A suite of second-order composite sub-step explicit algorithms with controllable numerical dissipation and maximal stability bounds
•This paper constructs and analyzes a composite s-sub-step explicit method.•Seven explicit schemes in the present method are developed and compared.•Each explicit scheme is second-order accurate and provides maximal stability bound.•Each explicit scheme (s>1) can control numerical dissipation at...
Saved in:
| Published in: | Applied mathematical modelling Vol. 114; pp. 601 - 626 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.02.2023
|
| Subjects: | |
| ISSN: | 0307-904X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •This paper constructs and analyzes a composite s-sub-step explicit method.•Seven explicit schemes in the present method are developed and compared.•Each explicit scheme is second-order accurate and provides maximal stability bound.•Each explicit scheme (s>1) can control numerical dissipation at the bifurcation point.
This paper constructs a composite s-sub-step explicit method and analyzes second-order accuracy, conditional stability, and dissipation control at the bifurcation point. In the present s-sub-step method, each explicit scheme achieves identical second-order accuracy for analyzing general structures and provides maximal stability bound, that is 2×s where s denotes the number of sub-steps. Except for the single-sub-step case, each explicit scheme achieves dissipation control at the bifurcation point. After registering second-order accuracy and controllable numerical dissipation, the composite multi-sub-step explicit method should be well-designed to reach maximal stability bound. The analysis reveals that as the number of sub-steps increases, the developed explicit schemes can reduce numerical low-frequency dissipation and enlarge stability. Under the same computational cost, the advantage of reducing low-frequency dissipation and enlarging stability is gradually weakened with the increase of sub-steps, so the first seven explicit schemes are only developed and compared in this paper. Some typical experiments are provided to confirm the methods’ numerical performance. The proposed explicit schemes are more accurate and efficient for some models than existing second-order algorithms of that class. |
|---|---|
| AbstractList | •This paper constructs and analyzes a composite s-sub-step explicit method.•Seven explicit schemes in the present method are developed and compared.•Each explicit scheme is second-order accurate and provides maximal stability bound.•Each explicit scheme (s>1) can control numerical dissipation at the bifurcation point.
This paper constructs a composite s-sub-step explicit method and analyzes second-order accuracy, conditional stability, and dissipation control at the bifurcation point. In the present s-sub-step method, each explicit scheme achieves identical second-order accuracy for analyzing general structures and provides maximal stability bound, that is 2×s where s denotes the number of sub-steps. Except for the single-sub-step case, each explicit scheme achieves dissipation control at the bifurcation point. After registering second-order accuracy and controllable numerical dissipation, the composite multi-sub-step explicit method should be well-designed to reach maximal stability bound. The analysis reveals that as the number of sub-steps increases, the developed explicit schemes can reduce numerical low-frequency dissipation and enlarge stability. Under the same computational cost, the advantage of reducing low-frequency dissipation and enlarging stability is gradually weakened with the increase of sub-steps, so the first seven explicit schemes are only developed and compared in this paper. Some typical experiments are provided to confirm the methods’ numerical performance. The proposed explicit schemes are more accurate and efficient for some models than existing second-order algorithms of that class. |
| Author | Li, Hua Li, Jinze Yu, Kaiping Lian, Yiwei Zhao, Rui |
| Author_xml | – sequence: 1 givenname: Jinze surname: Li fullname: Li, Jinze organization: Department of Astronautic Science and Mechanics, Harbin Institute of Technology, No. 92 West Dazhi Street, Harbin 150001, China – sequence: 2 givenname: Hua surname: Li fullname: Li, Hua organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore – sequence: 3 givenname: Yiwei surname: Lian fullname: Lian, Yiwei organization: Department of Astronautic Science and Mechanics, Harbin Institute of Technology, No. 92 West Dazhi Street, Harbin 150001, China – sequence: 4 givenname: Rui surname: Zhao fullname: Zhao, Rui organization: Department of Astronautic Science and Mechanics, Harbin Institute of Technology, No. 92 West Dazhi Street, Harbin 150001, China – sequence: 5 givenname: Kaiping orcidid: 0000-0002-7722-0138 surname: Yu fullname: Yu, Kaiping email: kaipingyu1968@gmail.com organization: Department of Astronautic Science and Mechanics, Harbin Institute of Technology, No. 92 West Dazhi Street, Harbin 150001, China |
| BookMark | eNp9kDtPwzAQgD0UiRb4AWz-Awl20jSxmKqKl1SJBSS2yI8LuHLsyHagnfnjOJSJodPpHt_p7lugmXUWELqmJKeErm52OR_6vCBFkfKc0GKG5qQkdcbI8u0cLULYEUKqlM3R9xqHUUfArsMBpLMqc16Bx9L1gwtTJ4wiCxEGDPvBaKkj5ubdeR0_-oC_UkizNnpnDBcGsB178Fpyg5UOQQ88amcxtwr3fK_7VA-RC210PGDhRqvCJTrruAlw9Rcv0Ov93cvmMds-Pzxt1ttMFqyOmWSqWTasoqWUCoRoRFNLUkLDRKUqXheErDoouGTAqOrKlayLijVcJIzBkpQXiB73Su9C8NC1g08H-UNLSTuZa3dtMtdO5qZSMpeY-h-TBPy-FD3X5iR5eyQhvfSpwbdBarASlPYgY6ucPkH_ALTTkV0 |
| CitedBy_id | crossref_primary_10_1002_nme_7639 crossref_primary_10_1016_j_compstruc_2024_107294 crossref_primary_10_1016_j_istruc_2025_109232 crossref_primary_10_1007_s00419_024_02637_y crossref_primary_10_1002_nme_7328 crossref_primary_10_1615_IntJMultCompEng_2025054525 |
| Cites_doi | 10.1002/nme.6574 10.1002/nme.6543 10.1016/j.apm.2018.12.027 10.1002/nme.1620372303 10.1108/EC-07-2018-0312 10.1121/1.2011149 10.1016/j.cma.2014.08.007 10.1016/j.apnum.2017.04.006 10.1007/s00366-021-01290-1 10.1016/j.cma.2021.114274 10.1002/nme.1620151011 10.1016/j.apacoust.2021.108410 10.1016/S0045-7825(96)01036-5 10.1016/j.ijmecsci.2020.105429 10.1007/BF00363983 10.1007/s40314-017-0520-3 10.1007/s11071-020-06101-8 10.1016/j.compstruc.2013.06.007 10.1016/j.cma.2021.113950 10.1142/S0219455421500735 10.1016/j.istruc.2021.08.129 10.1007/s00419-019-01637-7 10.1007/s11071-019-04936-4 10.1007/s00366-020-01184-8 10.1002/eqe.818 10.1016/j.compstruc.2018.06.005 10.1142/S0219455421501066 10.1002/num.21899 10.1002/(SICI)1097-0207(19990620)45:5<569::AID-NME595>3.0.CO;2-A 10.1115/1.3422999 10.1016/j.cma.2022.114945 10.1016/j.compstruc.2013.07.001 10.1115/1.2900803 10.1007/s10915-017-0552-2 10.1007/s00419-021-01989-z 10.1016/j.jcp.2013.04.024 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Inc. |
| Copyright_xml | – notice: 2022 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.apm.2022.10.012 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EndPage | 626 |
| ExternalDocumentID | 10_1016_j_apm_2022_10_012 S0307904X22004814 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSW SSZ T5K TN5 WH7 WUQ XJT XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-c9d8489513ccdebb8b87c03e89b5d5a72006fe2ac9e91df36c72598abd849e403 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000877521900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0307-904X |
| IngestDate | Sat Nov 29 07:22:56 EST 2025 Tue Nov 18 21:42:05 EST 2025 Fri Feb 23 02:39:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Composite s-sub-step Second-order accuracy Explicit algorithms Self-starting Controllable dissipation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-c9d8489513ccdebb8b87c03e89b5d5a72006fe2ac9e91df36c72598abd849e403 |
| ORCID | 0000-0002-7722-0138 |
| PageCount | 26 |
| ParticipantIDs | crossref_primary_10_1016_j_apm_2022_10_012 crossref_citationtrail_10_1016_j_apm_2022_10_012 elsevier_sciencedirect_doi_10_1016_j_apm_2022_10_012 |
| PublicationCentury | 2000 |
| PublicationDate | February 2023 2023-02-00 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied mathematical modelling |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Li, Yu, Li (bib0004) 2021; 122 Kim, Reddy (bib0014) 2020; 172 Cook, Malkus, Plesha, Witt (bib0037) 2001 Ji, Xing (bib0011) 2021; 91 Kuhl, Crisfield (bib0046) 1999; 45 Chung, Lee (bib0028) 1994; 37 Li, Yu (bib0036) 2020; 90 Krieg (bib0008) 1973; 40 Li, Zhao, Yu, Li (bib0020) 2022; 389 Benítez, Montáns (bib0026) 2013; 128 Yu (bib0030) 2008; 37 Baskaran, Hu, Lowengrub, Wang, Wise, Zhou (bib0042) 2013; 250 Hulbert, Chung (bib0005) 1996; 137 Yue, Guddati (bib0044) 2005; 118 Zhao, Li, Cao, Du (bib0032) 2018; 36 Shao, Cai (bib0002) 1988; 5 Li, Yu, Tang (bib0045) 2021; 21 Li, Yu, Zhao (bib0017) 2022; 395 Kim, Lee (bib0027) 2018; 206 Zhang, Huang, Wang, Yue (bib0043) 2018; 75 Wood, Bossak, Zienkiewicz (bib0006) 1980; 15 Shaaban, Anitescu, Atroshchenko, Rabczuk (bib0039) 2022; 185 Géradin, Rixen (bib0031) 2015 Chung, Hulbert (bib0003) 1993; 60 Soares (bib0013) 2022; 38 Cheng, Feng, Gottlieb, Wang (bib0040) 2015; 31 Zhang, Wang, Huang, Wang, Yue (bib0041) 2017; 119 Li, Yu (bib0025) 2020; 102 Li, Yu, Li (bib0001) 2019; 96 Fung, Fan, Sheng (bib0022) 1996; 17 Noh, Bathe (bib0009) 2013; 129 Rezaiee-Pajand, Karimi-Rad (bib0033) 2018; 37 BenchmarkTools.jl, (A benchmarking framework for the Julia language). Accessed: 2022–03–05, https://github.com/JuliaCI/BenchmarkTools.jl. Li, Yu (bib0035) 2019; 69 Liu, Guo (bib0016) 2021; 34 Bonet, Gil, Wood (bib0018) 2021 Hughes (bib0019) 2000 Li, Li, Yu, Zhao (bib0021) 2022 Wood (bib0029) 1990 Zhao, Li, Yu (bib0007) 2022 Li, Yu (bib0010) 2021; 103 Soares (bib0012) 2022; 38 Rezaiee-Pajand, Esfehani, Ehsanmanesh (bib0023) 2021; 21 Soares (bib0024) 2014; 283 Shaaban, Anitescu, Atroshchenko, Rabczuk (bib0038) 2021; 384 Wen, Deng, Duan, Fang (bib0015) 2021; 122 Chung (10.1016/j.apm.2022.10.012_bib0028) 1994; 37 Rezaiee-Pajand (10.1016/j.apm.2022.10.012_bib0023) 2021; 21 Chung (10.1016/j.apm.2022.10.012_bib0003) 1993; 60 Kim (10.1016/j.apm.2022.10.012_bib0014) 2020; 172 Benítez (10.1016/j.apm.2022.10.012_bib0026) 2013; 128 Baskaran (10.1016/j.apm.2022.10.012_bib0042) 2013; 250 Wen (10.1016/j.apm.2022.10.012_bib0015) 2021; 122 Géradin (10.1016/j.apm.2022.10.012_bib0031) 2015 Soares (10.1016/j.apm.2022.10.012_bib0013) 2022; 38 Zhang (10.1016/j.apm.2022.10.012_bib0043) 2018; 75 Rezaiee-Pajand (10.1016/j.apm.2022.10.012_bib0033) 2018; 37 10.1016/j.apm.2022.10.012_bib0034 Shaaban (10.1016/j.apm.2022.10.012_bib0039) 2022; 185 Noh (10.1016/j.apm.2022.10.012_bib0009) 2013; 129 Li (10.1016/j.apm.2022.10.012_bib0010) 2021; 103 Li (10.1016/j.apm.2022.10.012_bib0021) Li (10.1016/j.apm.2022.10.012_bib0045) 2021; 21 Cook (10.1016/j.apm.2022.10.012_bib0037) 2001 Bonet (10.1016/j.apm.2022.10.012_bib0018) 2021 Wood (10.1016/j.apm.2022.10.012_bib0029) 1990 Ji (10.1016/j.apm.2022.10.012_bib0011) 2021; 91 Li (10.1016/j.apm.2022.10.012_bib0036) 2020; 90 Shaaban (10.1016/j.apm.2022.10.012_bib0038) 2021; 384 Kim (10.1016/j.apm.2022.10.012_bib0027) 2018; 206 Zhao (10.1016/j.apm.2022.10.012_bib0032) 2018; 36 Yue (10.1016/j.apm.2022.10.012_bib0044) 2005; 118 Soares (10.1016/j.apm.2022.10.012_bib0012) 2022; 38 Li (10.1016/j.apm.2022.10.012_bib0025) 2020; 102 Wood (10.1016/j.apm.2022.10.012_bib0006) 1980; 15 Krieg (10.1016/j.apm.2022.10.012_bib0008) 1973; 40 Li (10.1016/j.apm.2022.10.012_bib0020) 2022; 389 Li (10.1016/j.apm.2022.10.012_bib0004) 2021; 122 Hughes (10.1016/j.apm.2022.10.012_bib0019) 2000 Soares (10.1016/j.apm.2022.10.012_bib0024) 2014; 283 Li (10.1016/j.apm.2022.10.012_bib0035) 2019; 69 Cheng (10.1016/j.apm.2022.10.012_bib0040) 2015; 31 Li (10.1016/j.apm.2022.10.012_bib0001) 2019; 96 Liu (10.1016/j.apm.2022.10.012_bib0016) 2021; 34 Shao (10.1016/j.apm.2022.10.012_bib0002) 1988; 5 Li (10.1016/j.apm.2022.10.012_bib0017) 2022; 395 Yu (10.1016/j.apm.2022.10.012_bib0030) 2008; 37 Fung (10.1016/j.apm.2022.10.012_bib0022) 1996; 17 Zhang (10.1016/j.apm.2022.10.012_bib0041) 2017; 119 Hulbert (10.1016/j.apm.2022.10.012_bib0005) 1996; 137 Kuhl (10.1016/j.apm.2022.10.012_bib0046) 1999; 45 Zhao (10.1016/j.apm.2022.10.012_bib0007) 2022 |
| References_xml | – volume: 128 start-page: 243 year: 2013 end-page: 250 ident: bib0026 article-title: The value of numerical amplification matrices in time integration methods publication-title: Comput. Struct. – volume: 21 start-page: 2150073 year: 2021 ident: bib0045 article-title: Further assessment of three Bathe algorithms and implementations for wave propagation problems publication-title: Int. J. Struct. Stab. Dyn. – volume: 91 start-page: 3959 year: 2021 end-page: 3985 ident: bib0011 article-title: A three-stage explicit time integration method with controllable numerical dissipation publication-title: Arch. Appl. Mech. – year: 2015 ident: bib0031 article-title: Mechanical Vibrations: Theory and Application to Structural Dynamics – year: 2022 ident: bib0007 article-title: A self-starting dissipative alternative to the central difference methods publication-title: Arch. Appl. Mech. – volume: 137 start-page: 175 year: 1996 end-page: 188 ident: bib0005 article-title: Explicit time integration algorithms for structural dynamics with optimal numerical dissipation publication-title: Comput. Methods Appl. Mech. Eng. – volume: 122 start-page: 431 year: 2021 end-page: 454 ident: bib0015 article-title: A high-order accurate explicit time integration method based on cubic B-spline interpolation and weighted residual technique for structural dynamics publication-title: Int. J. Numer. Methods Eng. – volume: 37 start-page: 3961 year: 1994 end-page: 3976 ident: bib0028 article-title: A new family of explicit time integration methods for linear and non-linear structural dynamics publication-title: Int. J. Numer. Methods Eng. – volume: 15 start-page: 1562 year: 1980 end-page: 1566 ident: bib0006 article-title: An alpha modification of Newmark’s method publication-title: Int. J. Numer. Methods Eng. – volume: 90 start-page: 737 year: 2020 end-page: 772 ident: bib0036 article-title: A novel family of composite sub-step algorithms with desired numerical dissipations for structural dynamics publication-title: Arch. Appl. Mech. – volume: 38 start-page: 773 year: 2022 end-page: 787 ident: bib0013 article-title: Efficient high-order accurate explicit time-marching procedures for dynamic analyses publication-title: Eng. Comput. – volume: 37 start-page: 3431 year: 2018 end-page: 3454 ident: bib0033 article-title: A family of second-order fully explicit time integration schemes publication-title: Comput. Appl. Math. – volume: 103 start-page: 1911 year: 2021 end-page: 1936 ident: bib0010 article-title: Development of composite sub-step explicit dissipative algorithms with truly self-starting property publication-title: Nonlinear Dyn. – volume: 45 start-page: 569 year: 1999 end-page: 599 ident: bib0046 article-title: Energy-conserving and decaying algorithms in non-linear structural dynamics publication-title: Int. J. Numer. Methods Eng. – volume: 122 start-page: 1089 year: 2021 end-page: 1132 ident: bib0004 article-title: An identical second-order single step explicit integration algorithm with dissipation control for structural dynamics publication-title: Int. J. Numer. Methods Eng. – volume: 21 start-page: 2150106 year: 2021 ident: bib0023 article-title: An efficient weighted residual time integration family publication-title: Int. J. Struct. Stab. Dyn. – reference: BenchmarkTools.jl, (A benchmarking framework for the Julia language). Accessed: 2022–03–05, https://github.com/JuliaCI/BenchmarkTools.jl. – volume: 389 start-page: 114274 year: 2022 ident: bib0020 article-title: Directly self-starting higher-order implicit integration algorithms with flexible dissipation control for structural dynamics publication-title: Comput. Methods Appl. Mech. Eng. – volume: 36 start-page: 161 year: 2018 end-page: 177 ident: bib0032 article-title: An explicit time integration algorithm for linear and non-linear finite element analyses of dynamic and wave problems publication-title: Eng. Comput. – volume: 5 start-page: 76 year: 1988 end-page: 81 ident: bib0002 article-title: A three parameters algorithm for numerical integration of structural dynamic equations publication-title: Chin. J. Appl. Mech. – volume: 102 start-page: 2503 year: 2020 end-page: 2530 ident: bib0025 article-title: A truly self-starting implicit family of integration algorithms with dissipation control for nonlinear dynamics publication-title: Nonlinear Dyn. – volume: 69 start-page: 255 year: 2019 end-page: 272 ident: bib0035 article-title: An alternative to the Bathe algorithm publication-title: Appl. Math. Model. – volume: 206 start-page: 42 year: 2018 end-page: 53 ident: bib0027 article-title: An improved explicit time integration method for linear and nonlinear structural dynamics publication-title: Comput. Struct. – volume: 34 start-page: 2735 year: 2021 end-page: 2745 ident: bib0016 article-title: A novel predictor–corrector explicit integration scheme for structural dynamics publication-title: Structures – volume: 60 start-page: 371 year: 1993 end-page: 375 ident: bib0003 article-title: A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized- publication-title: J. Appl. Mech. – year: 2022 ident: bib0021 article-title: High-order accurate multi-sub-step implicit integration algorithms with dissipation control for second-order hyperbolic problems – volume: 283 start-page: 1138 year: 2014 end-page: 1166 ident: bib0024 article-title: A simple and effective new family of time marching procedures for dynamics publication-title: Comput. Methods Appl. Mech. Eng. – volume: 395 start-page: 114945 year: 2022 ident: bib0017 article-title: Two third-order explicit integration algorithms with controllable numerical dissipation for second-order nonlinear dynamics publication-title: Comput. Methods Appl. Mech. Eng. – volume: 118 start-page: 2132 year: 2005 end-page: 2141 ident: bib0044 article-title: Dispersion-reducing finite elements for transient acoustics publication-title: J. Acoust. Soc. Am. – volume: 37 start-page: 1389 year: 2008 end-page: 1409 ident: bib0030 article-title: A new family of generalized- publication-title: Earthq. Eng. Struct. Dyn. – volume: 40 start-page: 417 year: 1973 end-page: 421 ident: bib0008 article-title: Unconditional stability in numerical time integration methods publication-title: J. Appl. Mech. – year: 2001 ident: bib0037 article-title: Concepts and Applications of Finite Element Analysis – volume: 250 start-page: 270 year: 2013 end-page: 292 ident: bib0042 article-title: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation publication-title: J. Comput. Phys. – year: 2000 ident: bib0019 article-title: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis publication-title: Dover Civil and Mechanical Engineering – volume: 119 start-page: 179 year: 2017 end-page: 193 ident: bib0041 article-title: A second order operator splitting numerical scheme for the “good” Boussinesq equation publication-title: Appl. Numer. Math. – volume: 96 start-page: 2475 year: 2019 end-page: 2507 ident: bib0001 article-title: A novel family of controllably dissipative composite integration algorithms for structural dynamic analysis publication-title: Nonlinear Dyn. – volume: 384 start-page: 113950 year: 2021 ident: bib0038 article-title: 3D isogeometric boundary element analysis and structural shape optimization for Helmholtz acoustic scattering problems publication-title: Comput. Methods Appl. Mech. Eng. – volume: 129 start-page: 178 year: 2013 end-page: 193 ident: bib0009 article-title: An explicit time integration scheme for the analysis of wave propagations publication-title: Comput. Struct. – volume: 38 start-page: 3251 year: 2022 end-page: 3268 ident: bib0012 article-title: Three novel truly-explicit time-marching procedures considering adaptive dissipation control publication-title: Eng. Comput. – volume: 172 start-page: 105429 year: 2020 ident: bib0014 article-title: Novel explicit time integration schemes for efficient transient analyses of structural problems publication-title: Int. J. Mech. Sci. – year: 1990 ident: bib0029 article-title: Practical Time-Stepping Schemes – volume: 31 start-page: 202 year: 2015 end-page: 224 ident: bib0040 article-title: A Fourier pseudospectral method for the “good” Boussinesq equation with second-order temporal accuracy publication-title: Numer. Methods Partial Differ. Equ. – year: 2021 ident: bib0018 article-title: Nonlinear Solid Mechanics for Finite Element Analysis: Dynamics – volume: 17 start-page: 398 year: 1996 end-page: 405 ident: bib0022 article-title: Extrapolated Galerkin time finite elements publication-title: Comput. Mech. – volume: 185 start-page: 108410 year: 2022 ident: bib0039 article-title: An isogeometric Burton-Miller method for the transmission loss optimization with application to mufflers with internal extended tubes publication-title: Appl. Acoust. – volume: 75 start-page: 687 year: 2018 end-page: 712 ident: bib0043 article-title: On the operator splitting and integral equation preconditioned deferred correction methods for the “good” Boussinesq equation publication-title: J. Sci. Comput. – volume: 122 start-page: 1089 issue: 4 year: 2021 ident: 10.1016/j.apm.2022.10.012_bib0004 article-title: An identical second-order single step explicit integration algorithm with dissipation control for structural dynamics publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.6574 – volume: 122 start-page: 431 issue: 2 year: 2021 ident: 10.1016/j.apm.2022.10.012_bib0015 article-title: A high-order accurate explicit time integration method based on cubic B-spline interpolation and weighted residual technique for structural dynamics publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.6543 – year: 1990 ident: 10.1016/j.apm.2022.10.012_bib0029 – volume: 69 start-page: 255 year: 2019 ident: 10.1016/j.apm.2022.10.012_bib0035 article-title: An alternative to the Bathe algorithm publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2018.12.027 – volume: 37 start-page: 3961 issue: 23 year: 1994 ident: 10.1016/j.apm.2022.10.012_bib0028 article-title: A new family of explicit time integration methods for linear and non-linear structural dynamics publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620372303 – volume: 36 start-page: 161 issue: 1 year: 2018 ident: 10.1016/j.apm.2022.10.012_bib0032 article-title: An explicit time integration algorithm for linear and non-linear finite element analyses of dynamic and wave problems publication-title: Eng. Comput. doi: 10.1108/EC-07-2018-0312 – volume: 118 start-page: 2132 issue: 4 year: 2005 ident: 10.1016/j.apm.2022.10.012_bib0044 article-title: Dispersion-reducing finite elements for transient acoustics publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2011149 – volume: 283 start-page: 1138 year: 2014 ident: 10.1016/j.apm.2022.10.012_bib0024 article-title: A simple and effective new family of time marching procedures for dynamics publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.08.007 – volume: 119 start-page: 179 year: 2017 ident: 10.1016/j.apm.2022.10.012_bib0041 article-title: A second order operator splitting numerical scheme for the “good” Boussinesq equation publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2017.04.006 – year: 2022 ident: 10.1016/j.apm.2022.10.012_bib0007 article-title: A self-starting dissipative alternative to the central difference methods publication-title: Arch. Appl. Mech. – volume: 38 start-page: 3251 year: 2022 ident: 10.1016/j.apm.2022.10.012_bib0012 article-title: Three novel truly-explicit time-marching procedures considering adaptive dissipation control publication-title: Eng. Comput. doi: 10.1007/s00366-021-01290-1 – volume: 389 start-page: 114274 year: 2022 ident: 10.1016/j.apm.2022.10.012_bib0020 article-title: Directly self-starting higher-order implicit integration algorithms with flexible dissipation control for structural dynamics publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114274 – volume: 15 start-page: 1562 issue: 10 year: 1980 ident: 10.1016/j.apm.2022.10.012_bib0006 article-title: An alpha modification of Newmark’s method publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620151011 – volume: 185 start-page: 108410 year: 2022 ident: 10.1016/j.apm.2022.10.012_bib0039 article-title: An isogeometric Burton-Miller method for the transmission loss optimization with application to mufflers with internal extended tubes publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2021.108410 – volume: 137 start-page: 175 issue: 2 year: 1996 ident: 10.1016/j.apm.2022.10.012_bib0005 article-title: Explicit time integration algorithms for structural dynamics with optimal numerical dissipation publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(96)01036-5 – volume: 172 start-page: 105429 year: 2020 ident: 10.1016/j.apm.2022.10.012_bib0014 article-title: Novel explicit time integration schemes for efficient transient analyses of structural problems publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2020.105429 – year: 2000 ident: 10.1016/j.apm.2022.10.012_bib0019 article-title: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis – volume: 17 start-page: 398 issue: 6 year: 1996 ident: 10.1016/j.apm.2022.10.012_bib0022 article-title: Extrapolated Galerkin time finite elements publication-title: Comput. Mech. doi: 10.1007/BF00363983 – year: 2015 ident: 10.1016/j.apm.2022.10.012_bib0031 – volume: 37 start-page: 3431 year: 2018 ident: 10.1016/j.apm.2022.10.012_bib0033 article-title: A family of second-order fully explicit time integration schemes publication-title: Comput. Appl. Math. doi: 10.1007/s40314-017-0520-3 – volume: 102 start-page: 2503 issue: 4 year: 2020 ident: 10.1016/j.apm.2022.10.012_bib0025 article-title: A truly self-starting implicit family of integration algorithms with dissipation control for nonlinear dynamics publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-06101-8 – volume: 129 start-page: 178 year: 2013 ident: 10.1016/j.apm.2022.10.012_bib0009 article-title: An explicit time integration scheme for the analysis of wave propagations publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2013.06.007 – volume: 5 start-page: 76 issue: 4 year: 1988 ident: 10.1016/j.apm.2022.10.012_bib0002 article-title: A three parameters algorithm for numerical integration of structural dynamic equations publication-title: Chin. J. Appl. Mech. – volume: 384 start-page: 113950 year: 2021 ident: 10.1016/j.apm.2022.10.012_bib0038 article-title: 3D isogeometric boundary element analysis and structural shape optimization for Helmholtz acoustic scattering problems publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.113950 – volume: 21 start-page: 2150073 issue: 5 year: 2021 ident: 10.1016/j.apm.2022.10.012_bib0045 article-title: Further assessment of three Bathe algorithms and implementations for wave propagation problems publication-title: Int. J. Struct. Stab. Dyn. doi: 10.1142/S0219455421500735 – volume: 34 start-page: 2735 year: 2021 ident: 10.1016/j.apm.2022.10.012_bib0016 article-title: A novel predictor–corrector explicit integration scheme for structural dynamics publication-title: Structures doi: 10.1016/j.istruc.2021.08.129 – volume: 103 start-page: 1911 issue: 2 year: 2021 ident: 10.1016/j.apm.2022.10.012_bib0010 article-title: Development of composite sub-step explicit dissipative algorithms with truly self-starting property publication-title: Nonlinear Dyn. – year: 2021 ident: 10.1016/j.apm.2022.10.012_bib0018 – volume: 90 start-page: 737 issue: 4 year: 2020 ident: 10.1016/j.apm.2022.10.012_bib0036 article-title: A novel family of composite sub-step algorithms with desired numerical dissipations for structural dynamics publication-title: Arch. Appl. Mech. doi: 10.1007/s00419-019-01637-7 – ident: 10.1016/j.apm.2022.10.012_bib0021 – volume: 96 start-page: 2475 issue: 4 year: 2019 ident: 10.1016/j.apm.2022.10.012_bib0001 article-title: A novel family of controllably dissipative composite integration algorithms for structural dynamic analysis publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-04936-4 – volume: 38 start-page: 773 year: 2022 ident: 10.1016/j.apm.2022.10.012_bib0013 article-title: Efficient high-order accurate explicit time-marching procedures for dynamic analyses publication-title: Eng. Comput. doi: 10.1007/s00366-020-01184-8 – volume: 37 start-page: 1389 issue: 12 year: 2008 ident: 10.1016/j.apm.2022.10.012_bib0030 article-title: A new family of generalized-α time integration algorithms without overshoot for structural dynamics publication-title: Earthq. Eng. Struct. Dyn. doi: 10.1002/eqe.818 – year: 2001 ident: 10.1016/j.apm.2022.10.012_bib0037 – volume: 206 start-page: 42 year: 2018 ident: 10.1016/j.apm.2022.10.012_bib0027 article-title: An improved explicit time integration method for linear and nonlinear structural dynamics publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2018.06.005 – volume: 21 start-page: 2150106 issue: 8 year: 2021 ident: 10.1016/j.apm.2022.10.012_bib0023 article-title: An efficient weighted residual time integration family publication-title: Int. J. Struct. Stab. Dyn. doi: 10.1142/S0219455421501066 – volume: 31 start-page: 202 issue: 1 year: 2015 ident: 10.1016/j.apm.2022.10.012_bib0040 article-title: A Fourier pseudospectral method for the “good” Boussinesq equation with second-order temporal accuracy publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.21899 – volume: 45 start-page: 569 issue: 5 year: 1999 ident: 10.1016/j.apm.2022.10.012_bib0046 article-title: Energy-conserving and decaying algorithms in non-linear structural dynamics publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/(SICI)1097-0207(19990620)45:5<569::AID-NME595>3.0.CO;2-A – volume: 40 start-page: 417 issue: 2 year: 1973 ident: 10.1016/j.apm.2022.10.012_bib0008 article-title: Unconditional stability in numerical time integration methods publication-title: J. Appl. Mech. doi: 10.1115/1.3422999 – volume: 395 start-page: 114945 year: 2022 ident: 10.1016/j.apm.2022.10.012_bib0017 article-title: Two third-order explicit integration algorithms with controllable numerical dissipation for second-order nonlinear dynamics publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2022.114945 – volume: 128 start-page: 243 issue: 5 year: 2013 ident: 10.1016/j.apm.2022.10.012_bib0026 article-title: The value of numerical amplification matrices in time integration methods publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2013.07.001 – volume: 60 start-page: 371 issue: 2 year: 1993 ident: 10.1016/j.apm.2022.10.012_bib0003 article-title: A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method publication-title: J. Appl. Mech. doi: 10.1115/1.2900803 – volume: 75 start-page: 687 issue: 2 year: 2018 ident: 10.1016/j.apm.2022.10.012_bib0043 article-title: On the operator splitting and integral equation preconditioned deferred correction methods for the “good” Boussinesq equation publication-title: J. Sci. Comput. doi: 10.1007/s10915-017-0552-2 – ident: 10.1016/j.apm.2022.10.012_bib0034 – volume: 91 start-page: 3959 year: 2021 ident: 10.1016/j.apm.2022.10.012_bib0011 article-title: A three-stage explicit time integration method with controllable numerical dissipation publication-title: Arch. Appl. Mech. doi: 10.1007/s00419-021-01989-z – volume: 250 start-page: 270 year: 2013 ident: 10.1016/j.apm.2022.10.012_bib0042 article-title: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.04.024 |
| SSID | ssj0005904 |
| Score | 2.4323764 |
| Snippet | •This paper constructs and analyzes a composite s-sub-step explicit method.•Seven explicit schemes in the present method are developed and compared.•Each... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 601 |
| SubjectTerms | Composite [formula omitted]-sub-step Controllable dissipation Explicit algorithms Second-order accuracy Self-starting |
| Title | A suite of second-order composite sub-step explicit algorithms with controllable numerical dissipation and maximal stability bounds |
| URI | https://dx.doi.org/10.1016/j.apm.2022.10.012 |
| Volume | 114 |
| WOSCitedRecordID | wos000877521900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0307-904X databaseCode: AIEXJ dateStart: 20211209 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005904 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWLQc4IJ6i5SEfOFGlytvxcYWKSiUqhIq0nKL4EXCVza42m7Jw5X_wW_HYsTctFNEDl2jjjZ3dzBd7PPPNDEIv0xrcdfr9zkVWB6ngMqBMyICAbh0xAVsGU2yCnJ4Wsxl9P5n8dLEwFw1p22Kzocv_KmrdpoUNobM3ELcfVDfoz1ro-qjFro__JPjpQdcr6_zvYLcrApNe05DHgaEl9fcs0MJdQnr_RnEFVt_Pi5Vaf5l3nosOBPbGxFW1vfXqGG9ON1CwjdNhXm3U3ASc2Gzf3w4YVGnqxhqvU3PnPj8sxKtA_Z3GrZrABzKkghPVfpeXm477attgjbWf1FepRgZvY-z90KuxASNOHOfZz3OQp5KGlqjpJ-UoHU2r-XC9XaFzG2P_2-Rv7RDnh9USUgzE8SHQ9gaS9qVE21cWQE9LdIy381IPUcIQ-rwMoYj1bkwyqmfN3enbo9nJlkREw9Sl2oS_4PzmhkF45Xf8WfMZaTNn99DdYRuCpxY-99FEtg_QnXdeRt1D9GOKDZDwosZjIGEPJOyAhB2Q8BZIGICEx0DCHkh4BCSsgYQHIGEPJGyB9Ah9fHN09vo4GEp2BDymZB1wKoq00Fp7wrmQjBWsIDxMZEFZJrKKgAGrlnHFqaSRqJOcE73_Liqmu1GZhsljtNMuWvkEYUFqqnsLSNmY8ihnMosYVCMSNBWCiD0UusdZ8iGfPZRVacprxbiHXvkuS5vM5W8Xp05G5aCNWi2z1Hi7vtv-Te7xFN3evhHP0M561cvn6Ba_WKtu9WIA2y_SUbGX |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+suite+of+second-order+composite+sub-step+explicit+algorithms+with+controllable+numerical+dissipation+and+maximal+stability+bounds&rft.jtitle=Applied+mathematical+modelling&rft.au=Li%2C+Jinze&rft.au=Li%2C+Hua&rft.au=Lian%2C+Yiwei&rft.au=Zhao%2C+Rui&rft.date=2023-02-01&rft.issn=0307-904X&rft.volume=114&rft.spage=601&rft.epage=626&rft_id=info:doi/10.1016%2Fj.apm.2022.10.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2022_10_012 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |