Robust stochastic configuration networks for industrial data modelling with Student’s-t mixture distribution

Data collected from industrial sites commonly contains outliers or noise that obey unknown distributions, making it challenging to establish an accurate data-driven model. Therefore, this paper proposes a novel robust stochastic configuration network based on a Student’s-t mixture distribution (term...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences Vol. 607; pp. 493 - 505
Main Authors: Yan, Aijun, Guo, Jingcheng, Wang, Dianhui
Format: Journal Article
Language:English
Published: Elsevier Inc 01.08.2022
Subjects:
ISSN:0020-0255, 1872-6291
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Data collected from industrial sites commonly contains outliers or noise that obey unknown distributions, making it challenging to establish an accurate data-driven model. Therefore, this paper proposes a novel robust stochastic configuration network based on a Student’s-t mixture distribution (termed as SM-RSC). Firstly, a stochastic configuration algorithm is employed to determine the number of hidden nodes, the input weights and biases. Secondly, the maximum a posteriori (MAP) estimate is used to evaluate the output weights of the SCN learner model under the assumption that outliers or noises obey the Student’s-t mixture distribution. Because the output weights cannot be solved directly due to the unknown hyper-parameters of the mixture distribution, we apply the well-known expectation–maximization (EM) algorithm for optimizing the hyper-parameters of the mixture distribution and update the output weights iteratively. The proposed algorithm is evaluated by a function approximation, four benchmark datasets, and a case study on industrial data modelling for a waste incineration process. The results show that SM-RSC performs favorably compared with other methods.
AbstractList Data collected from industrial sites commonly contains outliers or noise that obey unknown distributions, making it challenging to establish an accurate data-driven model. Therefore, this paper proposes a novel robust stochastic configuration network based on a Student’s-t mixture distribution (termed as SM-RSC). Firstly, a stochastic configuration algorithm is employed to determine the number of hidden nodes, the input weights and biases. Secondly, the maximum a posteriori (MAP) estimate is used to evaluate the output weights of the SCN learner model under the assumption that outliers or noises obey the Student’s-t mixture distribution. Because the output weights cannot be solved directly due to the unknown hyper-parameters of the mixture distribution, we apply the well-known expectation–maximization (EM) algorithm for optimizing the hyper-parameters of the mixture distribution and update the output weights iteratively. The proposed algorithm is evaluated by a function approximation, four benchmark datasets, and a case study on industrial data modelling for a waste incineration process. The results show that SM-RSC performs favorably compared with other methods.
Author Guo, Jingcheng
Wang, Dianhui
Yan, Aijun
Author_xml – sequence: 1
  givenname: Aijun
  surname: Yan
  fullname: Yan, Aijun
  organization: Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
– sequence: 2
  givenname: Jingcheng
  surname: Guo
  fullname: Guo, Jingcheng
  organization: Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
– sequence: 3
  givenname: Dianhui
  surname: Wang
  fullname: Wang, Dianhui
  email: dh.wang@deepscn.com
  organization: Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou 221116, China
BookMark eNp9kM1KAzEUhYNUsK0-gLu8wNQkncx0cCXFPygI2n3IJHfaW6eJJBmrO1_D1_NJnKorF11dONzvwPlGZOC8A0LOOZtwxouLzQRdnAgmxITJPpJHZMhnpcgKUfEBGTImWMaElCdkFOOGMZaXRTEk7tHXXUw0Jm_WOiY01HjX4KoLOqF31EHa-fAcaeMDRWf754C6pVYnTbfeQtuiW9EdpjV9Sp0Fl74-PmOW6BbfUheAWtwjdbevOyXHjW4jnP3dMVneXC_nd9ni4fZ-frXIjKjKlJlS1EVVaGNtpStRNEzCFCqpRc1zq6csNzIvzKzmsrJ1AzPIpzLPDbDaQKmnY1L-1prgYwzQKIPpZ08KGlvFmdpbUxvVW1N7a4rJPpI9yf-RLwG3OrwfZC5_GegXvSIEFQ2CM2AxgEnKejxAfwNkw4zv
CitedBy_id crossref_primary_10_1016_j_ins_2022_08_088
crossref_primary_10_1016_j_eswa_2024_124789
crossref_primary_10_1016_j_neucom_2025_130584
crossref_primary_10_1016_j_aei_2024_102619
crossref_primary_10_1016_j_engappai_2023_107315
crossref_primary_10_1016_j_isatra_2024_10_014
crossref_primary_10_1016_j_aej_2025_08_031
crossref_primary_10_1016_j_knosys_2023_110464
crossref_primary_10_1016_j_ins_2023_119560
crossref_primary_10_1109_TII_2024_3367007
crossref_primary_10_1109_TII_2025_3558307
crossref_primary_10_1016_j_ins_2023_119145
crossref_primary_10_1016_j_ins_2024_120885
crossref_primary_10_1016_j_ins_2024_120689
crossref_primary_10_1109_TNNLS_2024_3512492
crossref_primary_10_1002_acs_3657
crossref_primary_10_1016_j_measurement_2024_114435
crossref_primary_10_1016_j_ins_2024_121519
crossref_primary_10_1007_s13042_023_01848_z
crossref_primary_10_1109_TIM_2024_3476561
crossref_primary_10_1109_TFUZZ_2023_3315368
crossref_primary_10_1109_TII_2024_3441640
crossref_primary_10_1016_j_ins_2024_120098
crossref_primary_10_1016_j_ins_2025_122477
crossref_primary_10_1109_TIM_2025_3547532
crossref_primary_10_1016_j_eswa_2023_122733
crossref_primary_10_1016_j_ins_2024_120497
crossref_primary_10_1016_j_ins_2024_121026
crossref_primary_10_1007_s44244_023_00003_5
crossref_primary_10_1002_aic_18448
Cites_doi 10.1109/72.298224
10.1109/ACCESS.2017.2737459
10.1109/JSYST.2018.2890106
10.1016/j.spl.2014.01.016
10.1016/j.ins.2015.07.002
10.1016/j.arcontrol.2014.03.005
10.1109/TNNLS.2016.2547968
10.1109/72.471375
10.1109/TASE.2019.2939052
10.1016/j.compchemeng.2008.12.012
10.1007/s00521-020-04771-4
10.1023/A:1008981510081
10.1016/j.ins.2018.12.027
10.1016/j.ins.2017.05.047
10.1109/LSP.2012.2230626
10.1109/TII.2018.2829167
10.1016/j.ins.2019.02.042
10.1109/TCYB.2017.2734043
10.1109/TIE.2017.2686369
10.1016/S0031-3203(01)00080-2
10.1016/j.ins.2019.01.062
10.1023/A:1020759012226
10.1109/TII.2019.2954351
10.1109/TNNLS.2018.2873183
10.1109/TII.2017.2712743
10.1109/TII.2019.2919268
10.1109/2.144401
10.1016/j.ins.2017.07.003
10.1016/j.ins.2015.09.021
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2022.05.105
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 505
ExternalDocumentID 10_1016_j_ins_2022_05_105
S0020025522005436
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-c72b696acdd9a926f05e3e95a2b14da304c546c8b159dbfe8e43544ce0bce7a3
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000817815100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 07:27:06 EST 2025
Tue Nov 18 22:30:16 EST 2025
Fri Feb 23 02:38:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Stochastic configuration networks
Robust data modeling
Expectation–maximization algorithm
Student’s-t mixture distribution
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-c72b696acdd9a926f05e3e95a2b14da304c546c8b159dbfe8e43544ce0bce7a3
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2022_05_105
crossref_primary_10_1016_j_ins_2022_05_105
elsevier_sciencedirect_doi_10_1016_j_ins_2022_05_105
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Li, Guo, Hou (b0160) 2019; 38
Pao, Takefuji (b0025) 1992; 25
Wang, Cui (b0055) 2017; 417
Lian, Zhang, Li (b0070) 2019; 30
Li, Tao, Li, Chen, Wang (b0065) 2019; 488
Dai, Chen, Chu, Ma, Chai (b0090) 2017; 5
Zhou, Lv, Wang, Chai (b0105) 2017; 64
Shoham (b0135) 2002; 35
Li, Huang, Wang (b0100) 2019; 473
Gorban, Tyukin, Prokhorov, Sofeikov (b0155) 2016; 364–365
Zhang, Chai, Wang (b0015) 2017; 28
Kadlec, Gabrys, Strandt (b0080) 2009; 33
J. Lu, J. Ding, Mixed-distribution based robust stochastic configuration networks for prediction interval construction, IEEE Trans. Indus. Inf., 2020, 16(8): 5099–5019.
Dai, Li, Zhou, Chai (b0075) 2019; 484
Huang, Huang, Wang (b0045) 2020; 16
Igelnik, Pao (b0030) 1995; 6
Bi, Yuan, Zhang, Zhang (b0060) 2019; 481
Wang, Li (b0035) 2017; 47
Battiti (b0165) 1994; 5
Zhang, Wu, Nguyen (b0130) 2013; 20
Wang, Li (b0095) 2017; 412
Lu, Ding (b0050) 2019; 486
Phillips (b0145) 2002; 12
Press, Teukolsky, Vetterling, Flannery (b0150) 2007
Chai, Qin, Wang (b0005) 2014; 38
Zhou, Yuan, Wang, Wang, Chai (b0010) 2015; 325
Wang, Wang (b0040) 2020; 32
Zhao, Ma, Huang (b0115) 2019; 15
Peel, McLachlan (b0140) 2000; 10
Li, Zhou, Liu, Wang (b0020) 2020; 17
Huang, Wang, Zheng (b0085) 2014; 88
Chen, Sun, Ling, Ho (b0120) 2020; 14
Guo, Kodamana, Zhao, Huang, Ding (b0125) 2017; 13
Chai (10.1016/j.ins.2022.05.105_b0005) 2014; 38
Huang (10.1016/j.ins.2022.05.105_b0085) 2014; 88
Battiti (10.1016/j.ins.2022.05.105_b0165) 1994; 5
Dai (10.1016/j.ins.2022.05.105_b0090) 2017; 5
Guo (10.1016/j.ins.2022.05.105_b0125) 2017; 13
Igelnik (10.1016/j.ins.2022.05.105_b0030) 1995; 6
Li (10.1016/j.ins.2022.05.105_b0160) 2019; 38
Zhang (10.1016/j.ins.2022.05.105_b0015) 2017; 28
Pao (10.1016/j.ins.2022.05.105_b0025) 1992; 25
Gorban (10.1016/j.ins.2022.05.105_b0155) 2016; 364–365
Zhou (10.1016/j.ins.2022.05.105_b0105) 2017; 64
Zhang (10.1016/j.ins.2022.05.105_b0130) 2013; 20
Lu (10.1016/j.ins.2022.05.105_b0050) 2019; 486
Zhao (10.1016/j.ins.2022.05.105_b0115) 2019; 15
Phillips (10.1016/j.ins.2022.05.105_b0145) 2002; 12
Wang (10.1016/j.ins.2022.05.105_b0055) 2017; 417
Chen (10.1016/j.ins.2022.05.105_b0120) 2020; 14
Wang (10.1016/j.ins.2022.05.105_b0040) 2020; 32
Li (10.1016/j.ins.2022.05.105_b0065) 2019; 488
Bi (10.1016/j.ins.2022.05.105_b0060) 2019; 481
Shoham (10.1016/j.ins.2022.05.105_b0135) 2002; 35
Li (10.1016/j.ins.2022.05.105_b0100) 2019; 473
Dai (10.1016/j.ins.2022.05.105_b0075) 2019; 484
Wang (10.1016/j.ins.2022.05.105_b0095) 2017; 412
Kadlec (10.1016/j.ins.2022.05.105_b0080) 2009; 33
Press (10.1016/j.ins.2022.05.105_b0150) 2007
Wang (10.1016/j.ins.2022.05.105_b0035) 2017; 47
Huang (10.1016/j.ins.2022.05.105_b0045) 2020; 16
Li (10.1016/j.ins.2022.05.105_b0020) 2020; 17
10.1016/j.ins.2022.05.105_b0110
Lian (10.1016/j.ins.2022.05.105_b0070) 2019; 30
Zhou (10.1016/j.ins.2022.05.105_b0010) 2015; 325
Peel (10.1016/j.ins.2022.05.105_b0140) 2000; 10
References_xml – volume: 25
  start-page: 76
  year: 1992
  end-page: 79
  ident: b0025
  article-title: Functional-link net computing: theory, system architecture, and functionalities
  publication-title: IEEE Comput.
– volume: 20
  start-page: 117
  year: 2013
  end-page: 120
  ident: b0130
  article-title: A robust fuzzy algorithm based on Student’s t-distribution and mean template for image segmentation application
  publication-title: IEEE Signal Process Lett.
– volume: 38
  start-page: 746
  year: 2019
  end-page: 759
  ident: b0160
  article-title: Progress on the emission and formation mechanisms of dioxin during the solid waste incineration process
  publication-title: Environ. Chem.
– volume: 88
  start-page: 165
  year: 2014
  end-page: 173
  ident: b0085
  article-title: The M-estimator for functional linear regression model
  publication-title: Statistics & Probability Lett.
– volume: 15
  start-page: 139
  year: 2019
  end-page: 147
  ident: b0115
  article-title: Robust FIR state estimation of dynamic processes corrupted by outliers
  publication-title: IEEE Trans. Ind. Inf.
– volume: 412
  start-page: 210
  year: 2017
  end-page: 222
  ident: b0095
  article-title: Robust stochastic configuration networks with kernel density estimation for uncertain data regression
  publication-title: Inf. Sci.
– year: 2007
  ident: b0150
  article-title: Number Recipes: The Art of Scientific Computing (Third Edition)
– volume: 6
  start-page: 1320
  year: 1995
  end-page: 1329
  ident: b0030
  article-title: Stochastic choice of basis functions in adaptive function approximation and the functional-link net
  publication-title: IEEE Trans. Neural Networks
– volume: 473
  start-page: 73
  year: 2019
  end-page: 86
  ident: b0100
  article-title: Robust stochastic configuration networks with maximum correntropy criterion for uncertain data regression
  publication-title: Inf. Sci.
– volume: 64
  start-page: 7141
  year: 2017
  end-page: 7151
  ident: b0105
  article-title: Data-driven robust RVFLNs modeling of a blast furnace iron-making process using Cauchy distribution weighted M-estimation
  publication-title: IEEE Trans. Ind. Electron.
– volume: 30
  start-page: 2324
  year: 2019
  end-page: 2335
  ident: b0070
  article-title: Integrated sliding mode control and neural networks based packet disordering prediction for nonlinear networked control systems
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 486
  start-page: 119
  year: 2019
  end-page: 132
  ident: b0050
  article-title: Construction of prediction intervals for carbon residual of crude oil based on deep stochastic configuration networks
  publication-title: Inf. Sci.
– volume: 5
  start-page: 537
  year: 1994
  end-page: 550
  ident: b0165
  article-title: Using mutual information for selecting features in supervised neural net learning
  publication-title: IEEE Trans. Neural Networks
– volume: 35
  start-page: 1127
  year: 2002
  end-page: 1142
  ident: b0135
  article-title: Robust clustering by deterministic agglomeration EM of mixtures of multivariate t-distributions
  publication-title: Pattern Recogn.
– volume: 38
  start-page: 81
  year: 2014
  end-page: 92
  ident: b0005
  article-title: Optimal operational control for complex industrial processes
  publication-title: Ann. Rev. Control
– volume: 47
  start-page: 3346
  year: 2017
  end-page: 3479
  ident: b0035
  article-title: Stochastic configuration networks: fundamentals and algorithms
  publication-title: IEEE Trans. Cybern.
– volume: 364–365
  start-page: 129
  year: 2016
  end-page: 145
  ident: b0155
  article-title: Approximation with random bases: Pro et Contra
  publication-title: Inf. Sci.
– volume: 10
  start-page: 339
  year: 2000
  end-page: 348
  ident: b0140
  article-title: Robust mixture modelling using the t distribution
  publication-title: Stat. Comput.
– volume: 32
  start-page: 13625
  year: 2020
  end-page: 13638
  ident: b0040
  article-title: Prediction of component concentrations in sodium aluminate liquor using stochastic configuration networks
  publication-title: Neural Comput. Appl.
– volume: 5
  start-page: 16162
  year: 2017
  end-page: 16172
  ident: b0090
  article-title: Robust regularized random vector functional link network and its industrial application
  publication-title: IEEE Access
– volume: 16
  start-page: 373
  year: 2020
  end-page: 383
  ident: b0045
  article-title: Stochastic configuration networks based adaptive storage replica management for power big data processing
  publication-title: IEEE Trans. Ind. Inf.
– volume: 325
  start-page: 237
  year: 2015
  end-page: 255
  ident: b0010
  article-title: Multivariable dynamic modeling for molten iron quality using online sequential random vector functional-link networks with self-feedback connections
  publication-title: Inf. Sci.
– volume: 417
  start-page: 55
  year: 2017
  end-page: 71
  ident: b0055
  article-title: Stochastic configuration networks ensemble with heterogeneous features for large-scale data analytics
  publication-title: Inf. Sci.
– volume: 28
  start-page: 1606
  year: 2017
  end-page: 1617
  ident: b0015
  article-title: An alternating identification algorithm for a class of nonlinear dynamical systems
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 488
  start-page: 1
  year: 2019
  end-page: 12
  ident: b0065
  article-title: Greengage grading using stochastic configuration networks and a semi-supervised feedback mechanism
  publication-title: Inf. Sci.
– volume: 14
  start-page: 771
  year: 2020
  end-page: 781
  ident: b0120
  article-title: Robust power system state estimation using t-distribution noise model
  publication-title: IEEE Syst. J.
– volume: 13
  start-page: 3047
  year: 2017
  end-page: 3057
  ident: b0125
  article-title: Robust identification of nonlinear errors-in-variables systems with parameter uncertainties using variational Bayesian approach
  publication-title: IEEE Trans. Ind. Inf.
– volume: 484
  start-page: 367
  year: 2019
  end-page: 386
  ident: b0075
  article-title: Stochastic configuration networks with block increments for data modeling in process industries
  publication-title: Inf. Sci.
– volume: 481
  start-page: 57
  year: 2019
  end-page: 68
  ident: b0060
  article-title: SGW-SCN: An integrated machine learning approach for workload forecasting in geo-distributed cloud data centers
  publication-title: Inf. Sci.
– reference: J. Lu, J. Ding, Mixed-distribution based robust stochastic configuration networks for prediction interval construction, IEEE Trans. Indus. Inf., 2020, 16(8): 5099–5019.
– volume: 12
  start-page: 281
  year: 2002
  end-page: 285
  ident: b0145
  article-title: Least absolute deviations estimation via the EM algorithm
  publication-title: Stat. Comput.
– volume: 33
  start-page: 795
  year: 2009
  end-page: 814
  ident: b0080
  article-title: Data-driven Soft Sensors in the process industry
  publication-title: Comput. Chem. Eng.
– volume: 17
  start-page: 633
  year: 2020
  end-page: 645
  ident: b0020
  article-title: Data-driven predictive probability density function control of fiber length stochastic distribution shaping in refining process
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 5
  start-page: 537
  issue: 4
  year: 1994
  ident: 10.1016/j.ins.2022.05.105_b0165
  article-title: Using mutual information for selecting features in supervised neural net learning
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.298224
– volume: 5
  start-page: 16162
  issue: 8
  year: 2017
  ident: 10.1016/j.ins.2022.05.105_b0090
  article-title: Robust regularized random vector functional link network and its industrial application
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2737459
– volume: 14
  start-page: 771
  issue: 1
  year: 2020
  ident: 10.1016/j.ins.2022.05.105_b0120
  article-title: Robust power system state estimation using t-distribution noise model
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2018.2890106
– volume: 88
  start-page: 165
  issue: 5
  year: 2014
  ident: 10.1016/j.ins.2022.05.105_b0085
  article-title: The M-estimator for functional linear regression model
  publication-title: Statistics & Probability Lett.
  doi: 10.1016/j.spl.2014.01.016
– volume: 325
  start-page: 237
  issue: 35
  year: 2015
  ident: 10.1016/j.ins.2022.05.105_b0010
  article-title: Multivariable dynamic modeling for molten iron quality using online sequential random vector functional-link networks with self-feedback connections
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.07.002
– volume: 38
  start-page: 81
  issue: 1
  year: 2014
  ident: 10.1016/j.ins.2022.05.105_b0005
  article-title: Optimal operational control for complex industrial processes
  publication-title: Ann. Rev. Control
  doi: 10.1016/j.arcontrol.2014.03.005
– volume: 38
  start-page: 746
  issue: 4
  year: 2019
  ident: 10.1016/j.ins.2022.05.105_b0160
  article-title: Progress on the emission and formation mechanisms of dioxin during the solid waste incineration process
  publication-title: Environ. Chem.
– volume: 28
  start-page: 1606
  issue: 7
  year: 2017
  ident: 10.1016/j.ins.2022.05.105_b0015
  article-title: An alternating identification algorithm for a class of nonlinear dynamical systems
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2016.2547968
– volume: 6
  start-page: 1320
  issue: 6
  year: 1995
  ident: 10.1016/j.ins.2022.05.105_b0030
  article-title: Stochastic choice of basis functions in adaptive function approximation and the functional-link net
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.471375
– volume: 488
  start-page: 1
  issue: 19
  year: 2019
  ident: 10.1016/j.ins.2022.05.105_b0065
  article-title: Greengage grading using stochastic configuration networks and a semi-supervised feedback mechanism
  publication-title: Inf. Sci.
– volume: 17
  start-page: 633
  issue: 2
  year: 2020
  ident: 10.1016/j.ins.2022.05.105_b0020
  article-title: Data-driven predictive probability density function control of fiber length stochastic distribution shaping in refining process
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2019.2939052
– volume: 33
  start-page: 795
  issue: 4
  year: 2009
  ident: 10.1016/j.ins.2022.05.105_b0080
  article-title: Data-driven Soft Sensors in the process industry
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2008.12.012
– volume: 32
  start-page: 13625
  issue: 17
  year: 2020
  ident: 10.1016/j.ins.2022.05.105_b0040
  article-title: Prediction of component concentrations in sodium aluminate liquor using stochastic configuration networks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04771-4
– volume: 10
  start-page: 339
  issue: 4
  year: 2000
  ident: 10.1016/j.ins.2022.05.105_b0140
  article-title: Robust mixture modelling using the t distribution
  publication-title: Stat. Comput.
  doi: 10.1023/A:1008981510081
– volume: 481
  start-page: 57
  issue: 12
  year: 2019
  ident: 10.1016/j.ins.2022.05.105_b0060
  article-title: SGW-SCN: An integrated machine learning approach for workload forecasting in geo-distributed cloud data centers
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.12.027
– volume: 412
  start-page: 210
  issue: 10
  year: 2017
  ident: 10.1016/j.ins.2022.05.105_b0095
  article-title: Robust stochastic configuration networks with kernel density estimation for uncertain data regression
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.05.047
– volume: 20
  start-page: 117
  issue: 2
  year: 2013
  ident: 10.1016/j.ins.2022.05.105_b0130
  article-title: A robust fuzzy algorithm based on Student’s t-distribution and mean template for image segmentation application
  publication-title: IEEE Signal Process Lett.
  doi: 10.1109/LSP.2012.2230626
– volume: 15
  start-page: 139
  issue: 1
  year: 2019
  ident: 10.1016/j.ins.2022.05.105_b0115
  article-title: Robust FIR state estimation of dynamic processes corrupted by outliers
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2018.2829167
– volume: 486
  start-page: 119
  issue: 17
  year: 2019
  ident: 10.1016/j.ins.2022.05.105_b0050
  article-title: Construction of prediction intervals for carbon residual of crude oil based on deep stochastic configuration networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.02.042
– volume: 47
  start-page: 3346
  issue: 10
  year: 2017
  ident: 10.1016/j.ins.2022.05.105_b0035
  article-title: Stochastic configuration networks: fundamentals and algorithms
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2734043
– volume: 64
  start-page: 7141
  issue: 9
  year: 2017
  ident: 10.1016/j.ins.2022.05.105_b0105
  article-title: Data-driven robust RVFLNs modeling of a blast furnace iron-making process using Cauchy distribution weighted M-estimation
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2686369
– volume: 35
  start-page: 1127
  issue: 5
  year: 2002
  ident: 10.1016/j.ins.2022.05.105_b0135
  article-title: Robust clustering by deterministic agglomeration EM of mixtures of multivariate t-distributions
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(01)00080-2
– volume: 484
  start-page: 367
  issue: 5
  year: 2019
  ident: 10.1016/j.ins.2022.05.105_b0075
  article-title: Stochastic configuration networks with block increments for data modeling in process industries
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.01.062
– volume: 12
  start-page: 281
  issue: 3
  year: 2002
  ident: 10.1016/j.ins.2022.05.105_b0145
  article-title: Least absolute deviations estimation via the EM algorithm
  publication-title: Stat. Comput.
  doi: 10.1023/A:1020759012226
– year: 2007
  ident: 10.1016/j.ins.2022.05.105_b0150
– ident: 10.1016/j.ins.2022.05.105_b0110
  doi: 10.1109/TII.2019.2954351
– volume: 30
  start-page: 2324
  issue: 8
  year: 2019
  ident: 10.1016/j.ins.2022.05.105_b0070
  article-title: Integrated sliding mode control and neural networks based packet disordering prediction for nonlinear networked control systems
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2018.2873183
– volume: 13
  start-page: 3047
  issue: 6
  year: 2017
  ident: 10.1016/j.ins.2022.05.105_b0125
  article-title: Robust identification of nonlinear errors-in-variables systems with parameter uncertainties using variational Bayesian approach
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2017.2712743
– volume: 16
  start-page: 373
  issue: 1
  year: 2020
  ident: 10.1016/j.ins.2022.05.105_b0045
  article-title: Stochastic configuration networks based adaptive storage replica management for power big data processing
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2919268
– volume: 473
  start-page: 73
  issue: 4
  year: 2019
  ident: 10.1016/j.ins.2022.05.105_b0100
  article-title: Robust stochastic configuration networks with maximum correntropy criterion for uncertain data regression
  publication-title: Inf. Sci.
– volume: 25
  start-page: 76
  issue: 5
  year: 1992
  ident: 10.1016/j.ins.2022.05.105_b0025
  article-title: Functional-link net computing: theory, system architecture, and functionalities
  publication-title: IEEE Comput.
  doi: 10.1109/2.144401
– volume: 417
  start-page: 55
  issue: 31
  year: 2017
  ident: 10.1016/j.ins.2022.05.105_b0055
  article-title: Stochastic configuration networks ensemble with heterogeneous features for large-scale data analytics
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.07.003
– volume: 364–365
  start-page: 129
  issue: 29
  year: 2016
  ident: 10.1016/j.ins.2022.05.105_b0155
  article-title: Approximation with random bases: Pro et Contra
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.09.021
SSID ssj0004766
Score 2.5273972
Snippet Data collected from industrial sites commonly contains outliers or noise that obey unknown distributions, making it challenging to establish an accurate...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 493
SubjectTerms Expectation–maximization algorithm
Robust data modeling
Stochastic configuration networks
Student’s-t mixture distribution
Title Robust stochastic configuration networks for industrial data modelling with Student’s-t mixture distribution
URI https://dx.doi.org/10.1016/j.ins.2022.05.105
Volume 607
WOSCitedRecordID wos000817815100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEBQQBYp8QBxYRcrDjuPjCsrrUCHYw3KK_ArNaptW3aTaA4f-jf49fgnj2Hm0UEQPXKLIiu3dzJfxeDzzDUIvkyLLEmHSIFFRERBNTCCoVgHTJolNIWkYibbYBDs4yBYL_nky-dHlwpytWFVlmw0_-a-ihjYQtk2dvYG4-0GhAe5B6HAFscP1nwT_5Vg263oKRp06FJaF2UaWF-X3xsu6coHfLQ_DtBwqd9hYUVcYZ9U7aL865ssuIoKvg3p6VG7aUwdtKXd9tayxiesTnNq5_Pra2-3fnLt1Vi6bHpTvG3f4A5MCgPxC2rr4nRp6CwA-bMqxewJ2tl1w3JAuEAZ24zJWuamrdOuVJnE1Ev36S9s07N9Vu_MyLGE_YlnW49gSrkbu2cs02leWtz7osItnW-YwRG6HyEMKTfQW2o4Z5aATt2cf9xefhrxa5s66u7_QnYq38YFXfsef7ZqRrTK_j-75TQaeOXA8QBNT7aC7I-rJHbTnE1bwKzwSGPaq_iGqHIzwACN8CUa4gxGGzniAEbYwwj2MsIUR9jD6eX4BAMIeQHgMoEdo_m5__uZD4GtzBCrmrA4Ui2XKU6G05oLHaRFSkxhORSwjokUSEkVJqjIJ5rKWhckM2OWEKBNKZZhIHqOt6rgyTxDWYHGSImOxMopIIqVhBUsLyrSQUZbKXRR2LzZXnrfelk9Z5dcKdBe97rucONKWvz1MOmnl_qtw1mQOyLu-29ObzPEM3Rm-jedoqz5tzB66rc7qcn36wsPuF4Ajqsc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+stochastic+configuration+networks+for+industrial+data+modelling+with+Student%E2%80%99s-t+mixture+distribution&rft.jtitle=Information+sciences&rft.au=Yan%2C+Aijun&rft.au=Guo%2C+Jingcheng&rft.au=Wang%2C+Dianhui&rft.date=2022-08-01&rft.issn=0020-0255&rft.volume=607&rft.spage=493&rft.epage=505&rft_id=info:doi/10.1016%2Fj.ins.2022.05.105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2022_05_105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon