A gradient-based optimization algorithm to solve optimal control problems with conformable fractional-order derivatives

In this paper, we solve numerically a class of fractional optimal control problems in the conformable sense. We first propose a nonlinear fractional optimal control problem subject to general equality and inequality constraints. Then, based on a novel numerical integration scheme, we present a discr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and applied mathematics Ročník 454; s. 116169
Hlavní autoři: Gong, Zhaohua, Liu, Chongyang, Teo, Kok Lay, Wu, Yonghong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 15.01.2025
Témata:
ISSN:0377-0427
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we solve numerically a class of fractional optimal control problems in the conformable sense. We first propose a nonlinear fractional optimal control problem subject to general equality and inequality constraints. Then, based on a novel numerical integration scheme, we present a discretization method for the governed fractional-order system as well as the cost and constraint functionals, which yields a discretized approximate problem. We further derive the gradients of the cost and constraint functionals in regard to the discretized controls. On the basis of this result, a numerical optimization approach to solve the approximate problem is developed. Finally, three non-trivial example problems are solved to illustrate the applicability and effectiveness of the developed approach.
AbstractList In this paper, we solve numerically a class of fractional optimal control problems in the conformable sense. We first propose a nonlinear fractional optimal control problem subject to general equality and inequality constraints. Then, based on a novel numerical integration scheme, we present a discretization method for the governed fractional-order system as well as the cost and constraint functionals, which yields a discretized approximate problem. We further derive the gradients of the cost and constraint functionals in regard to the discretized controls. On the basis of this result, a numerical optimization approach to solve the approximate problem is developed. Finally, three non-trivial example problems are solved to illustrate the applicability and effectiveness of the developed approach.
ArticleNumber 116169
Author Gong, Zhaohua
Liu, Chongyang
Wu, Yonghong
Teo, Kok Lay
Author_xml – sequence: 1
  givenname: Zhaohua
  surname: Gong
  fullname: Gong, Zhaohua
  organization: School of Mathematics and Information Science, Shandong Technology and Business University, Yantai 264005, China
– sequence: 2
  givenname: Chongyang
  orcidid: 0000-0002-2229-6717
  surname: Liu
  fullname: Liu, Chongyang
  email: chongyangliu@aliyun.com
  organization: School of Mathematics and Information Science, Shandong Technology and Business University, Yantai 264005, China
– sequence: 3
  givenname: Kok Lay
  surname: Teo
  fullname: Teo, Kok Lay
  organization: School of Mathematical Sciences, Sunway University, Kuala Lumpur 47500, Malaysia
– sequence: 4
  givenname: Yonghong
  surname: Wu
  fullname: Wu, Yonghong
  organization: School of Electrical Engineering, Computing, and Mathematical Sciences, Curtin University, Perth 6845, Australia
BookMark eNp9kL1uwyAURhlSqUnaB-jGC9gF7BhbnaKof1KkLu2MMFxSIttEgBy1T19cd-qQ4epKF84nfWeFFoMbAKE7SnJKaHV_zJXsc0ZYmVNa0apZoCUpOM9Iyfg1WoVwJIRUDS2X6LzFBy-1hSFmrQygsTtF29tvGa0bsOwOztv42ePocHDdCPO77LByQ_Suwyfv2g76gM_p33Q1zvcynbDxUk0pssuc1-BxGjum4BHCDboysgtw-7fX6OPp8X33ku3fnl93232mWMNjpupK16ZUvAKtq03dgioKZkjDeMsbwku9MaA4U4VkBdCGlU0hTS1NIfWmMWWxRnzOVd6F4MEIZeNvt-il7QQlYnImjiI5E5MzMTtLJP1Hnnwq7r8uMg8zA6nSaMGLoJJaBdp6UFFoZy_QPy8gjIo
CitedBy_id crossref_primary_10_3390_coatings14121586
crossref_primary_10_1109_ACCESS_2025_3595958
crossref_primary_10_1016_j_cam_2025_116526
crossref_primary_10_1016_j_cam_2025_116814
crossref_primary_10_1002_oca_70005
crossref_primary_10_1007_s10957_025_02675_8
crossref_primary_10_1002_oca_70034
crossref_primary_10_1080_00207721_2025_2536210
crossref_primary_10_1007_s10791_025_09708_w
Cites_doi 10.1016/j.cnsns.2018.05.011
10.1016/j.camwa.2009.08.006
10.1109/JAS.2016.7510160
10.1007/s10957-021-01935-7
10.1016/j.automatica.2015.09.007
10.1016/j.cam.2015.04.049
10.1080/00207721.2022.2058640
10.1016/j.jksus.2019.02.010
10.1002/oca.2957
10.1002/oca.2715
10.1016/j.cam.2014.10.016
10.1002/oca.2877
10.1007/s40435-022-00978-6
10.1016/j.cam.2014.01.002
10.1007/s11071-004-3764-6
10.1007/s10957-023-02212-5
10.1007/s11590-022-01926-1
10.1177/1077546320933129
10.1021/ie00055a018
10.1016/j.amc.2021.126270
10.1140/epjp/s13360-021-01559-w
10.1017/S0334270000010936
10.1007/s10957-021-01926-8
10.1007/s10957-018-1418-y
10.1016/j.amc.2022.127094
10.1080/00207721.2021.1972357
10.1007/s10957-017-1163-7
10.1016/j.cam.2016.01.014
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cam.2024.116169
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_cam_2024_116169
S0377042724004187
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
5VS
9DU
AAFWJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EFLBG
EJD
FGOYB
G-2
HZ~
LG9
M26
M41
NHB
R2-
SSZ
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c297t-c86d8f4c76edd658bec332f0927b79074d5fec72c3a23e192493af8af3ad59f43
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001288019200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-0427
IngestDate Tue Nov 18 20:57:59 EST 2025
Sat Nov 29 06:39:25 EST 2025
Sat Aug 24 15:41:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Numerical integration
Numerical optimization
Optimal control
Conformable fractional derivative
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-c86d8f4c76edd658bec332f0927b79074d5fec72c3a23e192493af8af3ad59f43
ORCID 0000-0002-2229-6717
ParticipantIDs crossref_citationtrail_10_1016_j_cam_2024_116169
crossref_primary_10_1016_j_cam_2024_116169
elsevier_sciencedirect_doi_10_1016_j_cam_2024_116169
PublicationCentury 2000
PublicationDate 2025-01-15
PublicationDateYYYYMMDD 2025-01-15
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chung (b5) 2015; 290
Liu, Gong, Yu, Wang, Teo (b32) 2021; 191
Teo, Li, Yu, Rehbock (b36) 2021
Abdeljawd (b4) 2015; 279
Mu, Wang, Liu (b17) 2020; 187
Gong, Liu, Teo, Wang, Wu (b20) 2021; 405
Luus, Rosen (b34) 1991; 30
Salati, Shamsi, Torres (b15) 2019; 67
Ghanbari, Razzaghi (b24) 2022; 53
Tricaud, Chen (b13) 2010; 59
Wang, Li, Liu (b12) 2022; 43
Lazo, Torres (b28) 2017; 4
Yari (b22) 2021; 27
Chiranjeevi, Biswas (b30) 2022; 55
Liu, Yu, Gong, Cheong, Teo (b10) 2023; 197
Tang, Liu, Wang (b14) 2015; 62
Gong, Liu, Teo, Yi (b18) 2022; 425
Bayour, Torres (b31) 2017; 312
Li, Wang, Rehbock (b16) 2019; 180
Baleanu, António, Machado, Luo (b8) 2012
Kaviya, Muthukumar (b7) 2021; 136
Podlubny (b2) 1999
Agrawal (b11) 2004; 38
Liu, Gong, Wang, Teo (b21) 2023; 17
Heydari, Tavakoli, Razzaghi (b25) 2022; 53
Harir, Malliani, Chandli (b6) 2021; 2021
Dehestani, Ordokhani (b26) 2023; 44
Nocedal, Wright (b33) 2006
Naifar, Mskhlouf (b9) 2022
Khalil, Al Horani, Yousef, Sababheh (b3) 2014; 264
Liu, Gong, Teo, Wang (b19) 2022; 193
Dehestani, Ordokhani (b27) 2023; 11
Teo, Jennings, Lee, Rehbock (b35) 1999; 40
Chen, Sun, Li (b1) 2022
Hassani, Machado, Asl, Dahaghin (b23) 2021; 42
Chiranjeevi, Biswas (b29) 2019; 31
Khalil (10.1016/j.cam.2024.116169_b3) 2014; 264
Salati (10.1016/j.cam.2024.116169_b15) 2019; 67
Heydari (10.1016/j.cam.2024.116169_b25) 2022; 53
Naifar (10.1016/j.cam.2024.116169_b9) 2022
Mu (10.1016/j.cam.2024.116169_b17) 2020; 187
Hassani (10.1016/j.cam.2024.116169_b23) 2021; 42
Agrawal (10.1016/j.cam.2024.116169_b11) 2004; 38
Nocedal (10.1016/j.cam.2024.116169_b33) 2006
Chen (10.1016/j.cam.2024.116169_b1) 2022
Bayour (10.1016/j.cam.2024.116169_b31) 2017; 312
Gong (10.1016/j.cam.2024.116169_b18) 2022; 425
Chiranjeevi (10.1016/j.cam.2024.116169_b30) 2022; 55
Liu (10.1016/j.cam.2024.116169_b32) 2021; 191
Luus (10.1016/j.cam.2024.116169_b34) 1991; 30
Harir (10.1016/j.cam.2024.116169_b6) 2021; 2021
Liu (10.1016/j.cam.2024.116169_b19) 2022; 193
Baleanu (10.1016/j.cam.2024.116169_b8) 2012
Podlubny (10.1016/j.cam.2024.116169_b2) 1999
Liu (10.1016/j.cam.2024.116169_b10) 2023; 197
Abdeljawd (10.1016/j.cam.2024.116169_b4) 2015; 279
Tricaud (10.1016/j.cam.2024.116169_b13) 2010; 59
Gong (10.1016/j.cam.2024.116169_b20) 2021; 405
Yari (10.1016/j.cam.2024.116169_b22) 2021; 27
Kaviya (10.1016/j.cam.2024.116169_b7) 2021; 136
Teo (10.1016/j.cam.2024.116169_b36) 2021
Teo (10.1016/j.cam.2024.116169_b35) 1999; 40
Li (10.1016/j.cam.2024.116169_b16) 2019; 180
Wang (10.1016/j.cam.2024.116169_b12) 2022; 43
Liu (10.1016/j.cam.2024.116169_b21) 2023; 17
Tang (10.1016/j.cam.2024.116169_b14) 2015; 62
Chiranjeevi (10.1016/j.cam.2024.116169_b29) 2019; 31
Dehestani (10.1016/j.cam.2024.116169_b26) 2023; 44
Chung (10.1016/j.cam.2024.116169_b5) 2015; 290
Lazo (10.1016/j.cam.2024.116169_b28) 2017; 4
Ghanbari (10.1016/j.cam.2024.116169_b24) 2022; 53
Dehestani (10.1016/j.cam.2024.116169_b27) 2023; 11
References_xml – year: 2021
  ident: b36
  article-title: Applied and Computational Optimal Control
– year: 2022
  ident: b1
  article-title: Fractional Derivative Modeling in Mechanics and Engineering
– volume: 264
  start-page: 65
  year: 2014
  end-page: 70
  ident: b3
  article-title: A new definition of fractional derivative
  publication-title: J. Comput. Appl. Math.
– volume: 193
  start-page: 856
  year: 2022
  end-page: 876
  ident: b19
  article-title: Optimal control of nonlinear fractional-order systems with multiple time-varying delays
  publication-title: J. Optim. Theory Appl.
– volume: 425
  year: 2022
  ident: b18
  article-title: Optimal control of nonlinear fractional systems with multiple pantograph-delays
  publication-title: Appl. Math. Comput.
– volume: 2021
  year: 2021
  ident: b6
  article-title: Solutions of conformable fractional-order SIR epidemic model
  publication-title: Int. J. Differ. Equ.
– volume: 55
  start-page: 643
  year: 2022
  end-page: 648
  ident: b30
  article-title: Application of conformable fractional differential transform method for fractional optimal control problems
  publication-title: IFAC Pap.
– volume: 180
  start-page: 556
  year: 2019
  end-page: 573
  ident: b16
  article-title: Numerical solution of fractional optimal control
  publication-title: J. Optim. Theory Appl.
– volume: 62
  start-page: 304
  year: 2015
  end-page: 311
  ident: b14
  article-title: Integral fractional pseudospectral methods for solving fractional optimal control problems
  publication-title: Automatica
– volume: 67
  start-page: 334
  year: 2019
  end-page: 350
  ident: b15
  article-title: Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 191
  start-page: 83
  year: 2021
  end-page: 117
  ident: b32
  article-title: Optimal control computation for nonlinear fractional time-delay systems with state inequality constraints
  publication-title: J. Optim. Theory Appl.
– volume: 17
  start-page: 1359
  year: 2023
  end-page: 1378
  ident: b21
  article-title: Numerical solution of delay fractional optimal control problems with free terminal time
  publication-title: Optim. Lett.
– volume: 405
  year: 2021
  ident: b20
  article-title: Numerical solution of free final time fractional optimal control problems
  publication-title: Appl. Math. Comput.
– volume: 290
  start-page: 150
  year: 2015
  end-page: 158
  ident: b5
  article-title: Fractional Newton mechanics with conformable fractional derivative
  publication-title: J. Comput. Appl. Math.
– volume: 53
  start-page: 778
  year: 2022
  end-page: 792
  ident: b24
  article-title: Numerical solutions for fractional optimal control problems by using generalised fractional-order Chebyshev wavelets
  publication-title: Int. J. Syst. Sci.
– volume: 187
  start-page: 234
  year: 2020
  end-page: 247
  ident: b17
  article-title: A control parameterization method to solve the fractional-order optimal control problem
  publication-title: J. Optim. Theory Appl.
– volume: 31
  start-page: 1042
  year: 2019
  end-page: 1047
  ident: b29
  article-title: Close-form solution of optimal control problem of a fractional order system
  publication-title: J. King Saud Univ. Sci.
– volume: 312
  start-page: 127
  year: 2017
  end-page: 133
  ident: b31
  article-title: Existence of solution to a local fractional nonlinear differential equations
  publication-title: J. Comput. Appl. Math.
– volume: 40
  start-page: 314
  year: 1999
  end-page: 335
  ident: b35
  article-title: The control parameterization enhancing transform for constrained optimal control problems
  publication-title: J. Aust. Math. Soc.
– year: 2012
  ident: b8
  article-title: Fractional Dynamics and Control
– volume: 44
  start-page: 1873
  year: 2023
  end-page: 1892
  ident: b26
  article-title: A numerical study on fractional optimal control problems described by Caputo–Fabrizio fractional integro-differential equation
  publication-title: Optim. Control Appl. Methods
– volume: 53
  start-page: 2694
  year: 2022
  end-page: 2708
  ident: b25
  article-title: Application of the extended Chebyshev cardinal wavelets in solving fractional optimal control problems with ABC fractional derivative
  publication-title: Int. J. Syst. Sci.
– volume: 4
  start-page: 340
  year: 2017
  end-page: 352
  ident: b28
  article-title: Variational calculus with conformable fractional derivatives
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 43
  start-page: 1096
  year: 2022
  end-page: 1108
  ident: b12
  article-title: On necessary optimality conditions and exact penalization for a constrained fractional optimal control problem
  publication-title: Optim. Control Appl. Methods
– year: 2022
  ident: b9
  article-title: Fractional Order Systems– Control Theory and Applications
– volume: 27
  start-page: 689
  year: 2021
  end-page: 716
  ident: b22
  article-title: Numerical solution for fractional optimal control problems by Hermite polynomials
  publication-title: J. Vib. Control
– volume: 279
  start-page: 57
  year: 2015
  end-page: 66
  ident: b4
  article-title: On conformable fractional calculus
  publication-title: J. Comput. Appl. Math.
– year: 2006
  ident: b33
  article-title: Numerical Optimization
– volume: 136
  start-page: 542
  year: 2021
  ident: b7
  article-title: Dynamical analysis and optimal harvesting of conformable fractional prey-predator system with predator immigration
  publication-title: Eur. Phys. J. Plus
– volume: 11
  start-page: 229
  year: 2023
  end-page: 241
  ident: b27
  article-title: An optimum method for fractal-fractional optimal control and variational problems
  publication-title: Int. J. Dyn. Control
– volume: 30
  start-page: 1525
  year: 1991
  end-page: 1530
  ident: b34
  article-title: Application of dynamic programming to final state constrained optimal control problems
  publication-title: Ind. Eng. Chem. Res.
– volume: 59
  start-page: 1644
  year: 2010
  end-page: 1655
  ident: b13
  article-title: An approximate method for numerically solving fractional order optimal control problems of general form
  publication-title: Comput. Math. Appl.
– volume: 42
  start-page: 1045
  year: 2021
  end-page: 1063
  ident: b23
  article-title: Numerical solution of nonlinear fractional optimal control problems using generalized Bernoulli polynomials
  publication-title: Optim. Control Appl. Methods
– volume: 38
  start-page: 323
  year: 2004
  end-page: 337
  ident: b11
  article-title: A general formulation and solution scheme for fractional optimal control problems
  publication-title: Nonlinear Dynam.
– year: 1999
  ident: b2
  article-title: Fractional Differential Equations
– volume: 197
  start-page: 798
  year: 2023
  end-page: 816
  ident: b10
  article-title: Numerical computation of optimal control problems with Atangana-Baleanu fractional derivatives
  publication-title: J. Optim. Theory Appl.
– volume: 67
  start-page: 334
  year: 2019
  ident: 10.1016/j.cam.2024.116169_b15
  article-title: Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2018.05.011
– year: 2006
  ident: 10.1016/j.cam.2024.116169_b33
– volume: 59
  start-page: 1644
  year: 2010
  ident: 10.1016/j.cam.2024.116169_b13
  article-title: An approximate method for numerically solving fractional order optimal control problems of general form
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.08.006
– volume: 4
  start-page: 340
  year: 2017
  ident: 10.1016/j.cam.2024.116169_b28
  article-title: Variational calculus with conformable fractional derivatives
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2016.7510160
– volume: 193
  start-page: 856
  year: 2022
  ident: 10.1016/j.cam.2024.116169_b19
  article-title: Optimal control of nonlinear fractional-order systems with multiple time-varying delays
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-021-01935-7
– year: 2022
  ident: 10.1016/j.cam.2024.116169_b9
– volume: 62
  start-page: 304
  year: 2015
  ident: 10.1016/j.cam.2024.116169_b14
  article-title: Integral fractional pseudospectral methods for solving fractional optimal control problems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.09.007
– volume: 290
  start-page: 150
  year: 2015
  ident: 10.1016/j.cam.2024.116169_b5
  article-title: Fractional Newton mechanics with conformable fractional derivative
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2015.04.049
– volume: 53
  start-page: 2694
  year: 2022
  ident: 10.1016/j.cam.2024.116169_b25
  article-title: Application of the extended Chebyshev cardinal wavelets in solving fractional optimal control problems with ABC fractional derivative
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207721.2022.2058640
– volume: 31
  start-page: 1042
  year: 2019
  ident: 10.1016/j.cam.2024.116169_b29
  article-title: Close-form solution of optimal control problem of a fractional order system
  publication-title: J. King Saud Univ. Sci.
  doi: 10.1016/j.jksus.2019.02.010
– volume: 44
  start-page: 1873
  year: 2023
  ident: 10.1016/j.cam.2024.116169_b26
  article-title: A numerical study on fractional optimal control problems described by Caputo–Fabrizio fractional integro-differential equation
  publication-title: Optim. Control Appl. Methods
  doi: 10.1002/oca.2957
– volume: 55
  start-page: 643
  year: 2022
  ident: 10.1016/j.cam.2024.116169_b30
  article-title: Application of conformable fractional differential transform method for fractional optimal control problems
  publication-title: IFAC Pap.
– volume: 42
  start-page: 1045
  year: 2021
  ident: 10.1016/j.cam.2024.116169_b23
  article-title: Numerical solution of nonlinear fractional optimal control problems using generalized Bernoulli polynomials
  publication-title: Optim. Control Appl. Methods
  doi: 10.1002/oca.2715
– year: 2022
  ident: 10.1016/j.cam.2024.116169_b1
– volume: 279
  start-page: 57
  year: 2015
  ident: 10.1016/j.cam.2024.116169_b4
  article-title: On conformable fractional calculus
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2014.10.016
– volume: 43
  start-page: 1096
  year: 2022
  ident: 10.1016/j.cam.2024.116169_b12
  article-title: On necessary optimality conditions and exact penalization for a constrained fractional optimal control problem
  publication-title: Optim. Control Appl. Methods
  doi: 10.1002/oca.2877
– volume: 11
  start-page: 229
  year: 2023
  ident: 10.1016/j.cam.2024.116169_b27
  article-title: An optimum method for fractal-fractional optimal control and variational problems
  publication-title: Int. J. Dyn. Control
  doi: 10.1007/s40435-022-00978-6
– volume: 264
  start-page: 65
  year: 2014
  ident: 10.1016/j.cam.2024.116169_b3
  article-title: A new definition of fractional derivative
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2014.01.002
– volume: 38
  start-page: 323
  year: 2004
  ident: 10.1016/j.cam.2024.116169_b11
  article-title: A general formulation and solution scheme for fractional optimal control problems
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-004-3764-6
– volume: 197
  start-page: 798
  year: 2023
  ident: 10.1016/j.cam.2024.116169_b10
  article-title: Numerical computation of optimal control problems with Atangana-Baleanu fractional derivatives
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-023-02212-5
– volume: 17
  start-page: 1359
  year: 2023
  ident: 10.1016/j.cam.2024.116169_b21
  article-title: Numerical solution of delay fractional optimal control problems with free terminal time
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-022-01926-1
– year: 1999
  ident: 10.1016/j.cam.2024.116169_b2
– volume: 2021
  year: 2021
  ident: 10.1016/j.cam.2024.116169_b6
  article-title: Solutions of conformable fractional-order SIR epidemic model
  publication-title: Int. J. Differ. Equ.
– volume: 27
  start-page: 689
  year: 2021
  ident: 10.1016/j.cam.2024.116169_b22
  article-title: Numerical solution for fractional optimal control problems by Hermite polynomials
  publication-title: J. Vib. Control
  doi: 10.1177/1077546320933129
– volume: 30
  start-page: 1525
  year: 1991
  ident: 10.1016/j.cam.2024.116169_b34
  article-title: Application of dynamic programming to final state constrained optimal control problems
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00055a018
– volume: 405
  year: 2021
  ident: 10.1016/j.cam.2024.116169_b20
  article-title: Numerical solution of free final time fractional optimal control problems
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2021.126270
– volume: 136
  start-page: 542
  year: 2021
  ident: 10.1016/j.cam.2024.116169_b7
  article-title: Dynamical analysis and optimal harvesting of conformable fractional prey-predator system with predator immigration
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-021-01559-w
– volume: 40
  start-page: 314
  year: 1999
  ident: 10.1016/j.cam.2024.116169_b35
  article-title: The control parameterization enhancing transform for constrained optimal control problems
  publication-title: J. Aust. Math. Soc.
  doi: 10.1017/S0334270000010936
– volume: 191
  start-page: 83
  year: 2021
  ident: 10.1016/j.cam.2024.116169_b32
  article-title: Optimal control computation for nonlinear fractional time-delay systems with state inequality constraints
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-021-01926-8
– year: 2012
  ident: 10.1016/j.cam.2024.116169_b8
– volume: 180
  start-page: 556
  year: 2019
  ident: 10.1016/j.cam.2024.116169_b16
  article-title: Numerical solution of fractional optimal control
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-018-1418-y
– volume: 425
  year: 2022
  ident: 10.1016/j.cam.2024.116169_b18
  article-title: Optimal control of nonlinear fractional systems with multiple pantograph-delays
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2022.127094
– volume: 53
  start-page: 778
  year: 2022
  ident: 10.1016/j.cam.2024.116169_b24
  article-title: Numerical solutions for fractional optimal control problems by using generalised fractional-order Chebyshev wavelets
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207721.2021.1972357
– year: 2021
  ident: 10.1016/j.cam.2024.116169_b36
– volume: 187
  start-page: 234
  year: 2020
  ident: 10.1016/j.cam.2024.116169_b17
  article-title: A control parameterization method to solve the fractional-order optimal control problem
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-017-1163-7
– volume: 312
  start-page: 127
  year: 2017
  ident: 10.1016/j.cam.2024.116169_b31
  article-title: Existence of solution to a local fractional nonlinear differential equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2016.01.014
SSID ssj0006914
Score 2.4839816
Snippet In this paper, we solve numerically a class of fractional optimal control problems in the conformable sense. We first propose a nonlinear fractional optimal...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 116169
SubjectTerms Conformable fractional derivative
Numerical integration
Numerical optimization
Optimal control
Title A gradient-based optimization algorithm to solve optimal control problems with conformable fractional-order derivatives
URI https://dx.doi.org/10.1016/j.cam.2024.116169
Volume 454
WOSCitedRecordID wos001288019200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0377-0427
  databaseCode: AIEXJ
  dateStart: 20211212
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006914
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE_t8pIPnIgspYkTx8cKLc-yQmKBwiVyHXvbpU1W3bQsP4L_zPiRNLSAAIlDoih-NPJ88oyn38wg9Mhs-3CqYEQWCSdU84JMuB6QiMkwlTxJIptL7_2IHR1l4zF_0-t9a2Jh1nNWltnFBT_7r6KGdyBsEzr7F-JuJ4UX8AxChzuIHe5_JPhhcLK0PK6aGBVVBBXsCgsfbhmI-Um1nNXThTE64UPWyrXbNCGOte5rzJy3tHRr15oIK710YRBiTmzKzgAuWx1t7ZmIu1autFUjGo-jzQzr7d5FmzC2NeufeX7wp6mopqtWYYxmK8cMgOavwqtay4e2ft5X1edgtOECfbCdP0Jf07_r1YgMgZC4uE7natsJt3EhXgAqUxyku31Tl4R6RxU4r8QpHPNNwoGIgnJIB64szFaG7bdmXjOt4dPSQcYuob2IJTzro73hi8Pxy1a1p9wli2--o_mb3BIGt37o54ZOx3g5vo6ueXngoUPLDdRT5U109fVGArfQlyH-ETe4ixvc4gbXFba4wR432OMGN7jBBje4gxu8jRvcwc1t9O7p4fGT58RX5SAy4qwmMkuLTFPJUlUUYL_CJhDHkQ55xCbMuFqKRCvJIhmLKFb2fB8LnQkdC9gONI3voH5ZlWof4RCapU6VkpmiQoaTOBZUpzGdKDUQlB6gsFnCXPqU9aZyyjxvuImnOax6blY9d6t-gB63Q85cvpbfdaaNXHJvcDpDMgcQ_XrY3X8bdg9d2SD9PurXy5V6gC7LdT07Xz70UPsOTp-sbQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+gradient-based+optimization+algorithm+to+solve+optimal+control+problems+with+conformable+fractional-order+derivatives&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Gong%2C+Zhaohua&rft.au=Liu%2C+Chongyang&rft.au=Teo%2C+Kok+Lay&rft.au=Wu%2C+Yonghong&rft.date=2025-01-15&rft.pub=Elsevier+B.V&rft.issn=0377-0427&rft.volume=454&rft_id=info:doi/10.1016%2Fj.cam.2024.116169&rft.externalDocID=S0377042724004187
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon