zhang, Zhao, Wang (b0330) 2018; 140
Deng (10.1016/j.cej.2021.133738_b0040) 2020; 574
Wang (10.1016/j.cej.2021.133738_b0080) 2018; 348
Yang (10.1016/j.cej.2021.133738_b0295) 2004; 383
Chen (10.1016/j.cej.2021.133738_b0225) 2017; 7
Li (10.1016/j.cej.2021.133738_b0170) 2021; 31
Tsai (10.1016/j.cej.2021.133738_b0310) 2014; 6
Yu (10.1016/j.cej.2021.133738_b0090) 2021; 173
Wei (10.1016/j.cej.2021.133738_b0110) 2015; 169
Dutta (10.1016/j.cej.2021.133738_b0220) 2014; 7
Abbas (10.1016/j.cej.2021.133738_b0305) 2018; 5
Ding (10.1016/j.cej.2021.133738_b0315) 2016; 6
Jiang (10.1016/j.cej.2021.133738_b0095) 2018; 61
Zhang (10.1016/j.cej.2021.133738_b0200) 2016; 222
Lv (10.1016/j.cej.2021.133738_b0015) 2019; 7
Zou (10.1016/j.cej.2021.133738_b0280) 2018; 378
Zhang (10.1016/j.cej.2021.133738_b0145) 2018; 102
zhou (10.1016/j.cej.2021.133738_b0155) 2012; 16
Gong (10.1016/j.cej.2021.133738_b0160) 2017; 19
Wang (10.1016/j.cej.2021.133738_b0215) 2020; 506
Zhang (10.1016/j.cej.2021.133738_b0325) 2015; 8
Liu (10.1016/j.cej.2021.133738_b0065) 2020; 1
Sennu (10.1016/j.cej.2021.133738_b0045) 2019; 414
Zhang (10.1016/j.cej.2021.133738_b0135) 2020; 297
Gu (10.1016/j.cej.2021.133738_b0020) 2021; 9
Kuang (10.1016/j.cej.2021.133738_b0150) 2020; 521
Abbas (10.1016/j.cej.2021.133738_b0240) 2016; 4
Li (10.1016/j.cej.2021.133738_b0180) 2018; 5
Yu (10.1016/j.cej.2021.133738_b0130) 2019; 537
Liu (10.1016/j.cej.2021.133738_b0290) 2008; 37
Zhang (10.1016/j.cej.2021.133738_b0165) 2018; 6
Soto (10.1016/j.cej.2021.133738_b0230) 2019; 39
Heuser (10.1016/j.cej.2021.133738_b0245) 2018; 14
Wang (10.1016/j.cej.2021.133738_b0070) 2016; 9
Wang (10.1016/j.cej.2021.133738_b0105) 2020; 451
Wu (10.1016/j.cej.2021.133738_b0195) 2015; 92
Feng (10.1016/j.cej.2021.133738_b0075) 2021; 14
Jiao (10.1016/j.cej.2021.133738_b0265) 2016; 107
Chen (10.1016/j.cej.2021.133738_b0270) 2019; 325
Liu (10.1016/j.cej.2021.133738_b0100) 2018; 4
Ghausi (10.1016/j.cej.2021.133738_b0275) 2018; 57
Armaroli (10.1016/j.cej.2021.133738_b0005) 2011; 4
Shang (10.1016/j.cej.2021.133738_b0025) 2020; 161
Sevilla (10.1016/j.cej.2021.133738_b0250) 2014; 2
Zhu (10.1016/j.cej.2021.133738_b0330) 2018; 140
Zhou (10.1016/j.cej.2021.133738_b0115) 2017; 173
González (10.1016/j.cej.2021.133738_b0010) 2016; 58
Zhou (10.1016/j.cej.2021.133738_b0320) 2016; 209
Du (10.1016/j.cej.2021.133738_b0120) 2018; 6
Wang (10.1016/j.cej.2021.133738_b0235) 2004; 11
Wen (10.1016/j.cej.2021.133738_b0030) 2020; 10
Choudhary (10.1016/j.cej.2021.133738_b0050) 2020; 29
Zequine (10.1016/j.cej.2021.133738_b0260) 2016; 6
Yang (10.1016/j.cej.2021.133738_b0255) 2014; 14
Gawbah (10.1016/j.cej.2021.133738_b0285) 2017; 2
He (10.1016/j.cej.2021.133738_b0035) 2017; 39
Raymundo-Piñero (10.1016/j.cej.2021.133738_b0060) 2009; 19
Chen (10.1016/j.cej.2021.133738_b0190) 2014; 24
Tian (10.1016/j.cej.2021.133738_b0210) 2020; 11
Yang (10.1016/j.cej.2021.133738_b0205) 2017; 359
Yu (10.1016/j.cej.2021.133738_b0300) 2015; 278
Chen (10.1016/j.cej.2021.133738_b0185) 2018; 271
Yang (10.1016/j.cej.2021.133738_b0085) 2020; 34
Chen (10.1016/j.cej.2021.133738_b0125) 2020; 8
Huang (10.1016/j.cej.2021.133738_b0055) 2021; 498
Li (10.1016/j.cej.2021.133738_b0175) 2019; 9
Wang (10.1016/j.cej.2021.133738_b0140) 2019; 155
References_xml – volume: 222
  start-page: 141
  year: 2016
  end-page: 148
  ident: b0200
  article-title: Phosphorus and sulfur dual doped hierarchic porous carbons with superior supercapacitance performance
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 13861
  year: 2014
  end-page: 13869
  ident: b0310
  article-title: Scalable graphene synthesised by plasma-assisted selective reaction on silicon carbide for device applications
  publication-title: Nanoscale
– volume: 34
  start-page: 5032
  year: 2020
  end-page: 5043
  ident: b0085
  article-title: Multi-Heteroatom-Doped Carbon Materials for Solid-State Hybrid Supercapacitors with a Superhigh Cycling Performance
  publication-title: Energy Fuels
– volume: 19
  start-page: 1032
  year: 2009
  end-page: 1039
  ident: b0060
  article-title: Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 9
  year: 2017
  ident: b0285
  article-title: Synthesis of Silica, Silicon Carbide and Carbon from Wheat Bran and Converting Its Crystal Structure Using Nd: YAG Laser
  publication-title: Future
– volume: 451
  year: 2020
  ident: b0105
  article-title: Recent progress of biomass-derived carbon materials for supercapacitors
  publication-title: J. Power Sources
– volume: 29
  year: 2020
  ident: b0050
  article-title: Robust electrochemical performance of polypyrrole (PPy) and polyindole (PIn) based hybrid electrode materials for supercapacitor application: A review
  publication-title: J. Storage Mater.
– volume: 173
  start-page: 321
  year: 2017
  end-page: 329
  ident: b0115
  article-title: Chitin based heteroatom-doped porous carbon as electrode materials for supercapacitors
  publication-title: Carbohydr. Polym.
– volume: 209
  start-page: 557
  year: 2016
  end-page: 564
  ident: b0320
  article-title: Porous carbon materials with dual N, S-doping and uniform ultra-microporosity for high performance supercapacitors
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 5773
  year: 2020
  end-page: 5811
  ident: b0125
  article-title: Biomass-derived porous graphitic carbon materials for energy and environmental applications
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 7362
  year: 2017
  ident: b0225
  article-title: A novel hierarchical porous nitrogen-doped carbon derived from bamboo shoot for high performance supercapacitor
  publication-title: Sci. Rep.
– volume: 102
  start-page: 391
  year: 2018
  end-page: 398
  ident: b0145
  article-title: Activated biomass carbon made from bamboo as electrode material for supercapacitors
  publication-title: Mater. Res. Bull.
– volume: 359
  start-page: 556
  year: 2017
  end-page: 567
  ident: b0205
  article-title: Supercapacitance of nitrogen-sulfur-oxygen co-doped 3D hierarchical porous carbon in aqueous and organic electrolyte
  publication-title: J. Power Sources
– volume: 1
  start-page: 244
  year: 2020
  end-page: 262
  ident: b0065
  article-title: High-efficiency utilization of carbon materials for supercapacitors
  publication-title: Nano Select
– volume: 2
  start-page: 1049
  year: 2014
  end-page: 1055
  ident: b0250
  article-title: Surface modification of CNTs with N-doped carbon: an effective way of enhancing their performance in supercapacitors
  publication-title: ACS Sustainable Chem. Eng.
– volume: 4
  start-page: 3193
  year: 2011
  end-page: 3222
  ident: b0005
  article-title: Towards an electricity-powered world
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 53
  year: 2018
  ident: b0100
  article-title: Design and preparation of biomass-derived carbon materials for supercapacitors: A review
  publication-title: C
– volume: 10
  start-page: 14631
  year: 2020
  ident: b0030
  article-title: Eucalyptus derived heteroatom-doped hierarchical porous carbons as electrode materials in supercapacitors
  publication-title: Sci. Rep.
– volume: 14
  start-page: 1616
  year: 2014
  end-page: 1620
  ident: b0255
  article-title: Bamboo-based activated carbon for supercapacitor applications
  publication-title: Curr. Appl Phys.
– volume: 155
  start-page: 706
  year: 2019
  end-page: 726
  ident: b0140
  article-title: Biomass derived carbon as binder-free electrode materials for supercapacitors
  publication-title: Carbon
– volume: 11
  start-page: 3884
  year: 2020
  ident: b0210
  article-title: Single-site pyrrolic-nitrogen-doped sp2-hybridized carbon materials and their pseudocapacitance
  publication-title: Nat. Commun.
– volume: 5
  start-page: 883
  year: 2018
  end-page: 889
  ident: b0180
  article-title: Single-crystalline integrated 4H-SiC nanochannel array electrode: toward high-performance capacitive energy storage for robust wide-temperature operation
  publication-title: Mater. Horiz.
– volume: 6
  start-page: 93318
  year: 2016
  end-page: 93324
  ident: b0315
  article-title: Scalable synthesis of nano-sandwich N-doped carbon materials with hierarchical-structure for energy conversion and storage
  publication-title: RSC Adv.
– volume: 498
  year: 2021
  ident: b0055
  article-title: An all-paper, scalable and flexible supercapacitor based on vertically aligned polyaniline (PANI) nano-dendrites@fibers
  publication-title: J. Power Sources
– volume: 271
  start-page: 49
  year: 2018
  end-page: 57
  ident: b0185
  article-title: N/P co-doped hierarchical porous carbon materials for superior performance supercapacitors
  publication-title: Electrochim. Acta
– volume: 39
  start-page: 3949
  year: 2019
  end-page: 3958
  ident: b0230
  article-title: Production of porous SiC by liquid phase sintering using graphite as sacrificial phase: Influence of SiO2 and graphite on the sintering mechanisms
  publication-title: J. Eur. Ceram. Soc.
– volume: 574
  start-page: 33
  year: 2020
  end-page: 42
  ident: b0040
  article-title: Chemically modified self-doped biocarbon via novel sulfonation assisted sacrificial template method for high performance flexible all solid-state supercapacitor
  publication-title: J. Colloid Interface Sci.
– volume: 92
  start-page: 327
  year: 2015
  end-page: 338
  ident: b0195
  article-title: Ternary doping of phosphorus, nitrogen, and sulfur into porous carbon for enhancing electrocatalytic oxygen reduction
  publication-title: Carbon
– volume: 6
  start-page: 31704
  year: 2016
  ident: b0260
  article-title: High performance and flexible supercapacitors based on carbonized bamboo fibers for wide temperature applications
  publication-title: Sci. Rep.
– volume: 11
  start-page: 265
  year: 2004
  end-page: 271
  ident: b0235
  article-title: Fabrication of porous SiC ceramics with special morphologies by sacrificing template method
  publication-title: J. Porous Mater.
– volume: 7
  start-page: 16876
  year: 2019
  end-page: 16882
  ident: b0015
  article-title: Electrochemically scalable production of bilayer fluorographene nanosheets for solid-state supercapacitors
  publication-title: J. Mater. Chem. A
– volume: 414
  start-page: 96
  year: 2019
  end-page: 102
  ident: b0045
  article-title: All carbon based high energy lithium-ion capacitors from biomass: The role of crystallinity
  publication-title: J. Power Sources
– volume: 14
  start-page: 2036
  year: 2021
  end-page: 2089
  ident: b0075
  article-title: Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials
  publication-title: Energy Environ. Sci.
– volume: 537
  start-page: 569
  year: 2019
  end-page: 578
  ident: b0130
  article-title: KOH activation of wax gourd-derived carbon materials with high porosity and heteroatom content for aqueous or all-solid-state supercapacitors
  publication-title: J. Colloid Interface Sci.
– volume: 506
  year: 2020
  ident: b0215
  article-title: Free-standing honeycomb-like N doped carbon foam derived from coal tar pitch for high-performance supercapacitor
  publication-title: Appl. Surf. Sci.
– volume: 9
  start-page: 729
  year: 2016
  end-page: 762
  ident: b0070
  article-title: Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities
  publication-title: Energy Environ. Sci.
– volume: 325
  year: 2019
  ident: b0270
  article-title: Preparation and characterization of heteroatom self-doped activated biocarbons as hydrogen storage and supercapacitor electrode materials
  publication-title: Electrochim. Acta
– volume: 161
  start-page: 62
  year: 2020
  end-page: 70
  ident: b0025
  article-title: Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor
  publication-title: Carbon
– volume: 107
  start-page: 26
  year: 2016
  end-page: 32
  ident: b0265
  article-title: Synthesis of carbon fiber aerogel from natural bamboo fiber and its application as a green high-efficiency and recyclable adsorbent
  publication-title: Mater. Des.
– volume: 521
  year: 2020
  ident: b0150
  article-title: In situ construction of bamboo charcoal derived SiOx embedded in hierarchical porous carbon framework as stable anode material for superior lithium storage
  publication-title: Appl. Surf. Sci.
– volume: 6
  start-page: 9930
  year: 2018
  end-page: 9939
  ident: b0165
  article-title: 3D porous silicon/N-doped carbon composite derived from bamboo charcoal as high-performance anode material for lithium-ion batteries
  publication-title: ACS Sustainable Chem. Eng.
– volume: 14
  start-page: 1801857
  year: 2018
  ident: b0245
  article-title: 3D 3C-SiC/graphene hybrid nanolaminate films for high-performance supercapacitors
  publication-title: Small
– volume: 39
  start-page: 590
  year: 2017
  end-page: 600
  ident: b0035
  article-title: All-solid-state flexible self-charging power cell basing on piezo-electrolyte for harvesting/storing body-motion energy and powering wearable electronics
  publication-title: Nano Energy
– volume: 61
  start-page: 133
  year: 2018
  end-page: 158
  ident: b0095
  article-title: Biomass-derived carbon materials with structural diversities and their applications in energy storage
  publication-title: Sci. China Mater.
– volume: 57
  start-page: 13135
  year: 2018
  end-page: 13139
  ident: b0275
  article-title: CO2 overall splitting by a bifunctional metal-free electrocatalyst
  publication-title: Angew. Chem. Int. Ed.
– volume: 169
  start-page: 186
  year: 2015
  end-page: 194
  ident: b0110
  article-title: Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors
  publication-title: Electrochim. Acta
– volume: 378
  start-page: 579
  year: 2018
  end-page: 588
  ident: b0280
  article-title: Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors
  publication-title: J. Power Sources
– volume: 140
  start-page: 404
  year: 2018
  end-page: 412
  ident: b0330
  article-title: A biomass-derived nitrogen-doped porous carbon for high-energy supercapacitor
  publication-title: Carbon
– volume: 173
  start-page: 800
  year: 2021
  end-page: 808
  ident: b0090
  article-title: Pre-cryocrushing of natural carbon precursors to prepare nitrogen, sulfur co-doped porous microcellular carbon as an efficient ORR catalyst
  publication-title: Carbon
– volume: 9
  start-page: 14233
  year: 2021
  end-page: 14264
  ident: b0020
  article-title: Lignocellulose-derived hydrogel/aerogel-based flexible quasi-solid-state supercapacitors with high-performance: a review
  publication-title: J. Mater. Chem. A
– volume: 31
  start-page: 2008901
  year: 2021
  ident: b0170
  article-title: Robust high-temperature supercapacitors based on SiC nanowires
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 4008
  year: 2018
  end-page: 4015
  ident: b0120
  article-title: Raw-cotton-derived N-doped carbon fiber aerogel as an efficient electrode for electrochemical capacitors
  publication-title: ACS Sustainable Chem. Eng.
– volume: 297
  year: 2020
  ident: b0135
  article-title: Regulatory pore structure of biomass-based carbon for supercapacitor applications
  publication-title: Microporous Mesoporous Mater.
– volume: 348
  start-page: 850
  year: 2018
  end-page: 859
  ident: b0080
  article-title: Nitrogen-doped biomass-based hierarchical porous carbon with large mesoporous volume for application in energy storage
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 1186
  year: 2018
  end-page: 1190
  ident: b0305
  article-title: Novel N-Mo2C active sites for efficient solar-to-hydrogen generation
  publication-title: ChemElectroChem
– volume: 278
  start-page: 484
  year: 2015
  end-page: 489
  ident: b0300
  article-title: Three-dimensional, sulfur-incorporated graphene aerogels for the enhanced performances of pseudocapacitive electrodes
  publication-title: J. Power Sources
– volume: 58
  start-page: 1189
  year: 2016
  end-page: 1206
  ident: b0010
  article-title: Review on supercapacitors: Technologies and materials
  publication-title: Renew. Sustain. Energy Rev.
– volume: 37
  start-page: 874
  year: 2008
  end-page: 879
  ident: b0290
  article-title: Effect of SiC nanoparticle additions on microstructure and microhardness of Sn-Ag-Cu solder alloy
  publication-title: J. Electron. Mater.
– volume: 4
  start-page: 7924
  year: 2016
  end-page: 7929
  ident: b0240
  article-title: Si–C–F decorated porous carbon materials: a new class of electrocatalysts for the oxygen reduction reaction
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 3574
  year: 2014
  end-page: 3592
  ident: b0220
  article-title: Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 2114
  year: 2015
  end-page: 2122
  ident: b0325
  article-title: 3 D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method
  publication-title: ChemSusChem
– volume: 16
  start-page: 877
  year: 2012
  end-page: 882
  ident: b0155
  article-title: A renewable bamboo carbon/polyaniline composite for a high-performance supercapacitor electrode material
  publication-title: J. Solid State Electrochem.
– volume: 9
  start-page: 1900073
  year: 2019
  ident: b0175
  article-title: All-solid-state on-chip supercapacitors based on free-standing 4H-SiC nanowire arrays
  publication-title: Adv. Energy Mater.
– volume: 383
  start-page: 441
  year: 2004
  end-page: 444
  ident: b0295
  article-title: Synthesis of silicon carbide nanorods by catalyst-assisted pyrolysis of polymeric precursor
  publication-title: Chem. Phys. Lett.
– volume: 24
  start-page: 5104
  year: 2014
  end-page: 5111
  ident: b0190
  article-title: Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 4132
  year: 2017
  end-page: 4140
  ident: b0160
  article-title: Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors
  publication-title: Green Chem.
– volume: 8
  start-page: 5773
  issue: 12
  year: 2020
  ident: 10.1016/j.cej.2021.133738_b0125
  article-title: Biomass-derived porous graphitic carbon materials for energy and environmental applications
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11618D
– volume: 11
  start-page: 265
  issue: 4
  year: 2004
  ident: 10.1016/j.cej.2021.133738_b0235
  article-title: Fabrication of porous SiC ceramics with special morphologies by sacrificing template method
  publication-title: J. Porous Mater.
  doi: 10.1023/B:JOPO.0000046353.24308.86
– volume: 574
  start-page: 33
  year: 2020
  ident: 10.1016/j.cej.2021.133738_b0040
  article-title: Chemically modified self-doped biocarbon via novel sulfonation assisted sacrificial template method for high performance flexible all solid-state supercapacitor
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.04.029
– volume: 9
  start-page: 729
  issue: 3
  year: 2016
  ident: 10.1016/j.cej.2021.133738_b0070
  article-title: Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03109E
– volume: 297
  year: 2020
  ident: 10.1016/j.cej.2021.133738_b0135
  article-title: Regulatory pore structure of biomass-based carbon for supercapacitor applications
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2020.110032
– volume: 4
  start-page: 3193
  issue: 9
  year: 2011
  ident: 10.1016/j.cej.2021.133738_b0005
  article-title: Towards an electricity-powered world
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01249e
– volume: 506
  year: 2020
  ident: 10.1016/j.cej.2021.133738_b0215
  article-title: Free-standing honeycomb-like N doped carbon foam derived from coal tar pitch for high-performance supercapacitor
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.145014
– volume: 29
  year: 2020
  ident: 10.1016/j.cej.2021.133738_b0050
  article-title: Robust electrochemical performance of polypyrrole (PPy) and polyindole (PIn) based hybrid electrode materials for supercapacitor application: A review
  publication-title: J. Storage Mater.
– volume: 271
  start-page: 49
  year: 2018
  ident: 10.1016/j.cej.2021.133738_b0185
  article-title: N/P co-doped hierarchical porous carbon materials for superior performance supercapacitors
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.03.129
– volume: 39
  start-page: 3949
  issue: 14
  year: 2019
  ident: 10.1016/j.cej.2021.133738_b0230
  article-title: Production of porous SiC by liquid phase sintering using graphite as sacrificial phase: Influence of SiO2 and graphite on the sintering mechanisms
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2019.06.022
– volume: 57
  start-page: 13135
  issue: 40
  year: 2018
  ident: 10.1016/j.cej.2021.133738_b0275
  article-title: CO2 overall splitting by a bifunctional metal-free electrocatalyst
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201807571
– volume: 102
  start-page: 391
  year: 2018
  ident: 10.1016/j.cej.2021.133738_b0145
  article-title: Activated biomass carbon made from bamboo as electrode material for supercapacitors
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2018.03.006
– volume: 140
  start-page: 404
  year: 2018
  ident: 10.1016/j.cej.2021.133738_b0330
  article-title: A biomass-derived nitrogen-doped porous carbon for high-energy supercapacitor
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.09.009
– volume: 31
  start-page: 2008901
  issue: 8
  year: 2021
  ident: 10.1016/j.cej.2021.133738_b0170
  article-title: Robust high-temperature supercapacitors based on SiC nanowires
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202008901
– volume: 2
  start-page: 9
  year: 2017
  ident: 10.1016/j.cej.2021.133738_b0285
  article-title: Synthesis of Silica, Silicon Carbide and Carbon from Wheat Bran and Converting Its Crystal Structure Using Nd: YAG Laser
  publication-title: Future
– volume: 10
  start-page: 14631
  issue: 1
  year: 2020
  ident: 10.1016/j.cej.2021.133738_b0030
  article-title: Eucalyptus derived heteroatom-doped hierarchical porous carbons as electrode materials in supercapacitors
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-71649-9
– volume: 8
  start-page: 2114
  issue: 12
  year: 2015
  ident: 10.1016/j.cej.2021.133738_b0325
  article-title: 3 D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201403486
– volume: 359
  start-page: 556
  year: 2017
  ident: 10.1016/j.cej.2021.133738_b0205
  article-title: Supercapacitance of nitrogen-sulfur-oxygen co-doped 3D hierarchical porous carbon in aqueous and organic electrolyte
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.05.108
– volume: 2
  start-page: 1049
  issue: 4
  year: 2014
  ident: 10.1016/j.cej.2021.133738_b0250
  article-title: Surface modification of CNTs with N-doped carbon: an effective way of enhancing their performance in supercapacitors
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/sc500069h
– volume: 61
  start-page: 133
  issue: 2
  year: 2018
  ident: 10.1016/j.cej.2021.133738_b0095
  article-title: Biomass-derived carbon materials with structural diversities and their applications in energy storage
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-017-9169-4
– volume: 325
  year: 2019
  ident: 10.1016/j.cej.2021.133738_b0270
  article-title: Preparation and characterization of heteroatom self-doped activated biocarbons as hydrogen storage and supercapacitor electrode materials
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.134941
– volume: 107
  start-page: 26
  year: 2016
  ident: 10.1016/j.cej.2021.133738_b0265
  article-title: Synthesis of carbon fiber aerogel from natural bamboo fiber and its application as a green high-efficiency and recyclable adsorbent
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.06.015
– volume: 414
  start-page: 96
  year: 2019
  ident: 10.1016/j.cej.2021.133738_b0045
  article-title: All carbon based high energy lithium-ion capacitors from biomass: The role of crystallinity
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.12.089
– volume: 7
  start-page: 7362
  issue: 1
  year: 2017
  ident: 10.1016/j.cej.2021.133738_b0225
  article-title: A novel hierarchical porous nitrogen-doped carbon derived from bamboo shoot for high performance supercapacitor
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-06730-x
– volume: 11
  start-page: 3884
  issue: 1
  year: 2020
  ident: 10.1016/j.cej.2021.133738_b0210
  article-title: Single-site pyrrolic-nitrogen-doped sp2-hybridized carbon materials and their pseudocapacitance
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17727-y
– volume: 24
  start-page: 5104
  issue: 32
  year: 2014
  ident: 10.1016/j.cej.2021.133738_b0190
  article-title: Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400590
– volume: 37
  start-page: 874
  issue: 6
  year: 2008
  ident: 10.1016/j.cej.2021.133738_b0290
  article-title: Effect of SiC nanoparticle additions on microstructure and microhardness of Sn-Ag-Cu solder alloy
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-007-0366-3
– volume: 169
  start-page: 186
  year: 2015
  ident: 10.1016/j.cej.2021.133738_b0110
  article-title: Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.04.082
– volume: 498
  year: 2021
  ident: 10.1016/j.cej.2021.133738_b0055
  article-title: An all-paper, scalable and flexible supercapacitor based on vertically aligned polyaniline (PANI) nano-dendrites@fibers
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.229886
– volume: 7
  start-page: 3574
  issue: 11
  year: 2014
  ident: 10.1016/j.cej.2021.133738_b0220
  article-title: Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01075B
– volume: 9
  start-page: 1900073
  issue: 17
  year: 2019
  ident: 10.1016/j.cej.2021.133738_b0175
  article-title: All-solid-state on-chip supercapacitors based on free-standing 4H-SiC nanowire arrays
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900073
– volume: 14
  start-page: 1616
  issue: 12
  year: 2014
  ident: 10.1016/j.cej.2021.133738_b0255
  article-title: Bamboo-based activated carbon for supercapacitor applications
  publication-title: Curr. Appl Phys.
  doi: 10.1016/j.cap.2014.09.021
– volume: 6
  start-page: 31704
  issue: 1
  year: 2016
  ident: 10.1016/j.cej.2021.133738_b0260
  article-title: High performance and flexible supercapacitors based on carbonized bamboo fibers for wide temperature applications
  publication-title: Sci. Rep.
  doi: 10.1038/srep31704
– volume: 161
  start-page: 62
  year: 2020
  ident: 10.1016/j.cej.2021.133738_b0025
  article-title: Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.01.020
– volume: 4
  start-page: 53
  issue: 4
  year: 2018
  ident: 10.1016/j.cej.2021.133738_b0100
  article-title: Design and preparation of biomass-derived carbon materials for supercapacitors: A review
  publication-title: C
– volume: 6
  start-page: 9930
  issue: 8
  year: 2018
  ident: 10.1016/j.cej.2021.133738_b0165
  article-title: 3D porous silicon/N-doped carbon composite derived from bamboo charcoal as high-performance anode material for lithium-ion batteries
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b01189
– volume: 521
  year: 2020
  ident: 10.1016/j.cej.2021.133738_b0150
  article-title: In situ construction of bamboo charcoal derived SiOx embedded in hierarchical porous carbon framework as stable anode material for superior lithium storage
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.146497
– volume: 4
  start-page: 7924
  issue: 20
  year: 2016
  ident: 10.1016/j.cej.2021.133738_b0240
  article-title: Si–C–F decorated porous carbon materials: a new class of electrocatalysts for the oxygen reduction reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02078J
– volume: 451
  year: 2020
  ident: 10.1016/j.cej.2021.133738_b0105
  article-title: Recent progress of biomass-derived carbon materials for supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.227794
– volume: 173
  start-page: 321
  year: 2017
  ident: 10.1016/j.cej.2021.133738_b0115
  article-title: Chitin based heteroatom-doped porous carbon as electrode materials for supercapacitors
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.06.004
– volume: 209
  start-page: 557
  year: 2016
  ident: 10.1016/j.cej.2021.133738_b0320
  article-title: Porous carbon materials with dual N, S-doping and uniform ultra-microporosity for high performance supercapacitors
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.05.127
– volume: 1
  start-page: 244
  issue: 2
  year: 2020
  ident: 10.1016/j.cej.2021.133738_b0065
  article-title: High-efficiency utilization of carbon materials for supercapacitors
  publication-title: Nano Select
  doi: 10.1002/nano.202000011
– volume: 6
  start-page: 93318
  issue: 96
  year: 2016
  ident: 10.1016/j.cej.2021.133738_b0315
  article-title: Scalable synthesis of nano-sandwich N-doped carbon materials with hierarchical-structure for energy conversion and storage
  publication-title: RSC Adv.
  doi: 10.1039/C6RA12283C
– volume: 19
  start-page: 1032
  issue: 7
  year: 2009
  ident: 10.1016/j.cej.2021.133738_b0060
  article-title: Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200801057
– volume: 16
  start-page: 877
  issue: 3
  year: 2012
  ident: 10.1016/j.cej.2021.133738_b0155
  article-title: A renewable bamboo carbon/polyaniline composite for a high-performance supercapacitor electrode material
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-011-1435-3
– volume: 378
  start-page: 579
  year: 2018
  ident: 10.1016/j.cej.2021.133738_b0280
  article-title: Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.12.081
– volume: 5
  start-page: 883
  issue: 5
  year: 2018
  ident: 10.1016/j.cej.2021.133738_b0180
  article-title: Single-crystalline integrated 4H-SiC nanochannel array electrode: toward high-performance capacitive energy storage for robust wide-temperature operation
  publication-title: Mater. Horiz.
  doi: 10.1039/C8MH00474A
– volume: 58
  start-page: 1189
  year: 2016
  ident: 10.1016/j.cej.2021.133738_b0010
  article-title: Review on supercapacitors: Technologies and materials
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.249
– volume: 39
  start-page: 590
  year: 2017
  ident: 10.1016/j.cej.2021.133738_b0035
  article-title: All-solid-state flexible self-charging power cell basing on piezo-electrolyte for harvesting/storing body-motion energy and powering wearable electronics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.033
– volume: 173
  start-page: 800
  year: 2021
  ident: 10.1016/j.cej.2021.133738_b0090
  article-title: Pre-cryocrushing of natural carbon precursors to prepare nitrogen, sulfur co-doped porous microcellular carbon as an efficient ORR catalyst
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.11.069
– volume: 92
  start-page: 327
  year: 2015
  ident: 10.1016/j.cej.2021.133738_b0195
  article-title: Ternary doping of phosphorus, nitrogen, and sulfur into porous carbon for enhancing electrocatalytic oxygen reduction
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.05.013
– volume: 5
  start-page: 1186
  issue: 8
  year: 2018
  ident: 10.1016/j.cej.2021.133738_b0305
  article-title: Novel N-Mo2C active sites for efficient solar-to-hydrogen generation
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201701365
– volume: 383
  start-page: 441
  issue: 5-6
  year: 2004
  ident: 10.1016/j.cej.2021.133738_b0295
  article-title: Synthesis of silicon carbide nanorods by catalyst-assisted pyrolysis of polymeric precursor
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2003.11.031
– volume: 155
  start-page: 706
  year: 2019
  ident: 10.1016/j.cej.2021.133738_b0140
  article-title: Biomass derived carbon as binder-free electrode materials for supercapacitors
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.09.018
– volume: 222
  start-page: 141
  year: 2016
  ident: 10.1016/j.cej.2021.133738_b0200
  article-title: Phosphorus and sulfur dual doped hierarchic porous carbons with superior supercapacitance performance
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.10.184
– volume: 6
  start-page: 4008
  issue: 3
  year: 2018
  ident: 10.1016/j.cej.2021.133738_b0120
  article-title: Raw-cotton-derived N-doped carbon fiber aerogel as an efficient electrode for electrochemical capacitors
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b04396
– volume: 9
  start-page: 14233
  issue: 25
  year: 2021
  ident: 10.1016/j.cej.2021.133738_b0020
  article-title: Lignocellulose-derived hydrogel/aerogel-based flexible quasi-solid-state supercapacitors with high-performance: a review
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA02281D
– volume: 14
  start-page: 1801857
  issue: 45
  year: 2018
  ident: 10.1016/j.cej.2021.133738_b0245
  article-title: 3D 3C-SiC/graphene hybrid nanolaminate films for high-performance supercapacitors
  publication-title: Small
  doi: 10.1002/smll.201801857
– volume: 537
  start-page: 569
  year: 2019
  ident: 10.1016/j.cej.2021.133738_b0130
  article-title: KOH activation of wax gourd-derived carbon materials with high porosity and heteroatom content for aqueous or all-solid-state supercapacitors
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.11.070
– volume: 14
  start-page: 2036
  issue: 4
  year: 2021
  ident: 10.1016/j.cej.2021.133738_b0075
  article-title: Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00166C
– volume: 348
  start-page: 850
  year: 2018
  ident: 10.1016/j.cej.2021.133738_b0080
  article-title: Nitrogen-doped biomass-based hierarchical porous carbon with large mesoporous volume for application in energy storage
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.05.061
– volume: 7
  start-page: 16876
  issue: 28
  year: 2019
  ident: 10.1016/j.cej.2021.133738_b0015
  article-title: Electrochemically scalable production of bilayer fluorographene nanosheets for solid-state supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04421C
– volume: 34
  start-page: 5032
  issue: 4
  year: 2020
  ident: 10.1016/j.cej.2021.133738_b0085
  article-title: Multi-Heteroatom-Doped Carbon Materials for Solid-State Hybrid Supercapacitors with a Superhigh Cycling Performance
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.9b04505
– volume: 6
  start-page: 13861
  issue: 22
  year: 2014
  ident: 10.1016/j.cej.2021.133738_b0310
  article-title: Scalable graphene synthesised by plasma-assisted selective reaction on silicon carbide for device applications
  publication-title: Nanoscale
  doi: 10.1039/C4NR04486J
– volume: 278
  start-page: 484
  year: 2015
  ident: 10.1016/j.cej.2021.133738_b0300
  article-title: Three-dimensional, sulfur-incorporated graphene aerogels for the enhanced performances of pseudocapacitive electrodes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.12.102
– volume: 19
  start-page: 4132
  issue: 17
  year: 2017
  ident: 10.1016/j.cej.2021.133738_b0160
  article-title: Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors
  publication-title: Green Chem.
  doi: 10.1039/C7GC01681F
SSID ssj0006919
Score 2.6060233
Snippet •Novel SiC/Pyrrolic-N doped carbon material have been synthesized from bamboo.•Inherent SiO2 moieties in natural bamboo has been used as a sacrificial...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 133738
SubjectTerms Bamboo
Flexible supercapacitor
Natural sacrificial template
Nitrogen-doping
Self-doping
Silicon doping
Title Bamboo-derived carbon material inherently doped with SiC and nitrogen for flexible supercapacitors
URI https://dx.doi.org/10.1016/j.cej.2021.133738
Volume 433
WOSCitedRecordID wos000819839100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3212
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006919
  issn: 1385-8947
  databaseCode: AIEXJ
  dateStart: 19970115
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqXQ5wQDzF8pIPnECp4jiJ4-OCFgFarUBdUMUlil-Qqk2rbFvt8mv4qYzjOMl2AQESl6iK6jjyfB1_ns58g9CzVHECjl8EiiRFEEtJAiGByMVEp_Y4UMimf8qnY3Zykk2n_P1o9N3XwmznrKqy83O--q-mhntgbFs6-xfm7h4KN-AzGB2uYHa4_pHhXxYLYM6Bgrm2wCZlUQuwMBBT7Rp0VF9thd96fvFCLVc--XxSuiRO-IHXS3h0k31orFimraw626x0LWFblaVtzjMktJ3ggO6FDTs5CtsupLBpPy5sOoGpvrnq4jYSwdNhJEIIV102ubBh5-VikP5xXPrkgOrLQpc9GBvu-7k0ut2BLSfXzn99KNVmGNSA83CfC9NE2q5U2zTOmWZJkHGn0DnW7l7GaEAjcsmjx05b48ru4AIVs7HUszHMSsZwQGdOXGZHdHti57JTwYkYvFQEm_x-xBIOrn__8O3R9F2326e8aR7TvZv_57zJIdyZ6OfcZ8BnTm-hm-1BBB86AN1GI13dQTcG8pR3kbgMJeyghD2UcA8l3EAJWyhhgBIGC2MPJQxQwh5KeAdK99DH10enr94EbU-OQEacrQMpaRIKKZRhVDCZRiqmWhEtqGQy5FrHhdUIpJEKqcrALiaTTEWFCZVOiEnpfbRXLSv9AGFiTGh4wYkkVtA25IqH3ESaW86YSn2AQr9auWwF623flHnuMxNnOSxwbhc4dwt8gJ53Q1ZOreV3X469CfKWbjoamQNefj3s4b8Ne4Su90B_jPbW9UY_Qdfkdl2e1U9bVP0AWB6kMA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bamboo-derived+carbon+material+inherently+doped+with+SiC+and+nitrogen+for+flexible+supercapacitors&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Abbas%2C+Syed+Comail&rft.au=Lin%2C+Changmei&rft.au=Hua%2C+Zifeng&rft.au=Deng%2C+Qidu&rft.date=2022-04-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=433&rft_id=info:doi/10.1016%2Fj.cej.2021.133738&rft.externalDocID=S1385894721053122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon