Remaining useful life re-prediction methodology based on Wiener process: Subsea Christmas tree system as a case study

•A remaining useful life re-prediction method based on Wiener process is proposed.•Current and historical data are used for re-prediction model construction.•DBNs and EM algorithm are combined to solve the uncertainty caused by missing data. With the continuous improvement of the complexity and comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & industrial engineering Jg. 151; S. 106983
Hauptverfasser: Cai, Baoping, Fan, Hongyan, Shao, Xiaoyan, Liu, Yonghong, Liu, Guijie, Liu, Zengkai, Ji, Renjie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.01.2021
Schlagworte:
ISSN:0360-8352, 1879-0550
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A remaining useful life re-prediction method based on Wiener process is proposed.•Current and historical data are used for re-prediction model construction.•DBNs and EM algorithm are combined to solve the uncertainty caused by missing data. With the continuous improvement of the complexity and comprehensive level of the system, its reliability becomes more and more important. The remaining useful life (RUL) estimation method using the degradation model with random effect to describe the degradation process of the system has been widely used such as Wiener process. However, the conventional Wiener-process-based degradation model only considers the current monitoring data but not the historical degradation data, which leads to the inaccuracy of RUL prediction. Furthermore, in engineering, there will always be data missing caused by sensor networks, long life cycle properties of system and so on, leading to unsatisfactory results. This paper contributed a RUL re-prediction method based on Wiener process combining the current monitoring status and historical degradation data of the system. In the initial prediction process, the Wiener process is used to describe the degradation process of the system, the drift coefficient and diffusion coefficient are estimated by Expectation Maximization algorithm (EM algorithm), and the dynamic Bayesian networks (DBNs) model for system performance degradation is established to solve the uncertainty caused by missing data. In the re-prediction process, n groups of performance degradation monitoring data and historical predicted data are combined to calculate the basic degradation in each stage of Wiener process, and the DBNs are used for modeling. The RUL value is obtained by the time difference between the detection point and the predicted fault point, it is determined by the failure threshold finally. A case of subsea Christmas tree system is adopted to demonstrate the proposed approach.
AbstractList •A remaining useful life re-prediction method based on Wiener process is proposed.•Current and historical data are used for re-prediction model construction.•DBNs and EM algorithm are combined to solve the uncertainty caused by missing data. With the continuous improvement of the complexity and comprehensive level of the system, its reliability becomes more and more important. The remaining useful life (RUL) estimation method using the degradation model with random effect to describe the degradation process of the system has been widely used such as Wiener process. However, the conventional Wiener-process-based degradation model only considers the current monitoring data but not the historical degradation data, which leads to the inaccuracy of RUL prediction. Furthermore, in engineering, there will always be data missing caused by sensor networks, long life cycle properties of system and so on, leading to unsatisfactory results. This paper contributed a RUL re-prediction method based on Wiener process combining the current monitoring status and historical degradation data of the system. In the initial prediction process, the Wiener process is used to describe the degradation process of the system, the drift coefficient and diffusion coefficient are estimated by Expectation Maximization algorithm (EM algorithm), and the dynamic Bayesian networks (DBNs) model for system performance degradation is established to solve the uncertainty caused by missing data. In the re-prediction process, n groups of performance degradation monitoring data and historical predicted data are combined to calculate the basic degradation in each stage of Wiener process, and the DBNs are used for modeling. The RUL value is obtained by the time difference between the detection point and the predicted fault point, it is determined by the failure threshold finally. A case of subsea Christmas tree system is adopted to demonstrate the proposed approach.
ArticleNumber 106983
Author Cai, Baoping
Fan, Hongyan
Liu, Guijie
Liu, Yonghong
Ji, Renjie
Shao, Xiaoyan
Liu, Zengkai
Author_xml – sequence: 1
  givenname: Baoping
  surname: Cai
  fullname: Cai, Baoping
  email: caibaoping@upc.edu.cn
  organization: National Engineering Laboratory of Offshore Geophysical and Exploration Equipment, China University of Petroleum, Qingdao, Shandong 266580, China
– sequence: 2
  givenname: Hongyan
  surname: Fan
  fullname: Fan, Hongyan
  organization: National Engineering Laboratory of Offshore Geophysical and Exploration Equipment, China University of Petroleum, Qingdao, Shandong 266580, China
– sequence: 3
  givenname: Xiaoyan
  surname: Shao
  fullname: Shao, Xiaoyan
  organization: National Engineering Laboratory of Offshore Geophysical and Exploration Equipment, China University of Petroleum, Qingdao, Shandong 266580, China
– sequence: 4
  givenname: Yonghong
  surname: Liu
  fullname: Liu, Yonghong
  organization: National Engineering Laboratory of Offshore Geophysical and Exploration Equipment, China University of Petroleum, Qingdao, Shandong 266580, China
– sequence: 5
  givenname: Guijie
  surname: Liu
  fullname: Liu, Guijie
  organization: Department of Mechanical and Electrical Engineering, Ocean University of China, Qingdao, Shandong 266100, China
– sequence: 6
  givenname: Zengkai
  surname: Liu
  fullname: Liu, Zengkai
  organization: National Engineering Laboratory of Offshore Geophysical and Exploration Equipment, China University of Petroleum, Qingdao, Shandong 266580, China
– sequence: 7
  givenname: Renjie
  surname: Ji
  fullname: Ji, Renjie
  organization: National Engineering Laboratory of Offshore Geophysical and Exploration Equipment, China University of Petroleum, Qingdao, Shandong 266580, China
BookMark eNp9kMtqwzAQRUVJoUnaD-hOP-BUsmUralcl9AWBQh90KeTxOFGwrSDJBf99bdJVF10Nd7hnYM6CzDrXISHXnK0448XNYQUWVylLp1yodXZG5nwtVcLynM3InGUFS9ZZnl6QRQgHxpjIFZ-T_g1bYzvb7WgfsO4b2tgaqcfk6LGyEK3raItx7yrXuN1ASxOwouPyy2KHnh69Awzhlr73ZUBDN3tvQ2xNoNEj0jCEiC0do6EwojTEvhouyXltmoBXv3NJPh8fPjbPyfb16WVzv00gVTImIKGoc2EqyUy2rhWXZZpBKstKlQKAC5WKIkcEyQUXqASYMgdmhKnTsuAqWxJ-ugveheCx1kdvW-MHzZmevOmDHr3pyZs-eRsZ-YcBG83kIXpjm3_JuxOJ40vfFr0OY6WD0aNHiLpy9h_6B0Iwi-0
CitedBy_id crossref_primary_10_1016_j_measurement_2022_112162
crossref_primary_10_1109_ACCESS_2024_3374776
crossref_primary_10_3390_s24010165
crossref_primary_10_1016_j_cie_2022_108478
crossref_primary_10_1109_ACCESS_2021_3074929
crossref_primary_10_1007_s12206_022_0904_1
crossref_primary_10_1016_j_oceaneng_2024_118620
crossref_primary_10_1016_j_measurement_2021_110377
crossref_primary_10_1016_j_jprocont_2023_103000
crossref_primary_10_1016_j_ress_2022_108793
crossref_primary_10_1109_ACCESS_2021_3052980
crossref_primary_10_1109_TIM_2023_3332936
crossref_primary_10_3390_app15084464
crossref_primary_10_1109_JSYST_2022_3182983
crossref_primary_10_1016_j_measurement_2022_111184
crossref_primary_10_1016_j_microrel_2021_114457
crossref_primary_10_1016_j_ymssp_2024_112063
crossref_primary_10_1109_ACCESS_2025_3558631
crossref_primary_10_1016_j_cie_2021_107533
crossref_primary_10_1109_ACCESS_2023_3308035
crossref_primary_10_1016_j_cie_2022_108889
crossref_primary_10_1016_j_psep_2024_12_072
crossref_primary_10_1109_JSYST_2021_3131822
crossref_primary_10_1016_j_jmsy_2022_09_008
crossref_primary_10_3390_en14185893
crossref_primary_10_1016_j_measurement_2021_109412
crossref_primary_10_1109_TNNLS_2021_3135877
crossref_primary_10_1109_ACCESS_2024_3444054
crossref_primary_10_1016_j_ress_2023_109415
crossref_primary_10_1016_j_jmsy_2022_01_007
crossref_primary_10_1016_j_ress_2023_109134
crossref_primary_10_1016_j_ymssp_2024_111761
crossref_primary_10_1016_j_oceaneng_2022_112616
crossref_primary_10_1016_j_ress_2021_108043
crossref_primary_10_1109_JSYST_2022_3182994
crossref_primary_10_1016_j_psep_2024_08_021
crossref_primary_10_1016_j_oceaneng_2022_113144
crossref_primary_10_1016_j_oceaneng_2022_112455
crossref_primary_10_1016_j_jwpe_2023_104654
crossref_primary_10_1016_j_eswa_2022_119335
crossref_primary_10_1016_j_oceaneng_2024_118166
crossref_primary_10_1016_j_rsma_2023_103193
crossref_primary_10_1016_j_knosys_2024_112149
crossref_primary_10_1109_TNNLS_2021_3132376
crossref_primary_10_1109_ACCESS_2025_3543455
crossref_primary_10_1016_j_psep_2023_12_071
crossref_primary_10_1016_j_apor_2023_103717
crossref_primary_10_1016_j_measurement_2021_109285
crossref_primary_10_1016_j_asoc_2024_111334
crossref_primary_10_1109_TIM_2024_3381295
crossref_primary_10_1016_j_ress_2025_111108
crossref_primary_10_1109_ACCESS_2025_3566156
crossref_primary_10_1007_s13344_024_0017_y
crossref_primary_10_1016_j_psep_2023_08_042
crossref_primary_10_1016_j_engappai_2023_107819
crossref_primary_10_1109_JSEN_2024_3510720
crossref_primary_10_1016_j_asoc_2023_110872
crossref_primary_10_3390_a16010054
crossref_primary_10_1016_j_psep_2023_07_081
crossref_primary_10_1016_j_ress_2024_110323
crossref_primary_10_3390_sym14050968
crossref_primary_10_1016_j_ress_2025_111537
crossref_primary_10_1007_s00500_024_10371_4
crossref_primary_10_1016_j_cie_2022_108204
crossref_primary_10_1016_j_oceaneng_2024_117435
crossref_primary_10_1177_1748006X211049900
crossref_primary_10_1016_j_engappai_2023_107389
crossref_primary_10_1016_j_engappai_2023_107785
crossref_primary_10_1016_j_jlp_2021_104483
crossref_primary_10_1016_j_isatra_2024_12_019
crossref_primary_10_1109_JSEN_2024_3445934
crossref_primary_10_1149_1945_7111_ad6d94
crossref_primary_10_1016_j_fmre_2024_01_004
crossref_primary_10_1142_S0219477525500063
crossref_primary_10_1016_j_ymssp_2023_110813
crossref_primary_10_3389_fsuep_2024_1343339
crossref_primary_10_1016_j_ress_2023_109693
crossref_primary_10_1016_j_cie_2022_108650
crossref_primary_10_1109_JSEN_2022_3185161
crossref_primary_10_3390_aerospace11090743
crossref_primary_10_1016_j_jprocont_2023_02_006
crossref_primary_10_1016_j_jlp_2025_105745
crossref_primary_10_3390_app14031294
crossref_primary_10_1016_j_apor_2022_103229
crossref_primary_10_1016_j_conengprac_2024_105927
crossref_primary_10_1016_j_ymssp_2025_112607
crossref_primary_10_1088_1361_6501_ae01cb
crossref_primary_10_1109_ACCESS_2025_3552486
crossref_primary_10_1016_j_measurement_2021_110113
crossref_primary_10_1016_j_ress_2022_109022
crossref_primary_10_3390_s22218346
crossref_primary_10_1016_j_ress_2023_109383
crossref_primary_10_1016_j_matcom_2023_12_024
crossref_primary_10_1016_j_ress_2024_110307
crossref_primary_10_1016_j_ymssp_2025_112561
crossref_primary_10_1016_j_oceaneng_2024_116926
crossref_primary_10_1142_S0219477525500208
crossref_primary_10_59400_sv_v59i1_1685
crossref_primary_10_1016_j_oceaneng_2024_117339
crossref_primary_10_1016_j_measurement_2023_113401
crossref_primary_10_1016_j_measurement_2023_113885
crossref_primary_10_1016_j_engappai_2023_106399
crossref_primary_10_3390_app142310937
crossref_primary_10_1109_TNNLS_2022_3202752
crossref_primary_10_1016_j_jmsy_2024_06_006
crossref_primary_10_3390_jmse12111909
crossref_primary_10_1016_j_measurement_2021_109918
crossref_primary_10_1016_j_ress_2024_110313
crossref_primary_10_1016_j_ress_2025_111666
crossref_primary_10_1016_j_ress_2023_109275
crossref_primary_10_1177_14750902241272797
Cites_doi 10.1016/j.cja.2014.12.020
10.1016/j.ejor.2012.10.030
10.1016/j.ymssp.2005.09.012
10.1016/j.cie.2018.05.017
10.1016/j.cie.2015.12.016
10.1109/TASE.2016.2574875
10.1016/j.ress.2015.04.009
10.1016/j.physa.2020.125180
10.1016/j.asoc.2018.03.043
10.1109/TIE.2019.2931491
10.1007/s00170-018-3157-5
10.1016/j.ins.2020.04.042
10.1016/j.neucom.2020.07.088
10.1016/j.ymssp.2013.06.004
10.1109/TR.2014.2299152
10.1016/j.knosys.2020.105602
10.1109/TR.2011.2182221
10.1016/j.ymssp.2015.02.016
10.1016/j.ymssp.2017.11.016
10.1109/TII.2015.2475219
10.1016/j.knosys.2014.09.006
10.1016/j.cie.2017.11.033
10.1109/TR.2018.2831256
10.4028/www.scientific.net/AMM.148-149.1000
10.1016/j.cie.2018.09.015
10.1016/j.knosys.2020.105843
10.1016/j.ress.2020.107053
10.1016/j.engappai.2019.09.002
10.1016/j.apm.2019.07.045
10.1016/j.ymssp.2016.04.019
10.1016/j.knosys.2019.104909
10.1016/j.ejor.2010.11.018
10.1016/j.microrel.2010.09.013
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2020.106983
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
ExternalDocumentID 10_1016_j_cie_2020_106983
S0360835220306537
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-c7c6f54ad70a38f917b23c27bd9b4cc1492465eec71414e94cab5c0a4af2b6193
ISICitedReferencesCount 136
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000632959400052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-8352
IngestDate Sat Nov 29 07:25:22 EST 2025
Tue Nov 18 21:34:27 EST 2025
Fri Feb 23 02:44:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wiener process
Subsea Christmas tree system
Remaining useful life
Expectation Maximization algorithm
Dynamic Bayesian networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-c7c6f54ad70a38f917b23c27bd9b4cc1492465eec71414e94cab5c0a4af2b6193
ParticipantIDs crossref_primary_10_1016_j_cie_2020_106983
crossref_citationtrail_10_1016_j_cie_2020_106983
elsevier_sciencedirect_doi_10_1016_j_cie_2020_106983
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hanachi, Yu, Kim, Liu, Mechefske (b0055) 2019; 101
Kelleher, Hill, Bauer, Miller (b0085) 2018; 115
Wu, Su, Cheng, Shao, Deng, Liu (b0180) 2018; 68
Sun, Cao, Zhao, Kang (b0165) 2018; 67
Si, Wang, Chen, Hu, Zhou (b0140) 2013; 226
Adedipe, Shafiee, Zio (b0005) 2020; 202
Chang, Sun, Jiang, Li (b0040) 2015; 73
He, Tao (b0060) 2020; 77
Cai, Liu, Xie (b0020) 2016; 80
Li, Zhang, Rakheja (b0105) 2016; 12
Li, Zhang, Ma, Luo, Li (b0110) 2020; 197
Liao, Kottig (b0115) 2014; 63
Kumar, Chinnam, Tseng (b0090) 2019; 128
Cano, Gómez-Olmedo, Moral (b0035) 2019; 185
Oreda (b0130) 2012
Wang, Carr, Xu, Kobbacy (b0175) 2011; 51
Shi, Zeng (b0135) 2016; 93
Si, Wang, Hu, Zhou, Pecht (b0155) 2012; 61
Hu, Zhou, Zhang, Si (b0065) 2015; 28
Man, Zhou (b0125) 2018; 125
Wang, Zhang, Duan (b0170) 2011; 148–149
Dai, Ren, Du (b0045) 2020; 195
Azadeh, Asadzadeh, Salehi, Firoozi (b0010) 2015; 142
Kan, Tan, Mathew (b0080) 2015; 62–63
Cai, Shao, Liu, Kong, Wang, Xu, Ge (b0030) 2020; 67
Liu, Wang, Tomovic, Zhang (b0120) 2020; 532
Djeziri, Benmoussa, Benbouzid (b0050) 2019; 86
Bai, Bai (b0015) 2019
Lei, Li, Guo, Li, Yan, Lin (b0100) 2018; 104
Song, Shi, Yi (b0160) 2020; 560
Lee, Wu, Zhao, Ghaffari, Liao, Siegel (b0095) 2014; 42
Cai, Liu, Xie (b0025) 2017; 14
Jardine, Lin, Banjevic (b0070) 2006; 20
Jiao, Zhao, Lin, Liang (b0075) 2020; 417
Si, Wang, Hu, Zhou (b0145) 2011; 213
Chang (10.1016/j.cie.2020.106983_b0040) 2015; 73
Lee (10.1016/j.cie.2020.106983_b0095) 2014; 42
Man (10.1016/j.cie.2020.106983_b0125) 2018; 125
Bai (10.1016/j.cie.2020.106983_b0015) 2019
Hu (10.1016/j.cie.2020.106983_b0065) 2015; 28
Wang (10.1016/j.cie.2020.106983_b0175) 2011; 51
Kelleher (10.1016/j.cie.2020.106983_b0085) 2018; 115
Liao (10.1016/j.cie.2020.106983_b0115) 2014; 63
Dai (10.1016/j.cie.2020.106983_b0045) 2020; 195
Song (10.1016/j.cie.2020.106983_b0160) 2020; 560
Azadeh (10.1016/j.cie.2020.106983_b0010) 2015; 142
Cai (10.1016/j.cie.2020.106983_b0020) 2016; 80
Wu (10.1016/j.cie.2020.106983_b0180) 2018; 68
Adedipe (10.1016/j.cie.2020.106983_b0005) 2020; 202
He (10.1016/j.cie.2020.106983_b0060) 2020; 77
Shi (10.1016/j.cie.2020.106983_b0135) 2016; 93
Djeziri (10.1016/j.cie.2020.106983_b0050) 2019; 86
Li (10.1016/j.cie.2020.106983_b0110) 2020; 197
Cai (10.1016/j.cie.2020.106983_b0030) 2020; 67
Jardine (10.1016/j.cie.2020.106983_b0070) 2006; 20
Kumar (10.1016/j.cie.2020.106983_b0090) 2019; 128
Cano (10.1016/j.cie.2020.106983_b0035) 2019; 185
Liu (10.1016/j.cie.2020.106983_b0120) 2020; 532
Jiao (10.1016/j.cie.2020.106983_b0075) 2020; 417
Oreda (10.1016/j.cie.2020.106983_b0130) 2012
Cai (10.1016/j.cie.2020.106983_b0025) 2017; 14
Si (10.1016/j.cie.2020.106983_b0145) 2011; 213
Li (10.1016/j.cie.2020.106983_b0105) 2016; 12
Kan (10.1016/j.cie.2020.106983_b0080) 2015; 62–63
Si (10.1016/j.cie.2020.106983_b0140) 2013; 226
Si (10.1016/j.cie.2020.106983_b0155) 2012; 61
Hanachi (10.1016/j.cie.2020.106983_b0055) 2019; 101
Lei (10.1016/j.cie.2020.106983_b0100) 2018; 104
Sun (10.1016/j.cie.2020.106983_b0165) 2018; 67
Wang (10.1016/j.cie.2020.106983_b0170) 2011; 148–149
References_xml – volume: 14
  start-page: 276
  year: 2017
  end-page: 285
  ident: b0025
  article-title: A dynamic-Bayesian-network-based fault diagnosis methodology considering transient and intermittent faults
  publication-title: IEEE Transactions on Automation Science and Engineering
– volume: 86
  start-page: 154
  year: 2019
  end-page: 164
  ident: b0050
  article-title: Data-driven approach augmented in simulation for robust fault prognosis
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 62–63
  start-page: 1
  year: 2015
  end-page: 20
  ident: b0080
  article-title: A review on prognostic techniques for non-stationary and non-linear rotating systems
  publication-title: Mechanical Systems and Signal Processing
– volume: 532
  start-page: 33
  year: 2020
  end-page: 60
  ident: b0120
  article-title: An evidence theory based model fusion method for degradation modeling and statistical analysis
  publication-title: Information Sciences
– volume: 115
  start-page: 595
  year: 2018
  end-page: 602
  ident: b0085
  article-title: Using dynamic Bayesian networks as simulation metamodels based on bootstrapping
  publication-title: Computers & Industrial Engineering
– volume: 67
  start-page: 5737
  year: 2020
  end-page: 5747
  ident: b0030
  article-title: Remaining useful life estimation of structure systems under the influence of multiple causes: Subsea pipelines as a case study
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 142
  start-page: 357
  year: 2015
  end-page: 368
  ident: b0010
  article-title: Condition-based maintenance effectiveness for series–parallel power generation system - A combined Markovian simulation model
  publication-title: Reliability Engineering & System Safety
– volume: 226
  start-page: 53
  year: 2013
  end-page: 66
  ident: b0140
  article-title: A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution
  publication-title: European Journal of Operational Research
– volume: 73
  start-page: 69
  year: 2015
  end-page: 80
  ident: b0040
  article-title: Parameter learning for the belief rule base system in the residual life probability prediction of metalized film capacitor
  publication-title: Knowledge-Based Systems
– volume: 104
  start-page: 799
  year: 2018
  end-page: 834
  ident: b0100
  article-title: Machinery health prognostics: A systematic review from data acquisition to RUL prediction
  publication-title: Mechanical Systems and Signal Processing
– volume: 560
  year: 2020
  ident: b0160
  article-title: A time-discrete and zero-adjusted gamma process model with application to degradation analysis
  publication-title: Physica A: Statistical Mechanics and its Applications
– volume: 148–149
  start-page: 1000
  year: 2011
  end-page: 1006
  ident: b0170
  article-title: Risk assessment of subsea X-tree system
  publication-title: Applied Mechanics and Materials
– volume: 213
  start-page: 1
  year: 2011
  end-page: 14
  ident: b0145
  article-title: Remaining useful life estimation - A review on the statistical data driven approaches
  publication-title: European Journal of Operational Research
– volume: 63
  start-page: 191
  year: 2014
  end-page: 207
  ident: b0115
  article-title: Review of hybrid prognostics approaches for remaining useful life Prediction of engineered systems, and an application to battery life prediction
  publication-title: IEEE Transactions on Reliability
– volume: 77
  start-page: 378
  year: 2020
  end-page: 391
  ident: b0060
  article-title: Statistical analysis for the doubly accelerated degradation Wiener model: An objective Bayesian approach
  publication-title: Applied Mathematical Modelling
– volume: 202
  year: 2020
  ident: b0005
  article-title: Bayesian network modelling for the wind energy industry: An overview
  publication-title: Reliability Engineering & System Safety
– volume: 51
  start-page: 285
  year: 2011
  end-page: 293
  ident: b0175
  article-title: A model for residual life prediction based on Brownian motion with an adaptive drift
  publication-title: Microelectronics Reliability
– volume: 80
  start-page: 31
  year: 2016
  end-page: 44
  ident: b0020
  article-title: A real-time fault diagnosis methodology of complex systems using object-oriented Bayesian networks
  publication-title: Mechanical Systems and Signal Processing
– volume: 20
  start-page: 1483
  year: 2006
  end-page: 1510
  ident: b0070
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mechanical Systems and Signal Processing
– year: 2012
  ident: b0130
  article-title: Offshore reliability data handbook
– volume: 185
  year: 2019
  ident: b0035
  article-title: A Bayesian approach to abrupt concept drift
  publication-title: Knowledge-Based Systems
– year: 2019
  ident: b0015
  article-title: Subsea engineering handbook
– volume: 67
  start-page: 1294
  year: 2018
  end-page: 1303
  ident: b0165
  article-title: A hybrid approach to cutting tool remaining useful life prediction based on the Wiener process
  publication-title: IEEE Transactions on Reliability
– volume: 197
  year: 2020
  ident: b0110
  article-title: Data alignments in machinery remaining useful life prediction using deep adversarial neural networks
  publication-title: Knowledge-Based Systems
– volume: 417
  start-page: 36
  year: 2020
  end-page: 63
  ident: b0075
  article-title: A comprehensive review on convolutional neural network in machine fault diagnosis
  publication-title: Neurocomputing
– volume: 195
  year: 2020
  ident: b0045
  article-title: Decomposition-based Bayesian network structure learning algorithm using local topology information
  publication-title: Knowledge-Based Systems
– volume: 128
  start-page: 1008
  year: 2019
  end-page: 1014
  ident: b0090
  article-title: An HMM and polynomial regression based approach for remaining useful life and health state estimation of cutting tools
  publication-title: Computers & Industrial Engineering
– volume: 12
  start-page: 393
  year: 2016
  end-page: 404
  ident: b0105
  article-title: Feature denoising and nearest - Farthest Distance Preserving Projection for Machine Fault Diagnosis
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 42
  start-page: 314
  year: 2014
  end-page: 334
  ident: b0095
  article-title: Prognostics and health management design for rotary machinery systems-Reviews, methodology and applications
  publication-title: Mechanical Systems and Signal Processing
– volume: 28
  start-page: 25
  year: 2015
  end-page: 33
  ident: b0065
  article-title: A survey on life prediction of equipment
  publication-title: Chinese Journal of Aeronautics
– volume: 125
  start-page: 480
  year: 2018
  end-page: 489
  ident: b0125
  article-title: Prediction of hard failures with stochastic degradation signals using Wiener process and proportional hazards model
  publication-title: Computers & Industrial Engineering
– volume: 93
  start-page: 192
  year: 2016
  end-page: 204
  ident: b0135
  article-title: Real-time prediction of remaining useful life and preventive opportunistic maintenance strategy for multi-component systems considering stochastic dependence
  publication-title: Computers & Industrial Engineering
– volume: 68
  start-page: 13
  year: 2018
  end-page: 23
  ident: b0180
  article-title: Multi-sensor information fusion for remaining useful life prediction of machining tools by adaptive network based fuzzy inference system
  publication-title: Applied Soft Computing
– volume: 61
  start-page: 50
  year: 2012
  end-page: 67
  ident: b0155
  article-title: Remaining useful life estimation based on a nonlinear diffusion degradation process
  publication-title: IEEE Transactions on Reliability
– volume: 101
  start-page: 2861
  year: 2019
  end-page: 2872
  ident: b0055
  article-title: Hybrid data-driven physics-based model fusion framework for tool wear prediction
  publication-title: The International Journal of Advanced Manufacturing Technology
– volume: 28
  start-page: 25
  issue: 1
  year: 2015
  ident: 10.1016/j.cie.2020.106983_b0065
  article-title: A survey on life prediction of equipment
  publication-title: Chinese Journal of Aeronautics
  doi: 10.1016/j.cja.2014.12.020
– volume: 226
  start-page: 53
  issue: 1
  year: 2013
  ident: 10.1016/j.cie.2020.106983_b0140
  article-title: A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2012.10.030
– volume: 20
  start-page: 1483
  issue: 7
  year: 2006
  ident: 10.1016/j.cie.2020.106983_b0070
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2005.09.012
– volume: 128
  start-page: 1008
  year: 2019
  ident: 10.1016/j.cie.2020.106983_b0090
  article-title: An HMM and polynomial regression based approach for remaining useful life and health state estimation of cutting tools
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.05.017
– volume: 93
  start-page: 192
  year: 2016
  ident: 10.1016/j.cie.2020.106983_b0135
  article-title: Real-time prediction of remaining useful life and preventive opportunistic maintenance strategy for multi-component systems considering stochastic dependence
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2015.12.016
– volume: 14
  start-page: 276
  issue: 1
  year: 2017
  ident: 10.1016/j.cie.2020.106983_b0025
  article-title: A dynamic-Bayesian-network-based fault diagnosis methodology considering transient and intermittent faults
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2016.2574875
– volume: 142
  start-page: 357
  year: 2015
  ident: 10.1016/j.cie.2020.106983_b0010
  article-title: Condition-based maintenance effectiveness for series–parallel power generation system - A combined Markovian simulation model
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2015.04.009
– volume: 560
  year: 2020
  ident: 10.1016/j.cie.2020.106983_b0160
  article-title: A time-discrete and zero-adjusted gamma process model with application to degradation analysis
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2020.125180
– volume: 68
  start-page: 13
  year: 2018
  ident: 10.1016/j.cie.2020.106983_b0180
  article-title: Multi-sensor information fusion for remaining useful life prediction of machining tools by adaptive network based fuzzy inference system
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.03.043
– volume: 67
  start-page: 5737
  issue: 7
  year: 2020
  ident: 10.1016/j.cie.2020.106983_b0030
  article-title: Remaining useful life estimation of structure systems under the influence of multiple causes: Subsea pipelines as a case study
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2019.2931491
– volume: 101
  start-page: 2861
  issue: 9–12
  year: 2019
  ident: 10.1016/j.cie.2020.106983_b0055
  article-title: Hybrid data-driven physics-based model fusion framework for tool wear prediction
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-018-3157-5
– volume: 532
  start-page: 33
  year: 2020
  ident: 10.1016/j.cie.2020.106983_b0120
  article-title: An evidence theory based model fusion method for degradation modeling and statistical analysis
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.04.042
– volume: 417
  start-page: 36
  year: 2020
  ident: 10.1016/j.cie.2020.106983_b0075
  article-title: A comprehensive review on convolutional neural network in machine fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.088
– volume: 42
  start-page: 314
  issue: 1–2
  year: 2014
  ident: 10.1016/j.cie.2020.106983_b0095
  article-title: Prognostics and health management design for rotary machinery systems-Reviews, methodology and applications
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2013.06.004
– volume: 63
  start-page: 191
  issue: 1
  year: 2014
  ident: 10.1016/j.cie.2020.106983_b0115
  article-title: Review of hybrid prognostics approaches for remaining useful life Prediction of engineered systems, and an application to battery life prediction
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/TR.2014.2299152
– volume: 195
  year: 2020
  ident: 10.1016/j.cie.2020.106983_b0045
  article-title: Decomposition-based Bayesian network structure learning algorithm using local topology information
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.105602
– volume: 61
  start-page: 50
  issue: 1
  year: 2012
  ident: 10.1016/j.cie.2020.106983_b0155
  article-title: Remaining useful life estimation based on a nonlinear diffusion degradation process
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/TR.2011.2182221
– volume: 62–63
  start-page: 1
  year: 2015
  ident: 10.1016/j.cie.2020.106983_b0080
  article-title: A review on prognostic techniques for non-stationary and non-linear rotating systems
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2015.02.016
– volume: 104
  start-page: 799
  year: 2018
  ident: 10.1016/j.cie.2020.106983_b0100
  article-title: Machinery health prognostics: A systematic review from data acquisition to RUL prediction
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2017.11.016
– volume: 12
  start-page: 393
  issue: 1
  year: 2016
  ident: 10.1016/j.cie.2020.106983_b0105
  article-title: Feature denoising and nearest - Farthest Distance Preserving Projection for Machine Fault Diagnosis
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2015.2475219
– year: 2019
  ident: 10.1016/j.cie.2020.106983_b0015
– volume: 73
  start-page: 69
  year: 2015
  ident: 10.1016/j.cie.2020.106983_b0040
  article-title: Parameter learning for the belief rule base system in the residual life probability prediction of metalized film capacitor
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2014.09.006
– volume: 115
  start-page: 595
  year: 2018
  ident: 10.1016/j.cie.2020.106983_b0085
  article-title: Using dynamic Bayesian networks as simulation metamodels based on bootstrapping
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2017.11.033
– year: 2012
  ident: 10.1016/j.cie.2020.106983_b0130
– volume: 67
  start-page: 1294
  issue: 3
  year: 2018
  ident: 10.1016/j.cie.2020.106983_b0165
  article-title: A hybrid approach to cutting tool remaining useful life prediction based on the Wiener process
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/TR.2018.2831256
– volume: 148–149
  start-page: 1000
  year: 2011
  ident: 10.1016/j.cie.2020.106983_b0170
  article-title: Risk assessment of subsea X-tree system
  publication-title: Applied Mechanics and Materials
  doi: 10.4028/www.scientific.net/AMM.148-149.1000
– volume: 125
  start-page: 480
  year: 2018
  ident: 10.1016/j.cie.2020.106983_b0125
  article-title: Prediction of hard failures with stochastic degradation signals using Wiener process and proportional hazards model
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.09.015
– volume: 197
  year: 2020
  ident: 10.1016/j.cie.2020.106983_b0110
  article-title: Data alignments in machinery remaining useful life prediction using deep adversarial neural networks
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.105843
– volume: 202
  year: 2020
  ident: 10.1016/j.cie.2020.106983_b0005
  article-title: Bayesian network modelling for the wind energy industry: An overview
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2020.107053
– volume: 86
  start-page: 154
  year: 2019
  ident: 10.1016/j.cie.2020.106983_b0050
  article-title: Data-driven approach augmented in simulation for robust fault prognosis
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2019.09.002
– volume: 77
  start-page: 378
  year: 2020
  ident: 10.1016/j.cie.2020.106983_b0060
  article-title: Statistical analysis for the doubly accelerated degradation Wiener model: An objective Bayesian approach
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2019.07.045
– volume: 80
  start-page: 31
  year: 2016
  ident: 10.1016/j.cie.2020.106983_b0020
  article-title: A real-time fault diagnosis methodology of complex systems using object-oriented Bayesian networks
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2016.04.019
– volume: 185
  year: 2019
  ident: 10.1016/j.cie.2020.106983_b0035
  article-title: A Bayesian approach to abrupt concept drift
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.104909
– volume: 213
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.cie.2020.106983_b0145
  article-title: Remaining useful life estimation - A review on the statistical data driven approaches
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2010.11.018
– volume: 51
  start-page: 285
  issue: 2
  year: 2011
  ident: 10.1016/j.cie.2020.106983_b0175
  article-title: A model for residual life prediction based on Brownian motion with an adaptive drift
  publication-title: Microelectronics Reliability
  doi: 10.1016/j.microrel.2010.09.013
SSID ssj0004591
Score 2.631576
Snippet •A remaining useful life re-prediction method based on Wiener process is proposed.•Current and historical data are used for re-prediction model...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106983
SubjectTerms Dynamic Bayesian networks
Expectation Maximization algorithm
Remaining useful life
Subsea Christmas tree system
Wiener process
Title Remaining useful life re-prediction methodology based on Wiener process: Subsea Christmas tree system as a case study
URI https://dx.doi.org/10.1016/j.cie.2020.106983
Volume 151
WOSCitedRecordID wos000632959400052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMceBQQLQ_5wImVKydx1jG3ChUVhCpEi9hb5DgOTbXNrja7Vfs_-MGMM86D5SFA4hLtjuI42vl2PDP2fEPIiwTkYagTBt6BZiIpNFOFjZjKtAhyHlnOTdNsQh4fJ9Op-jAafW1rYS5nsqqSqyu1-K-qBhko25XO_oW6u4eCAD6D0uEKaofrHyn-o73Arg_jdW3dCeRZWbjeKGyxdJsyjb6xbzTSL7l1LHd7Bp9LR0E9XmDpgEsVOKtitScguNC1O5ZuPfmza1CjxwYGDyhqW8oD3yqiboBV9t1BbM9-2G9-lLjv0VRudXDCvOzRvPpy3eP35Ew3md1pqecD8fty3awkcPPZ3D_DJzLCYCOR0VXY9MeZsKqLM-cl4nqFRjqRivEYCWs7K468tT-sCJicON8HS7kPszrJRGHvnA2i7RM3V-OQujgqjuQNsh3KWIGt3D54ezh9N2Chx06M7bu1u-XNucGNiX7u7wx8mNN75I4PPugBguY-Gdlqh9z1gQj1Zr7eIbcHLJUPyLpDFEVEUYco-h2i6ABRtEEUBSEiinpEvaKIJ9rhiTo8UcQTha-aOjzRBk8Pyac3h6evj5jv1sFMqOSKGWkmRSx0LrmOkkIFMgsjE8osV5kwBiLxUExia40MRCCsEkZnseFa6CLMIIyPHpGtal7Zx4TqidRGxtmER7EocrAiivMsj00RBdbyZJfw9jdNjaeydx1VZml7ZvEc5DZ1akhRDbvkZTdkgTwuv7tZtIpKvSOKDmYKqPr1sL1_G_aE3Or_Dk_J1mq5ts_ITXO5Kuvlc4-9b98lr58
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remaining+useful+life+re-prediction+methodology+based+on+Wiener+process%3A+Subsea+Christmas+tree+system+as+a+case+study&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Cai%2C+Baoping&rft.au=Fan%2C+Hongyan&rft.au=Shao%2C+Xiaoyan&rft.au=Liu%2C+Yonghong&rft.date=2021-01-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=151&rft_id=info:doi/10.1016%2Fj.cie.2020.106983&rft.externalDocID=S0360835220306537
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon