A gradient-based optimization algorithm to solve optimal control problems with conformable fractional-order derivatives
In this paper, we solve numerically a class of fractional optimal control problems in the conformable sense. We first propose a nonlinear fractional optimal control problem subject to general equality and inequality constraints. Then, based on a novel numerical integration scheme, we present a discr...
Uloženo v:
| Vydáno v: | Journal of computational and applied mathematics Ročník 454; s. 116169 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
15.01.2025
|
| Témata: | |
| ISSN: | 0377-0427 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we solve numerically a class of fractional optimal control problems in the conformable sense. We first propose a nonlinear fractional optimal control problem subject to general equality and inequality constraints. Then, based on a novel numerical integration scheme, we present a discretization method for the governed fractional-order system as well as the cost and constraint functionals, which yields a discretized approximate problem. We further derive the gradients of the cost and constraint functionals in regard to the discretized controls. On the basis of this result, a numerical optimization approach to solve the approximate problem is developed. Finally, three non-trivial example problems are solved to illustrate the applicability and effectiveness of the developed approach. |
|---|---|
| AbstractList | In this paper, we solve numerically a class of fractional optimal control problems in the conformable sense. We first propose a nonlinear fractional optimal control problem subject to general equality and inequality constraints. Then, based on a novel numerical integration scheme, we present a discretization method for the governed fractional-order system as well as the cost and constraint functionals, which yields a discretized approximate problem. We further derive the gradients of the cost and constraint functionals in regard to the discretized controls. On the basis of this result, a numerical optimization approach to solve the approximate problem is developed. Finally, three non-trivial example problems are solved to illustrate the applicability and effectiveness of the developed approach. |
| ArticleNumber | 116169 |
| Author | Gong, Zhaohua Liu, Chongyang Wu, Yonghong Teo, Kok Lay |
| Author_xml | – sequence: 1 givenname: Zhaohua surname: Gong fullname: Gong, Zhaohua organization: School of Mathematics and Information Science, Shandong Technology and Business University, Yantai 264005, China – sequence: 2 givenname: Chongyang orcidid: 0000-0002-2229-6717 surname: Liu fullname: Liu, Chongyang email: chongyangliu@aliyun.com organization: School of Mathematics and Information Science, Shandong Technology and Business University, Yantai 264005, China – sequence: 3 givenname: Kok Lay surname: Teo fullname: Teo, Kok Lay organization: School of Mathematical Sciences, Sunway University, Kuala Lumpur 47500, Malaysia – sequence: 4 givenname: Yonghong surname: Wu fullname: Wu, Yonghong organization: School of Electrical Engineering, Computing, and Mathematical Sciences, Curtin University, Perth 6845, Australia |
| BookMark | eNp9kL1uwyAURhlSqUnaB-jGC9gF7BhbnaKof1KkLu2MMFxSIttEgBy1T19cd-qQ4epKF84nfWeFFoMbAKE7SnJKaHV_zJXsc0ZYmVNa0apZoCUpOM9Iyfg1WoVwJIRUDS2X6LzFBy-1hSFmrQygsTtF29tvGa0bsOwOztv42ePocHDdCPO77LByQ_Suwyfv2g76gM_p33Q1zvcynbDxUk0pssuc1-BxGjum4BHCDboysgtw-7fX6OPp8X33ku3fnl93232mWMNjpupK16ZUvAKtq03dgioKZkjDeMsbwku9MaA4U4VkBdCGlU0hTS1NIfWmMWWxRnzOVd6F4MEIZeNvt-il7QQlYnImjiI5E5MzMTtLJP1Hnnwq7r8uMg8zA6nSaMGLoJJaBdp6UFFoZy_QPy8gjIo |
| CitedBy_id | crossref_primary_10_3390_coatings14121586 crossref_primary_10_1109_ACCESS_2025_3595958 crossref_primary_10_1016_j_cam_2025_116526 crossref_primary_10_1016_j_cam_2025_116814 crossref_primary_10_1002_oca_70005 crossref_primary_10_1007_s10957_025_02675_8 crossref_primary_10_1002_oca_70034 crossref_primary_10_1080_00207721_2025_2536210 crossref_primary_10_1007_s10791_025_09708_w |
| Cites_doi | 10.1016/j.cnsns.2018.05.011 10.1016/j.camwa.2009.08.006 10.1109/JAS.2016.7510160 10.1007/s10957-021-01935-7 10.1016/j.automatica.2015.09.007 10.1016/j.cam.2015.04.049 10.1080/00207721.2022.2058640 10.1016/j.jksus.2019.02.010 10.1002/oca.2957 10.1002/oca.2715 10.1016/j.cam.2014.10.016 10.1002/oca.2877 10.1007/s40435-022-00978-6 10.1016/j.cam.2014.01.002 10.1007/s11071-004-3764-6 10.1007/s10957-023-02212-5 10.1007/s11590-022-01926-1 10.1177/1077546320933129 10.1021/ie00055a018 10.1016/j.amc.2021.126270 10.1140/epjp/s13360-021-01559-w 10.1017/S0334270000010936 10.1007/s10957-021-01926-8 10.1007/s10957-018-1418-y 10.1016/j.amc.2022.127094 10.1080/00207721.2021.1972357 10.1007/s10957-017-1163-7 10.1016/j.cam.2016.01.014 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cam.2024.116169 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| ExternalDocumentID | 10_1016_j_cam_2024_116169 S0377042724004187 |
| GroupedDBID | --K --M -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW T5K TN5 UPT XPP YQT ZMT ~02 ~G- 29K 5VS 9DU AAFWJ AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AEXQZ AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION D-I EFKBS EFLBG EJD FGOYB G-2 HZ~ LG9 M26 M41 NHB R2- SSZ WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c297t-c86d8f4c76edd658bec332f0927b79074d5fec72c3a23e192493af8af3ad59f43 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001288019200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-0427 |
| IngestDate | Tue Nov 18 20:57:59 EST 2025 Sat Nov 29 06:39:25 EST 2025 Sat Aug 24 15:41:38 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Numerical integration Numerical optimization Optimal control Conformable fractional derivative |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-c86d8f4c76edd658bec332f0927b79074d5fec72c3a23e192493af8af3ad59f43 |
| ORCID | 0000-0002-2229-6717 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cam_2024_116169 crossref_primary_10_1016_j_cam_2024_116169 elsevier_sciencedirect_doi_10_1016_j_cam_2024_116169 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-15 |
| PublicationDateYYYYMMDD | 2025-01-15 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of computational and applied mathematics |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Chung (b5) 2015; 290 Liu, Gong, Yu, Wang, Teo (b32) 2021; 191 Teo, Li, Yu, Rehbock (b36) 2021 Abdeljawd (b4) 2015; 279 Mu, Wang, Liu (b17) 2020; 187 Gong, Liu, Teo, Wang, Wu (b20) 2021; 405 Luus, Rosen (b34) 1991; 30 Salati, Shamsi, Torres (b15) 2019; 67 Ghanbari, Razzaghi (b24) 2022; 53 Tricaud, Chen (b13) 2010; 59 Wang, Li, Liu (b12) 2022; 43 Lazo, Torres (b28) 2017; 4 Yari (b22) 2021; 27 Chiranjeevi, Biswas (b30) 2022; 55 Liu, Yu, Gong, Cheong, Teo (b10) 2023; 197 Tang, Liu, Wang (b14) 2015; 62 Gong, Liu, Teo, Yi (b18) 2022; 425 Bayour, Torres (b31) 2017; 312 Li, Wang, Rehbock (b16) 2019; 180 Baleanu, António, Machado, Luo (b8) 2012 Kaviya, Muthukumar (b7) 2021; 136 Podlubny (b2) 1999 Agrawal (b11) 2004; 38 Liu, Gong, Wang, Teo (b21) 2023; 17 Heydari, Tavakoli, Razzaghi (b25) 2022; 53 Harir, Malliani, Chandli (b6) 2021; 2021 Dehestani, Ordokhani (b26) 2023; 44 Nocedal, Wright (b33) 2006 Naifar, Mskhlouf (b9) 2022 Khalil, Al Horani, Yousef, Sababheh (b3) 2014; 264 Liu, Gong, Teo, Wang (b19) 2022; 193 Dehestani, Ordokhani (b27) 2023; 11 Teo, Jennings, Lee, Rehbock (b35) 1999; 40 Chen, Sun, Li (b1) 2022 Hassani, Machado, Asl, Dahaghin (b23) 2021; 42 Chiranjeevi, Biswas (b29) 2019; 31 Khalil (10.1016/j.cam.2024.116169_b3) 2014; 264 Salati (10.1016/j.cam.2024.116169_b15) 2019; 67 Heydari (10.1016/j.cam.2024.116169_b25) 2022; 53 Naifar (10.1016/j.cam.2024.116169_b9) 2022 Mu (10.1016/j.cam.2024.116169_b17) 2020; 187 Hassani (10.1016/j.cam.2024.116169_b23) 2021; 42 Agrawal (10.1016/j.cam.2024.116169_b11) 2004; 38 Nocedal (10.1016/j.cam.2024.116169_b33) 2006 Chen (10.1016/j.cam.2024.116169_b1) 2022 Bayour (10.1016/j.cam.2024.116169_b31) 2017; 312 Gong (10.1016/j.cam.2024.116169_b18) 2022; 425 Chiranjeevi (10.1016/j.cam.2024.116169_b30) 2022; 55 Liu (10.1016/j.cam.2024.116169_b32) 2021; 191 Luus (10.1016/j.cam.2024.116169_b34) 1991; 30 Harir (10.1016/j.cam.2024.116169_b6) 2021; 2021 Liu (10.1016/j.cam.2024.116169_b19) 2022; 193 Baleanu (10.1016/j.cam.2024.116169_b8) 2012 Podlubny (10.1016/j.cam.2024.116169_b2) 1999 Liu (10.1016/j.cam.2024.116169_b10) 2023; 197 Abdeljawd (10.1016/j.cam.2024.116169_b4) 2015; 279 Tricaud (10.1016/j.cam.2024.116169_b13) 2010; 59 Gong (10.1016/j.cam.2024.116169_b20) 2021; 405 Yari (10.1016/j.cam.2024.116169_b22) 2021; 27 Kaviya (10.1016/j.cam.2024.116169_b7) 2021; 136 Teo (10.1016/j.cam.2024.116169_b36) 2021 Teo (10.1016/j.cam.2024.116169_b35) 1999; 40 Li (10.1016/j.cam.2024.116169_b16) 2019; 180 Wang (10.1016/j.cam.2024.116169_b12) 2022; 43 Liu (10.1016/j.cam.2024.116169_b21) 2023; 17 Tang (10.1016/j.cam.2024.116169_b14) 2015; 62 Chiranjeevi (10.1016/j.cam.2024.116169_b29) 2019; 31 Dehestani (10.1016/j.cam.2024.116169_b26) 2023; 44 Chung (10.1016/j.cam.2024.116169_b5) 2015; 290 Lazo (10.1016/j.cam.2024.116169_b28) 2017; 4 Ghanbari (10.1016/j.cam.2024.116169_b24) 2022; 53 Dehestani (10.1016/j.cam.2024.116169_b27) 2023; 11 |
| References_xml | – year: 2021 ident: b36 article-title: Applied and Computational Optimal Control – year: 2022 ident: b1 article-title: Fractional Derivative Modeling in Mechanics and Engineering – volume: 264 start-page: 65 year: 2014 end-page: 70 ident: b3 article-title: A new definition of fractional derivative publication-title: J. Comput. Appl. Math. – volume: 193 start-page: 856 year: 2022 end-page: 876 ident: b19 article-title: Optimal control of nonlinear fractional-order systems with multiple time-varying delays publication-title: J. Optim. Theory Appl. – volume: 425 year: 2022 ident: b18 article-title: Optimal control of nonlinear fractional systems with multiple pantograph-delays publication-title: Appl. Math. Comput. – volume: 2021 year: 2021 ident: b6 article-title: Solutions of conformable fractional-order SIR epidemic model publication-title: Int. J. Differ. Equ. – volume: 55 start-page: 643 year: 2022 end-page: 648 ident: b30 article-title: Application of conformable fractional differential transform method for fractional optimal control problems publication-title: IFAC Pap. – volume: 180 start-page: 556 year: 2019 end-page: 573 ident: b16 article-title: Numerical solution of fractional optimal control publication-title: J. Optim. Theory Appl. – volume: 62 start-page: 304 year: 2015 end-page: 311 ident: b14 article-title: Integral fractional pseudospectral methods for solving fractional optimal control problems publication-title: Automatica – volume: 67 start-page: 334 year: 2019 end-page: 350 ident: b15 article-title: Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 191 start-page: 83 year: 2021 end-page: 117 ident: b32 article-title: Optimal control computation for nonlinear fractional time-delay systems with state inequality constraints publication-title: J. Optim. Theory Appl. – volume: 17 start-page: 1359 year: 2023 end-page: 1378 ident: b21 article-title: Numerical solution of delay fractional optimal control problems with free terminal time publication-title: Optim. Lett. – volume: 405 year: 2021 ident: b20 article-title: Numerical solution of free final time fractional optimal control problems publication-title: Appl. Math. Comput. – volume: 290 start-page: 150 year: 2015 end-page: 158 ident: b5 article-title: Fractional Newton mechanics with conformable fractional derivative publication-title: J. Comput. Appl. Math. – volume: 53 start-page: 778 year: 2022 end-page: 792 ident: b24 article-title: Numerical solutions for fractional optimal control problems by using generalised fractional-order Chebyshev wavelets publication-title: Int. J. Syst. Sci. – volume: 187 start-page: 234 year: 2020 end-page: 247 ident: b17 article-title: A control parameterization method to solve the fractional-order optimal control problem publication-title: J. Optim. Theory Appl. – volume: 31 start-page: 1042 year: 2019 end-page: 1047 ident: b29 article-title: Close-form solution of optimal control problem of a fractional order system publication-title: J. King Saud Univ. Sci. – volume: 312 start-page: 127 year: 2017 end-page: 133 ident: b31 article-title: Existence of solution to a local fractional nonlinear differential equations publication-title: J. Comput. Appl. Math. – volume: 40 start-page: 314 year: 1999 end-page: 335 ident: b35 article-title: The control parameterization enhancing transform for constrained optimal control problems publication-title: J. Aust. Math. Soc. – year: 2012 ident: b8 article-title: Fractional Dynamics and Control – volume: 44 start-page: 1873 year: 2023 end-page: 1892 ident: b26 article-title: A numerical study on fractional optimal control problems described by Caputo–Fabrizio fractional integro-differential equation publication-title: Optim. Control Appl. Methods – volume: 53 start-page: 2694 year: 2022 end-page: 2708 ident: b25 article-title: Application of the extended Chebyshev cardinal wavelets in solving fractional optimal control problems with ABC fractional derivative publication-title: Int. J. Syst. Sci. – volume: 4 start-page: 340 year: 2017 end-page: 352 ident: b28 article-title: Variational calculus with conformable fractional derivatives publication-title: IEEE/CAA J. Autom. Sin. – volume: 43 start-page: 1096 year: 2022 end-page: 1108 ident: b12 article-title: On necessary optimality conditions and exact penalization for a constrained fractional optimal control problem publication-title: Optim. Control Appl. Methods – year: 2022 ident: b9 article-title: Fractional Order Systems– Control Theory and Applications – volume: 27 start-page: 689 year: 2021 end-page: 716 ident: b22 article-title: Numerical solution for fractional optimal control problems by Hermite polynomials publication-title: J. Vib. Control – volume: 279 start-page: 57 year: 2015 end-page: 66 ident: b4 article-title: On conformable fractional calculus publication-title: J. Comput. Appl. Math. – year: 2006 ident: b33 article-title: Numerical Optimization – volume: 136 start-page: 542 year: 2021 ident: b7 article-title: Dynamical analysis and optimal harvesting of conformable fractional prey-predator system with predator immigration publication-title: Eur. Phys. J. Plus – volume: 11 start-page: 229 year: 2023 end-page: 241 ident: b27 article-title: An optimum method for fractal-fractional optimal control and variational problems publication-title: Int. J. Dyn. Control – volume: 30 start-page: 1525 year: 1991 end-page: 1530 ident: b34 article-title: Application of dynamic programming to final state constrained optimal control problems publication-title: Ind. Eng. Chem. Res. – volume: 59 start-page: 1644 year: 2010 end-page: 1655 ident: b13 article-title: An approximate method for numerically solving fractional order optimal control problems of general form publication-title: Comput. Math. Appl. – volume: 42 start-page: 1045 year: 2021 end-page: 1063 ident: b23 article-title: Numerical solution of nonlinear fractional optimal control problems using generalized Bernoulli polynomials publication-title: Optim. Control Appl. Methods – volume: 38 start-page: 323 year: 2004 end-page: 337 ident: b11 article-title: A general formulation and solution scheme for fractional optimal control problems publication-title: Nonlinear Dynam. – year: 1999 ident: b2 article-title: Fractional Differential Equations – volume: 197 start-page: 798 year: 2023 end-page: 816 ident: b10 article-title: Numerical computation of optimal control problems with Atangana-Baleanu fractional derivatives publication-title: J. Optim. Theory Appl. – volume: 67 start-page: 334 year: 2019 ident: 10.1016/j.cam.2024.116169_b15 article-title: Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2018.05.011 – year: 2006 ident: 10.1016/j.cam.2024.116169_b33 – volume: 59 start-page: 1644 year: 2010 ident: 10.1016/j.cam.2024.116169_b13 article-title: An approximate method for numerically solving fractional order optimal control problems of general form publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2009.08.006 – volume: 4 start-page: 340 year: 2017 ident: 10.1016/j.cam.2024.116169_b28 article-title: Variational calculus with conformable fractional derivatives publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2016.7510160 – volume: 193 start-page: 856 year: 2022 ident: 10.1016/j.cam.2024.116169_b19 article-title: Optimal control of nonlinear fractional-order systems with multiple time-varying delays publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-021-01935-7 – year: 2022 ident: 10.1016/j.cam.2024.116169_b9 – volume: 62 start-page: 304 year: 2015 ident: 10.1016/j.cam.2024.116169_b14 article-title: Integral fractional pseudospectral methods for solving fractional optimal control problems publication-title: Automatica doi: 10.1016/j.automatica.2015.09.007 – volume: 290 start-page: 150 year: 2015 ident: 10.1016/j.cam.2024.116169_b5 article-title: Fractional Newton mechanics with conformable fractional derivative publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2015.04.049 – volume: 53 start-page: 2694 year: 2022 ident: 10.1016/j.cam.2024.116169_b25 article-title: Application of the extended Chebyshev cardinal wavelets in solving fractional optimal control problems with ABC fractional derivative publication-title: Int. J. Syst. Sci. doi: 10.1080/00207721.2022.2058640 – volume: 31 start-page: 1042 year: 2019 ident: 10.1016/j.cam.2024.116169_b29 article-title: Close-form solution of optimal control problem of a fractional order system publication-title: J. King Saud Univ. Sci. doi: 10.1016/j.jksus.2019.02.010 – volume: 44 start-page: 1873 year: 2023 ident: 10.1016/j.cam.2024.116169_b26 article-title: A numerical study on fractional optimal control problems described by Caputo–Fabrizio fractional integro-differential equation publication-title: Optim. Control Appl. Methods doi: 10.1002/oca.2957 – volume: 55 start-page: 643 year: 2022 ident: 10.1016/j.cam.2024.116169_b30 article-title: Application of conformable fractional differential transform method for fractional optimal control problems publication-title: IFAC Pap. – volume: 42 start-page: 1045 year: 2021 ident: 10.1016/j.cam.2024.116169_b23 article-title: Numerical solution of nonlinear fractional optimal control problems using generalized Bernoulli polynomials publication-title: Optim. Control Appl. Methods doi: 10.1002/oca.2715 – year: 2022 ident: 10.1016/j.cam.2024.116169_b1 – volume: 279 start-page: 57 year: 2015 ident: 10.1016/j.cam.2024.116169_b4 article-title: On conformable fractional calculus publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2014.10.016 – volume: 43 start-page: 1096 year: 2022 ident: 10.1016/j.cam.2024.116169_b12 article-title: On necessary optimality conditions and exact penalization for a constrained fractional optimal control problem publication-title: Optim. Control Appl. Methods doi: 10.1002/oca.2877 – volume: 11 start-page: 229 year: 2023 ident: 10.1016/j.cam.2024.116169_b27 article-title: An optimum method for fractal-fractional optimal control and variational problems publication-title: Int. J. Dyn. Control doi: 10.1007/s40435-022-00978-6 – volume: 264 start-page: 65 year: 2014 ident: 10.1016/j.cam.2024.116169_b3 article-title: A new definition of fractional derivative publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2014.01.002 – volume: 38 start-page: 323 year: 2004 ident: 10.1016/j.cam.2024.116169_b11 article-title: A general formulation and solution scheme for fractional optimal control problems publication-title: Nonlinear Dynam. doi: 10.1007/s11071-004-3764-6 – volume: 197 start-page: 798 year: 2023 ident: 10.1016/j.cam.2024.116169_b10 article-title: Numerical computation of optimal control problems with Atangana-Baleanu fractional derivatives publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-023-02212-5 – volume: 17 start-page: 1359 year: 2023 ident: 10.1016/j.cam.2024.116169_b21 article-title: Numerical solution of delay fractional optimal control problems with free terminal time publication-title: Optim. Lett. doi: 10.1007/s11590-022-01926-1 – year: 1999 ident: 10.1016/j.cam.2024.116169_b2 – volume: 2021 year: 2021 ident: 10.1016/j.cam.2024.116169_b6 article-title: Solutions of conformable fractional-order SIR epidemic model publication-title: Int. J. Differ. Equ. – volume: 27 start-page: 689 year: 2021 ident: 10.1016/j.cam.2024.116169_b22 article-title: Numerical solution for fractional optimal control problems by Hermite polynomials publication-title: J. Vib. Control doi: 10.1177/1077546320933129 – volume: 30 start-page: 1525 year: 1991 ident: 10.1016/j.cam.2024.116169_b34 article-title: Application of dynamic programming to final state constrained optimal control problems publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00055a018 – volume: 405 year: 2021 ident: 10.1016/j.cam.2024.116169_b20 article-title: Numerical solution of free final time fractional optimal control problems publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2021.126270 – volume: 136 start-page: 542 year: 2021 ident: 10.1016/j.cam.2024.116169_b7 article-title: Dynamical analysis and optimal harvesting of conformable fractional prey-predator system with predator immigration publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-021-01559-w – volume: 40 start-page: 314 year: 1999 ident: 10.1016/j.cam.2024.116169_b35 article-title: The control parameterization enhancing transform for constrained optimal control problems publication-title: J. Aust. Math. Soc. doi: 10.1017/S0334270000010936 – volume: 191 start-page: 83 year: 2021 ident: 10.1016/j.cam.2024.116169_b32 article-title: Optimal control computation for nonlinear fractional time-delay systems with state inequality constraints publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-021-01926-8 – year: 2012 ident: 10.1016/j.cam.2024.116169_b8 – volume: 180 start-page: 556 year: 2019 ident: 10.1016/j.cam.2024.116169_b16 article-title: Numerical solution of fractional optimal control publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-018-1418-y – volume: 425 year: 2022 ident: 10.1016/j.cam.2024.116169_b18 article-title: Optimal control of nonlinear fractional systems with multiple pantograph-delays publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2022.127094 – volume: 53 start-page: 778 year: 2022 ident: 10.1016/j.cam.2024.116169_b24 article-title: Numerical solutions for fractional optimal control problems by using generalised fractional-order Chebyshev wavelets publication-title: Int. J. Syst. Sci. doi: 10.1080/00207721.2021.1972357 – year: 2021 ident: 10.1016/j.cam.2024.116169_b36 – volume: 187 start-page: 234 year: 2020 ident: 10.1016/j.cam.2024.116169_b17 article-title: A control parameterization method to solve the fractional-order optimal control problem publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-017-1163-7 – volume: 312 start-page: 127 year: 2017 ident: 10.1016/j.cam.2024.116169_b31 article-title: Existence of solution to a local fractional nonlinear differential equations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2016.01.014 |
| SSID | ssj0006914 |
| Score | 2.484057 |
| Snippet | In this paper, we solve numerically a class of fractional optimal control problems in the conformable sense. We first propose a nonlinear fractional optimal... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 116169 |
| SubjectTerms | Conformable fractional derivative Numerical integration Numerical optimization Optimal control |
| Title | A gradient-based optimization algorithm to solve optimal control problems with conformable fractional-order derivatives |
| URI | https://dx.doi.org/10.1016/j.cam.2024.116169 |
| Volume | 454 |
| WOSCitedRecordID | wos001288019200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0377-0427 databaseCode: AIEXJ dateStart: 20211212 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006914 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKxwEOiJ_agE0-cCIyCnYSJ8cKjTEoE4chCpcosZ21o02mLC3jP-LP5PlH0qxjiB04NKpix7X6Pvl9dr73HkIvEhlF0BAS2PxQEtA8JnmU5yRiMmYq8nMujKXH_OgonkyST4PBrzYWZjXnZRlfXCRn_9XUcA-MrUNnb2DublC4Ad_B6HAFs8P1nww_8k5qo-NqiHZR0qtgVVi4cEsvm59U9ayZLjTphImslG03aUKsat3VmDnvZOmG1-oIq6K2YRDZnJiUnR58THW0lVMiXmW5wlSNaE8cTWZYx3sXXcLYjtYfOH3wt2lWTZedwxjPllYZAM0_M-dqjR7anPN-qL5747UW6Ivp_BX66v79Uw2qBYTExnW20VycE10HpL9SB2HQW2tfA1m1ZV6uuAF7InEKW3ydbIAGr9Z9L6fc3nCFnUCx1b6dpjBEqodI7RC30BblYRIP0dbocH_yvvP6UWLzyLfzbt-gGy3hxjz-zIF6vOb4PrrnTIVHFkgP0ECVD9Hdj2vjPEI_RvgypHAfUriDFG4qbCCFHaSwgxRuIYU1pHAPUngTUrgHqcfo89v94zfviCvYQQRNeENEHMm4CASPlJRAbWF9YIwWfkJ5zvUpjAwLJTgVLKNMma0_y4o4K1gmw6QI2BM0LKtSbSMstGeRhWCK-wFTcSJ5kdHcl4orrd_bQX77F6bCZbPXRVXm6bWm20Evu0fObCqXv3UOWrukjotajpkCxq5_7OlNfuMZurOG_nM0bOql2kW3xaqZndd7DmC_AXEwsjw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+gradient-based+optimization+algorithm+to+solve+optimal+control+problems+with+conformable+fractional-order+derivatives&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Gong%2C+Zhaohua&rft.au=Liu%2C+Chongyang&rft.au=Teo%2C+Kok+Lay&rft.au=Wu%2C+Yonghong&rft.date=2025-01-15&rft.issn=0377-0427&rft.volume=454&rft.spage=116169&rft_id=info:doi/10.1016%2Fj.cam.2024.116169&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2024_116169 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |