Network traffic recovery from link-load measurements using tensor triple decomposition strategy for third-order traffic tensors

Network traffic data is the pivot of input in many network tasks but its direct measurement can be insufferably costly. In this paper, we propose a network traffic recovery method which only requires the conveniently measurable link-load traffics. We arrange the traffic data as a third-order tensor...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics Vol. 447; p. 115901
Main Authors: Ming, Zhenyu, Qin, Zhenzhi, Zhang, Liping, Xu, Yanwei, Qi, Liqun
Format: Journal Article
Language:English
Published: Elsevier B.V 01.09.2024
Subjects:
ISSN:0377-0427
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Network traffic data is the pivot of input in many network tasks but its direct measurement can be insufferably costly. In this paper, we propose a network traffic recovery method which only requires the conveniently measurable link-load traffics. We arrange the traffic data as a third-order tensor and utilize the triple decomposition technique proposed very recently by Qi et al. (2021). The studied model is a differentialble unconstrained minimization problem, which can be efficiently solved by a Barzilai–Borwein (BB) gradient algorithm. We prove that the generated iteration sequence can globally converge to a certain stationary point of the objective function. The numerical simulations on three open-source traffic datasets demonstrate the superiority of our method in comparison with other state-of-the-art algorithms.
AbstractList Network traffic data is the pivot of input in many network tasks but its direct measurement can be insufferably costly. In this paper, we propose a network traffic recovery method which only requires the conveniently measurable link-load traffics. We arrange the traffic data as a third-order tensor and utilize the triple decomposition technique proposed very recently by Qi et al. (2021). The studied model is a differentialble unconstrained minimization problem, which can be efficiently solved by a Barzilai–Borwein (BB) gradient algorithm. We prove that the generated iteration sequence can globally converge to a certain stationary point of the objective function. The numerical simulations on three open-source traffic datasets demonstrate the superiority of our method in comparison with other state-of-the-art algorithms.
ArticleNumber 115901
Author Qi, Liqun
Xu, Yanwei
Zhang, Liping
Ming, Zhenyu
Qin, Zhenzhi
Author_xml – sequence: 1
  givenname: Zhenyu
  orcidid: 0000-0001-7270-8022
  surname: Ming
  fullname: Ming, Zhenyu
  organization: Theory Lab, Central Research Institute, 2012 Labs, Huawei Technologies Co., Ltd., Hong Kong
– sequence: 2
  givenname: Zhenzhi
  surname: Qin
  fullname: Qin, Zhenzhi
  organization: Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
– sequence: 3
  givenname: Liping
  surname: Zhang
  fullname: Zhang, Liping
  email: lipingzhang@mail.tsinghua.edu.cn
  organization: Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
– sequence: 4
  givenname: Yanwei
  surname: Xu
  fullname: Xu, Yanwei
  organization: Theory Lab, Central Research Institute, 2012 Labs, Huawei Technologies Co., Ltd., Hong Kong
– sequence: 5
  givenname: Liqun
  surname: Qi
  fullname: Qi, Liqun
  organization: Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong
BookMark eNp9kLtOAzEQRV0EiSTwAXT-gV3sfdi7okIRLymCBmrLsWeDk107sp2gVPw6jhZRUKSaYubc0T0zNLHOAkI3lOSUUHa7yZUc8oIUVU5p3RI6QVNScp6RquCXaBbChhDCWlpN0fcrxC_ntzh62XVGYQ_KHcAfcefdgHtjt1nvpMYDyLD3MICNAe-DsWscwQbnE2l2PWCdwGHngonGWRxSXoR1ijldfBqvM-c1-L8_Ixyu0EUn-wDXv3OOPh4f3hfP2fLt6WVxv8xU0fKYKZ7iKZGl0lCouoWSd6DZisu60s1KFVXDViztGlkzxqlkpSRNXfGy7RpGVDlHdMxV3oXgoRM7bwbpj4IScbImNiJZEydrYrSWGP6PUSbKU71UwvRnybuRhFTpYMCLoAxYBdokv1FoZ87QP4rbj5k
CitedBy_id crossref_primary_10_1016_j_sigpro_2025_109903
Cites_doi 10.1007/BF02289464
10.1016/j.apm.2021.03.036
10.1137/050644641
10.1109/TNET.2018.2797094
10.1017/S0305004100030401
10.1007/s10915-021-01574-0
10.1016/j.neucom.2021.09.065
10.1007/BF02310791
10.1109/TNET.2019.2940147
10.1109/TNET.2011.2169424
10.1016/j.neucom.2020.12.123
10.1137/20M1323266
10.1109/TNET.2005.857115
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cam.2024.115901
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_cam_2024_115901
S0377042724001511
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12171271; 12271291
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABAOU
ABDPE
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEXQZ
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
NHB
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZY4
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c297t-c7dec10a3cde2c59e37fed6b7a54d8bc2486b6de28a56671a63a0854739f860c3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001226820900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-0427
IngestDate Sat Nov 29 06:39:24 EST 2025
Tue Nov 18 22:19:11 EST 2025
Sat Feb 08 15:52:27 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords 65K05
49M29
Network traffic recovery
68M10
15A03
BB gradient algorithm
Triple decomposition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-c7dec10a3cde2c59e37fed6b7a54d8bc2486b6de28a56671a63a0854739f860c3
ORCID 0000-0001-7270-8022
ParticipantIDs crossref_primary_10_1016_j_cam_2024_115901
crossref_citationtrail_10_1016_j_cam_2024_115901
elsevier_sciencedirect_doi_10_1016_j_cam_2024_115901
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ming, Zhang, Wu (b7) 2022; 467
Chen, Zhang, Qi (b1) 2021; 88
Roughan, Zhang, Willinger (b8) 2012; 20
Carroll, Chang (b10) 1970; 35
Ming, Zhang, Xu, Bakshi (b2) 2021; 96
R. Penrose, generalized inverse for matrices, in: Math. Proc. Camb. Philos. Soc, Vol. 51, 1955, pp. 406–413.
Qi, Chen, Bakshi, Zhang (b9) 2021; 42
Tucker (b12) 1966; 31
Harshman (b11) 1970; 16
Pan, Ling, He (b14) 2024; 465
Xie, Wang, Wang (b5) 2019; 27
Yu, Luo, Qi, Xu (b13) 2021; 434
Bolte, Daniilidis, Lewis (b18) 2007; 17
Xie, Wang, Wang (b3) 2018; 26
Xie, Wang, Wang (b4) 2015
Zhang, Roughan, Lund, Donoho (b15) 2005; 13
Zhou, Zhang, Xie (b6) 2015
Moore (b16) 1920; 26
Xie (10.1016/j.cam.2024.115901_b3) 2018; 26
Xie (10.1016/j.cam.2024.115901_b4) 2015
Bolte (10.1016/j.cam.2024.115901_b18) 2007; 17
Pan (10.1016/j.cam.2024.115901_b14) 2024; 465
Ming (10.1016/j.cam.2024.115901_b7) 2022; 467
Chen (10.1016/j.cam.2024.115901_b1) 2021; 88
Tucker (10.1016/j.cam.2024.115901_b12) 1966; 31
Harshman (10.1016/j.cam.2024.115901_b11) 1970; 16
Zhang (10.1016/j.cam.2024.115901_b15) 2005; 13
Roughan (10.1016/j.cam.2024.115901_b8) 2012; 20
Xie (10.1016/j.cam.2024.115901_b5) 2019; 27
Zhou (10.1016/j.cam.2024.115901_b6) 2015
Qi (10.1016/j.cam.2024.115901_b9) 2021; 42
10.1016/j.cam.2024.115901_b17
Carroll (10.1016/j.cam.2024.115901_b10) 1970; 35
Moore (10.1016/j.cam.2024.115901_b16) 1920; 26
Ming (10.1016/j.cam.2024.115901_b2) 2021; 96
Yu (10.1016/j.cam.2024.115901_b13) 2021; 434
References_xml – volume: 434
  start-page: 295
  year: 2021
  end-page: 314
  ident: b13
  article-title: Slrta: A sparse and low-rank tensor-based approach to internet traffic anomaly detection
  publication-title: Neurocomputing
– volume: 88
  start-page: 65
  year: 2021
  ident: b1
  article-title: A Barzilai–Borwein gradient algorithm for spatio-temporal internet traffic data completion via tensor triple decomposition
  publication-title: J. Sci. Comput.
– volume: 31
  start-page: 279
  year: 1966
  end-page: 311
  ident: b12
  article-title: Some mathematical notes on three-mode factor analysis
  publication-title: Psychometrika
– volume: 467
  start-page: 203
  year: 2022
  end-page: 213
  ident: b7
  article-title: An accurate and practical algorithm for internet traffic recovery problem
  publication-title: Neurocomputing
– start-page: 2443
  year: 2015
  end-page: 2451
  ident: b4
  article-title: Sequential and adaptive sampling for matrix completion in network monitoring systems
  publication-title: IEEE INFOCOM
– volume: 17
  start-page: 1205
  year: 2007
  end-page: 1223
  ident: b18
  article-title: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems
  publication-title: SIAM J. Optim.
– volume: 20
  start-page: 662
  year: 2012
  end-page: 676
  ident: b8
  article-title: Spatio-temporal compressive sensing and internet traffic matrices (extended version)
  publication-title: IEEE/ACM Trans. Netw.
– volume: 465
  year: 2024
  ident: b14
  article-title: Low-rank and sparse enhanced tucker decomposition for tensor completion
  publication-title: Appl. Math. Comput.
– volume: 26
  start-page: 394
  year: 1920
  end-page: 395
  ident: b16
  article-title: On the reciprocal of the general algebraic matrix
  publication-title: Bull. Amer. Math. Soc.
– volume: 27
  start-page: 2222
  year: 2019
  end-page: 2235
  ident: b5
  article-title: Accurate recovery of missing network measurement data with localized tensor completion
  publication-title: IEEE/ACM Trans. Netw.
– start-page: 1
  year: 2015
  end-page: 7
  ident: b6
  article-title: Spatio-temporal tensor completion for imputing missing internet traffic data
  publication-title: IEEE 34th IPCCC
– volume: 42
  start-page: 299
  year: 2021
  end-page: 329
  ident: b9
  article-title: Triple decomposition and tensor recovery of third order tensors
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 35
  start-page: 283
  year: 1970
  end-page: 319
  ident: b10
  article-title: Analysis of individual differences in multidimensional scaling via an n-way generalization of eckart-young decomposition
  publication-title: Psychometrika
– volume: 96
  start-page: 645
  year: 2021
  end-page: 656
  ident: b2
  article-title: An algorithm for matrix recovery of high-loss-rate network traffic data
  publication-title: Appl. Math. Model.
– volume: 16
  start-page: 1
  year: 1970
  end-page: 84
  ident: b11
  article-title: Foundations of the parafac procedure: Models and conditions for an explanatory multi-modal factor analysis
  publication-title: UCLA Work Pap. Phonetics
– volume: 13
  start-page: 947
  year: 2005
  end-page: 960
  ident: b15
  article-title: Estimating point-to-point and point-tomultipoint traffic matrices: an information-theoretic approach
  publication-title: IEEE/ACM Trans. Netw.
– volume: 26
  start-page: 793
  year: 2018
  end-page: 806
  ident: b3
  article-title: Accurate recovery of internet traffic data: A sequential tensor completion approach
  publication-title: IEEE/ACM Trans. Netw.
– reference: R. Penrose, generalized inverse for matrices, in: Math. Proc. Camb. Philos. Soc, Vol. 51, 1955, pp. 406–413.
– volume: 31
  start-page: 279
  year: 1966
  ident: 10.1016/j.cam.2024.115901_b12
  article-title: Some mathematical notes on three-mode factor analysis
  publication-title: Psychometrika
  doi: 10.1007/BF02289464
– volume: 26
  start-page: 394
  year: 1920
  ident: 10.1016/j.cam.2024.115901_b16
  article-title: On the reciprocal of the general algebraic matrix
  publication-title: Bull. Amer. Math. Soc.
– volume: 96
  start-page: 645
  year: 2021
  ident: 10.1016/j.cam.2024.115901_b2
  article-title: An algorithm for matrix recovery of high-loss-rate network traffic data
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2021.03.036
– volume: 17
  start-page: 1205
  year: 2007
  ident: 10.1016/j.cam.2024.115901_b18
  article-title: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems
  publication-title: SIAM J. Optim.
  doi: 10.1137/050644641
– volume: 465
  year: 2024
  ident: 10.1016/j.cam.2024.115901_b14
  article-title: Low-rank and sparse enhanced tucker decomposition for tensor completion
  publication-title: Appl. Math. Comput.
– volume: 26
  start-page: 793
  year: 2018
  ident: 10.1016/j.cam.2024.115901_b3
  article-title: Accurate recovery of internet traffic data: A sequential tensor completion approach
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2018.2797094
– ident: 10.1016/j.cam.2024.115901_b17
  doi: 10.1017/S0305004100030401
– volume: 88
  start-page: 65
  year: 2021
  ident: 10.1016/j.cam.2024.115901_b1
  article-title: A Barzilai–Borwein gradient algorithm for spatio-temporal internet traffic data completion via tensor triple decomposition
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-021-01574-0
– volume: 467
  start-page: 203
  year: 2022
  ident: 10.1016/j.cam.2024.115901_b7
  article-title: An accurate and practical algorithm for internet traffic recovery problem
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.09.065
– volume: 16
  start-page: 1
  year: 1970
  ident: 10.1016/j.cam.2024.115901_b11
  article-title: Foundations of the parafac procedure: Models and conditions for an explanatory multi-modal factor analysis
  publication-title: UCLA Work Pap. Phonetics
– volume: 35
  start-page: 283
  year: 1970
  ident: 10.1016/j.cam.2024.115901_b10
  article-title: Analysis of individual differences in multidimensional scaling via an n-way generalization of eckart-young decomposition
  publication-title: Psychometrika
  doi: 10.1007/BF02310791
– volume: 27
  start-page: 2222
  year: 2019
  ident: 10.1016/j.cam.2024.115901_b5
  article-title: Accurate recovery of missing network measurement data with localized tensor completion
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2019.2940147
– volume: 20
  start-page: 662
  issue: 3
  year: 2012
  ident: 10.1016/j.cam.2024.115901_b8
  article-title: Spatio-temporal compressive sensing and internet traffic matrices (extended version)
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2011.2169424
– volume: 434
  start-page: 295
  year: 2021
  ident: 10.1016/j.cam.2024.115901_b13
  article-title: Slrta: A sparse and low-rank tensor-based approach to internet traffic anomaly detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.12.123
– start-page: 2443
  year: 2015
  ident: 10.1016/j.cam.2024.115901_b4
  article-title: Sequential and adaptive sampling for matrix completion in network monitoring systems
– start-page: 1
  year: 2015
  ident: 10.1016/j.cam.2024.115901_b6
  article-title: Spatio-temporal tensor completion for imputing missing internet traffic data
– volume: 42
  start-page: 299
  year: 2021
  ident: 10.1016/j.cam.2024.115901_b9
  article-title: Triple decomposition and tensor recovery of third order tensors
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/20M1323266
– volume: 13
  start-page: 947
  year: 2005
  ident: 10.1016/j.cam.2024.115901_b15
  article-title: Estimating point-to-point and point-tomultipoint traffic matrices: an information-theoretic approach
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2005.857115
SSID ssj0006914
Score 2.427033
Snippet Network traffic data is the pivot of input in many network tasks but its direct measurement can be insufferably costly. In this paper, we propose a network...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 115901
SubjectTerms BB gradient algorithm
Network traffic recovery
Triple decomposition
Title Network traffic recovery from link-load measurements using tensor triple decomposition strategy for third-order traffic tensors
URI https://dx.doi.org/10.1016/j.cam.2024.115901
Volume 447
WOSCitedRecordID wos001226820900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0377-0427
  databaseCode: AIEXJ
  dateStart: 20211207
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006914
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGlgMcEKu6UOQDJ0ZBaeJ4OVaoqCA64lCkEZcosR061TStZimdXvqH-JE8r5m2DKIHLtHI8ZKZ9439_PL5ewi9hZ1xIQV4bpQJlhBNScKFqgHLBU8JY7yprM7sFzYY8OFQfO31foWzMBdj1rb88lKc_1dTQxkY2xydvYe5Y6dQAJ_B6HAFs8P1nww_cMRuk_zByEP0zZYXvsTCnSSxav3js0r1T7vo4LQ_tyEDw2Y3rMOJpRgqbfjmntTVnzoZ24XnJY4mKrGynXEc13i6wtuVNntEiDxahVjv_55G4djo3h_6RCvfj3W7mMfYrJM7MIVXx6M7EW-bhftHKB7O7eJStT_1aDmykZFI3YonuhhLTC6Q5dmaOIFOP9-CPytckztLgYtKnMA23wgOZOR9V_em7Pat5TCSFAP_7aSELkrTRem6eIDWM1YImEPX9z7tDz_HlZ8KpyUfnju8Rbd8wlvP8Wc_aMm3OXqKnngz4T0Hpmeop9vn6PFhZ5gX6NrDCntz4wArbGCFI6zwMqywhRV2yMAOVvgGrHCAFW5MjQ5WcRwPq5fo28f9ow8HiU_ekchMsFkiGXS3m1a5VDqThdA5a7SiNasKongtM8JpTeEer2BHwXYrmlfg_hOWi4bTVOav0Fp71uoNhGvog6hUFlndmBf1nFWKUSELRQvRFGQTpeGnLKVXtjcJVsblShNuonexybmTdflbZRLsU3q_1PmbJWBtdbOt-4yxjR51f4HXaG02mesd9FBezEbTyRsPtN97ZLV1
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+traffic+recovery+from+link-load+measurements+using+tensor+triple+decomposition+strategy+for+third-order+traffic+tensors&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Ming%2C+Zhenyu&rft.au=Qin%2C+Zhenzhi&rft.au=Zhang%2C+Liping&rft.au=Xu%2C+Yanwei&rft.date=2024-09-01&rft.issn=0377-0427&rft.volume=447&rft.spage=115901&rft_id=info:doi/10.1016%2Fj.cam.2024.115901&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2024_115901
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon