A novel auxetic metamaterial with enhanced mechanical properties and tunable auxeticity
An auxetic metamaterial composed of novel re-entrant unit cells was proposed. The new re-entrant structure was constructed by adding wedge-shaped parts to the conventional re-entrant structure. Not only can the additional part regulate the structural stiffness during compression but it can also incr...
Uložené v:
| Vydané v: | Thin-walled structures Ročník 174; s. 109162 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.05.2022
|
| Predmet: | |
| ISSN: | 0263-8231, 1879-3223 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | An auxetic metamaterial composed of novel re-entrant unit cells was proposed. The new re-entrant structure was constructed by adding wedge-shaped parts to the conventional re-entrant structure. Not only can the additional part regulate the structural stiffness during compression but it can also increase the stability of the structure by hindering lateral buckling of the structure, endowing the metamaterial with more significant and stable auxetic behavior in compression. The mechanical and deformation characteristics of the proposed metamaterial were investigated experimentally and numerically. A parametric study was carried out using the validated finite element model to analyze the influence of the size, angle and stiffness of the wedge-shaped part. Due to its improved stiffness and tunability, the proposed auxetic metamaterial has huge potential to be utilized in civil engineering and protection engineering in the form of two-dimensional, three-dimensional and tubular structures. Furthermore, the self-adjusting stiffness property, better stability and enhanced auxeticity make this metamaterial useful for smart materials and intelligent sensors.
•The proposed auxetic metamaterial possesses enhanced mechanical properties.•The unit cell was constructed by adding wedge parts to the re-entrant unit.•Large stiffness variation can be achieved without changing auxeticity of the unit.•The stiffness change point was derived and verified.•The self-adjusting stiffness property is promising in smart materials and devices. |
|---|---|
| AbstractList | An auxetic metamaterial composed of novel re-entrant unit cells was proposed. The new re-entrant structure was constructed by adding wedge-shaped parts to the conventional re-entrant structure. Not only can the additional part regulate the structural stiffness during compression but it can also increase the stability of the structure by hindering lateral buckling of the structure, endowing the metamaterial with more significant and stable auxetic behavior in compression. The mechanical and deformation characteristics of the proposed metamaterial were investigated experimentally and numerically. A parametric study was carried out using the validated finite element model to analyze the influence of the size, angle and stiffness of the wedge-shaped part. Due to its improved stiffness and tunability, the proposed auxetic metamaterial has huge potential to be utilized in civil engineering and protection engineering in the form of two-dimensional, three-dimensional and tubular structures. Furthermore, the self-adjusting stiffness property, better stability and enhanced auxeticity make this metamaterial useful for smart materials and intelligent sensors.
•The proposed auxetic metamaterial possesses enhanced mechanical properties.•The unit cell was constructed by adding wedge parts to the re-entrant unit.•Large stiffness variation can be achieved without changing auxeticity of the unit.•The stiffness change point was derived and verified.•The self-adjusting stiffness property is promising in smart materials and devices. |
| ArticleNumber | 109162 |
| Author | Ren, Xin Zhang, Xiang Yu Zhang, Yi Xie, Yi Min |
| Author_xml | – sequence: 1 givenname: Xiang Yu surname: Zhang fullname: Zhang, Xiang Yu organization: Center for Innovative Structures, College of Civil Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, PR China – sequence: 2 givenname: Xin orcidid: 0000-0001-5094-7145 surname: Ren fullname: Ren, Xin email: xin.ren@njtech.edu.cn organization: Center for Innovative Structures, College of Civil Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, PR China – sequence: 3 givenname: Yi surname: Zhang fullname: Zhang, Yi organization: Center for Innovative Structures, College of Civil Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, PR China – sequence: 4 givenname: Yi Min orcidid: 0000-0001-5720-6649 surname: Xie fullname: Xie, Yi Min organization: Centre for Innovative Structures and Materials, School of Engineering, RMIT University, Melbourne, 3001, Australia |
| BookMark | eNp9kM9qwzAMh83oYG23B9gtL5DOdhInYadS9g8Ku2zsaGRboS6pU2y3Xd9-Lt0uO_QkiR-fhL4JGbnBISH3jM4YZeJhPYuHMOOU8zS3TPArMmZN3eYF58WIjCkXRd7wgt2QSQhrSlnN2nJMvuaZG_bYZ7D7xmh1tsEIG4joLfTZwcZVhm4FTqNJkU6d1SnY-mGLPloMGTiTxZ0D1ePfEhuPt-S6gz7g3W-dks_np4_Fa758f3lbzJe55m0dcy0qxWrkrQZWVmULQlTUdLpTSjMlTNOBqlWNgnYKsKwMNgZp2TWATLPWFFNSn_dqP4TgsZPpOkQ7uOjB9pJRefIj1zL5kSc_8uwnkewfufV2A_54kXk8M5he2lv0MmiLJznWo47SDPYC_QM5K4Nf |
| CitedBy_id | crossref_primary_10_1016_j_eml_2024_102274 crossref_primary_10_1088_1361_665X_ac812b crossref_primary_10_1002_pssb_202300231 crossref_primary_10_1016_j_heliyon_2025_e43430 crossref_primary_10_1088_1361_6463_acc74b crossref_primary_10_1016_j_tws_2024_112719 crossref_primary_10_1080_15376494_2025_2507838 crossref_primary_10_1016_j_compstruct_2022_115706 crossref_primary_10_1016_j_euromechsol_2023_104951 crossref_primary_10_3390_ma17246152 crossref_primary_10_1016_j_engstruct_2022_114788 crossref_primary_10_1016_j_tws_2024_112168 crossref_primary_10_1007_s43452_025_01290_8 crossref_primary_10_1016_j_compstruct_2023_117573 crossref_primary_10_1016_j_ijimpeng_2023_104606 crossref_primary_10_1016_j_ijsolstr_2024_113040 crossref_primary_10_1016_j_mechmat_2024_104974 crossref_primary_10_1177_14644207241229995 crossref_primary_10_1002_adem_202302020 crossref_primary_10_1016_j_ijmecsci_2022_107286 crossref_primary_10_1108_MMMS_08_2024_0221 crossref_primary_10_1016_j_ijmecsci_2023_108670 crossref_primary_10_3390_app14031028 crossref_primary_10_1063_5_0230888 crossref_primary_10_1111_jace_19105 crossref_primary_10_1016_j_conbuildmat_2022_129298 crossref_primary_10_1016_j_compstruct_2024_118436 crossref_primary_10_1016_j_euromechsol_2024_105475 crossref_primary_10_1016_j_compstruct_2024_118835 crossref_primary_10_1016_j_compstruct_2023_117206 crossref_primary_10_1016_j_tws_2025_113305 crossref_primary_10_1016_j_tws_2023_110555 crossref_primary_10_1016_j_tws_2023_111247 crossref_primary_10_1080_09205071_2024_2324842 crossref_primary_10_1016_j_jnoncrysol_2024_123275 crossref_primary_10_1016_j_tws_2022_110491 crossref_primary_10_1007_s11433_023_2311_3 crossref_primary_10_1002_pssb_202400385 crossref_primary_10_1016_j_tws_2024_111609 crossref_primary_10_1007_s10483_025_3246_9 crossref_primary_10_1016_j_tws_2025_113517 crossref_primary_10_1080_15376494_2023_2175397 crossref_primary_10_3390_jcs9030096 crossref_primary_10_1016_j_mtcomm_2023_107700 crossref_primary_10_1016_j_istruc_2024_106467 crossref_primary_10_1016_j_conbuildmat_2024_135055 crossref_primary_10_1016_j_euromechsol_2025_105709 crossref_primary_10_1002_adem_202301876 crossref_primary_10_1016_j_compstruct_2022_116222 crossref_primary_10_1016_j_mtcomm_2024_108079 crossref_primary_10_1016_j_matdes_2025_114784 crossref_primary_10_1007_s11431_024_2739_x crossref_primary_10_1016_j_compstruct_2025_119284 crossref_primary_10_1002_adem_202301192 crossref_primary_10_3390_app132413097 crossref_primary_10_1016_j_compstruct_2025_119166 crossref_primary_10_1016_j_tws_2024_111718 crossref_primary_10_1016_j_eml_2024_102266 crossref_primary_10_1016_j_compstruct_2024_117921 crossref_primary_10_1016_j_tws_2024_112415 crossref_primary_10_1016_j_istruc_2023_105466 crossref_primary_10_1016_j_engstruct_2022_114891 crossref_primary_10_1007_s10483_025_3231_6 crossref_primary_10_3390_ma17164067 crossref_primary_10_3390_ma16093473 crossref_primary_10_1016_j_tws_2025_113000 crossref_primary_10_1016_j_tws_2022_110152 crossref_primary_10_1016_j_tws_2025_113292 crossref_primary_10_1080_15376494_2025_2484431 crossref_primary_10_1016_j_euromechsol_2023_105167 crossref_primary_10_1108_RPJ_05_2024_0219 crossref_primary_10_1016_j_actbio_2025_06_043 crossref_primary_10_1016_j_istruc_2025_109007 crossref_primary_10_1002_adem_202501675 crossref_primary_10_1002_adfm_202421746 crossref_primary_10_1016_j_ijmecsci_2025_110021 crossref_primary_10_1088_2053_1591_ad9dbc crossref_primary_10_1016_j_ijmecsci_2023_108617 crossref_primary_10_1016_j_tws_2024_111558 crossref_primary_10_1016_j_tws_2022_109997 crossref_primary_10_1016_j_compstruct_2023_117254 crossref_primary_10_1016_j_ijmecsci_2023_108336 crossref_primary_10_1016_j_ijmecsci_2023_108732 crossref_primary_10_1016_j_tws_2024_111791 crossref_primary_10_1088_1361_665X_ad62ca crossref_primary_10_1016_j_tws_2022_109917 crossref_primary_10_1108_AEAT_05_2023_0122 crossref_primary_10_1016_j_conbuildmat_2023_133478 crossref_primary_10_1016_j_compstruct_2024_118633 crossref_primary_10_1002_pssb_202400450 crossref_primary_10_1080_15376494_2024_2313713 crossref_primary_10_1016_j_mtcomm_2024_108828 crossref_primary_10_1016_j_tws_2024_111815 crossref_primary_10_1016_j_conbuildmat_2023_132276 crossref_primary_10_1016_j_ijmecsci_2022_107999 crossref_primary_10_1088_1367_2630_ad617b crossref_primary_10_1016_j_tws_2024_112599 crossref_primary_10_1016_j_euromechsol_2022_104905 crossref_primary_10_1080_15376494_2022_2126567 crossref_primary_10_1002_adfm_202413789 crossref_primary_10_1016_j_rineng_2025_107291 crossref_primary_10_1016_j_engstruct_2025_120565 crossref_primary_10_1002_adem_202501176 crossref_primary_10_1016_j_ast_2024_109730 crossref_primary_10_1016_j_addma_2022_102789 crossref_primary_10_1177_00219983241262880 crossref_primary_10_1080_15376494_2024_2441980 crossref_primary_10_1016_j_ijsolstr_2024_112724 crossref_primary_10_1002_pssb_202400465 crossref_primary_10_1016_j_ijmecsci_2023_108917 crossref_primary_10_3390_coatings15060689 crossref_primary_10_1016_j_engstruct_2023_115732 crossref_primary_10_1016_j_tws_2024_112504 crossref_primary_10_1016_j_engstruct_2022_115377 crossref_primary_10_1038_s41467_025_59662_w crossref_primary_10_1016_j_ijmecsci_2022_108075 crossref_primary_10_1016_j_addma_2023_103525 crossref_primary_10_1016_j_engstruct_2025_121000 crossref_primary_10_1002_pssb_202400470 crossref_primary_10_1016_j_compstruct_2024_118410 crossref_primary_10_1016_j_ceramint_2025_01_019 crossref_primary_10_1007_s00707_024_04117_4 crossref_primary_10_1016_j_compstruct_2024_118803 crossref_primary_10_1016_j_tws_2023_110650 crossref_primary_10_1016_j_wavemoti_2024_103432 crossref_primary_10_1016_j_ijmecsci_2022_107414 crossref_primary_10_1016_j_tws_2025_113722 crossref_primary_10_1016_j_tws_2024_111883 crossref_primary_10_1016_j_tws_2025_113206 crossref_primary_10_1016_j_polymertesting_2023_108015 crossref_primary_10_1016_j_tws_2024_111764 crossref_primary_10_1016_j_matdes_2023_112530 crossref_primary_10_1142_S1758825125500553 crossref_primary_10_1080_15376494_2025_2503470 |
| Cites_doi | 10.1088/1361-665X/ab6696 10.1016/j.compstruct.2017.04.007 10.1177/1045389X04046610 10.1016/j.tws.2021.107758 10.1016/j.compstruct.2021.114922 10.1016/j.compstruct.2018.11.050 10.1016/j.ijmecsci.2020.106021 10.1016/j.tws.2021.108584 10.1002/pssb.202000439 10.1016/j.compositesb.2019.05.012 10.1007/s10853-017-1809-8 10.1016/j.matdes.2020.109277 10.1016/j.apacoust.2006.12.001 10.1016/j.engstruct.2021.113223 10.1016/j.compositesb.2020.108400 10.1088/1361-665X/aaa61c 10.1088/0964-1726/25/6/065012 10.1016/j.compositesb.2016.11.011 10.1016/j.compositesb.2020.107817 10.1088/0964-1726/24/9/095016 10.1016/j.compositesb.2020.108379 10.1016/j.commatsci.2012.02.012 10.1016/j.compstruct.2016.10.090 10.1016/j.matdes.2017.11.025 10.1016/j.tws.2021.107682 10.1016/j.ijmecsci.2020.106105 10.1016/j.tws.2014.07.017 10.1016/j.compositesb.2022.109733 10.1016/j.compstruct.2017.10.013 10.1016/j.ijmecsci.2020.105619 10.1016/j.compstruct.2022.115269 10.1016/j.conbuildmat.2022.126453 10.1016/j.engstruct.2021.112976 10.1016/j.compositesb.2020.107858 10.1016/j.ijimpeng.2022.104193 10.1016/j.compstruct.2015.11.036 10.1016/j.compositesb.2020.108340 10.1016/j.apenergy.2020.115217 10.1002/adfm.201606695 10.1016/j.apacoust.2021.107930 10.1016/j.compositesb.2020.108117 10.1016/j.compstruct.2021.114997 10.1016/j.compositesb.2019.05.002 10.1016/j.matdes.2017.11.024 10.1177/002199839302701203 10.1016/j.proeng.2017.08.054 10.1016/j.compstruct.2021.115043 10.1002/mame.201200028 10.3390/ma13092193 10.1126/science.235.4792.1038 10.1016/j.polymertesting.2019.106189 10.1016/j.compositesb.2021.109303 10.1016/j.matchemphys.2019.03.015 10.1016/j.compositesb.2018.06.027 10.1016/j.isci.2020.101637 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.tws.2022.109162 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-3223 |
| ExternalDocumentID | 10_1016_j_tws_2022_109162 S0263823122001501 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K WH7 WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-c65b17e29ca14549a6650dfcfbbc1b6d8fab7b7e60fbae45de8de04f8ae1c19d3 |
| ISICitedReferencesCount | 156 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792272200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0263-8231 |
| IngestDate | Tue Nov 18 22:20:20 EST 2025 Sat Nov 29 07:20:03 EST 2025 Fri Feb 23 02:40:46 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Negative Poisson’s ratio Tunable stiffness Auxetic Re-entrant structure Metamaterial |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-c65b17e29ca14549a6650dfcfbbc1b6d8fab7b7e60fbae45de8de04f8ae1c19d3 |
| ORCID | 0000-0001-5720-6649 0000-0001-5094-7145 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_tws_2022_109162 crossref_primary_10_1016_j_tws_2022_109162 elsevier_sciencedirect_doi_10_1016_j_tws_2022_109162 |
| PublicationCentury | 2000 |
| PublicationDate | May 2022 2022-05-00 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Thin-walled structures |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Li, Rudykh (b23) 2019; 172 Dogan, Bhusal, Cecen, Miri (b26) 2020; 20 Chen, Wang, Ma (b54) 2020; 81 Zhang, Lu, You (b34) 2020; 201 Zhang, Ren, Han, Cheng, Jiang, Zhang, Zhang, Xie (b32) 2022; 164 Jiang, Ren, Wang, Zhang, Zhang, Luo, Xie, Scarpa, Alderson, Evans (b6) 2022; 235 Oh, Kim, Nguyen, Oh (b39) 2020; 186 Wang, Ho, Zhang, Wang (b62) 2017; 3 Brighenti (b30) 2014; 84 La Malfa, Puce, Rizzi, De Vittorio (b18) 2020; 10 Eghbali, Younesian, Farhangdoust (b40) 2020; 270 Luo, Han, Zhang, Zhang, Ren, Xie (b12) 2021; 163 Wang, Dai, Huang (b2) 2020; 23 Lv, Li, Dong (b36) 2021; 191 Quan, Han, Hou, Zhang, Tian, Lu (b22) 2020; 187 Wang, Li, Zhang, Cui, Yang, Lu (b35) 2020; 202 Prawoto (b45) 2012; 58 Gao, Ding, Liao (b57) 2022; 287 Eleftheriades, Kim, Ataloglou, Dorrah (b4) 2021 Ahmed, Li, Zeng (b17) 2019; 229 Ren, Zhang, Han, Han, Zhang, Zhang, Xie (b29) 2022; 170 Hosseinkhani, Younesian, Ranjbar, Scarpa (b38) 2021; 177 Ren, Shen, Ghaedizadeh, Tian, Xie (b58) 2016; 25 Ren, Shen, Tran, Ngo, Xie (b8) 2018; 139 Zhang, Sun, Ren, Zhang, Tao, Xie (b11) 2022; 281 Zhang, Lai, He, Liu, Zi, Wang (b19) 2017; 27 Sun, Ren, Zhang, Tao, Zhang, Xie (b28) 2022; 39 Zhang, Ren, Wang, Zhang, Xie (b53) 2021; 226 Zhong, Ren, Zhang, Luo, Zhang, Xie (b44) 2022; 322 Zhang, Ren (b60) 2020; 257 Ren, Shen, Ghaedizadeh, Tian, Xie (b59) 2015; 24 Lu, Li, Yang, Xie (b46) 2016; 138 Hu, Dong, Luo, Qin, Sun (b10) 2020; 201 Ren, Das, Tran, Ngo, Xie (b9) 2018; 27 Lakes, Elms (b41) 2016; 27 Huang, Ren, Zeng, Zhang, Luo, Zhang, Xie (b14) 2021; 246 Zhang, Ren, Zhang, Huang, Sun, Xie (b13) 2021; 249 Qi, Jiang, Remennikov, Pei, Liu, Wang, Liao, Yang (b42) 2020; 197 Lakes (b7) 1987; 235 Chen, Wu, Xie, Wang, Zhou (b47) 2020; 178 Li, Gao, Dong, Lam, Zhang (b52) 2020; 29 Gao, Wang, Zhou, Ma (b56) 2018; 139 Wan, Xiao, Huang, Xiao, Xu, Li, Eisenbeis, Wang, Huang, Cheng, Jin, Zwick, Cui (b5) 2021 Lu, Li, Tian (b61) 2015; 1 Zhang, Ren, Jiang, Zhang, Luo, Zhang, Xie (b24) 2022; 282 Robertson (b64) 1997; 382 Ren, Shen, Tran, Ngo, Xie (b15) 2018; 184 Huang, Zhang, Scarpa, Liu, Leng (b20) 2017; 110 Ng, Hui (b1) 2008; 69 Alderson, Alderson, McDonald, Mottershead, Nazare, Withers, Yao (b16) 2013; 298 Yao, Luo, Xu, Wang, Li, Deng (b31) 2018; 152 Fu, Chen, H.u (b48) 2017; 160 Fu, Chen, Hu (b49) 2017; 175 Jin, Xie, Gao, Zhou, Li, Du, He (b25) 2021; 197 Peng, Bargman (b50) 2021; 190 Dudek, Attard, Gatt, Grima-Cornish, Grima (b55) 2020; 13 Li, Yin, Dong, Lakes (b51) 2017; 53 Gibson, Ashby (b63) 1997 Zhang, Wang, Ren, Xie, Wu, Zhou, Wang, Han (b27) 2021; 163 Novak, Starčevič, Vesenjak, Ren (b37) 2019; 210 Wang, Zhang, Fang, Sun (b33) 2020 Scarpa, Smith (b3) 2016; 15 Xue, Wang, Han (b21) 2019; 171 Luo, Ren, Zhang, Zhang, Zhang, Luo, Cheng, Xie (b43) 2022; 280 Huang (10.1016/j.tws.2022.109162_b14) 2021; 246 Gibson (10.1016/j.tws.2022.109162_b63) 1997 Lakes (10.1016/j.tws.2022.109162_b7) 1987; 235 Lv (10.1016/j.tws.2022.109162_b36) 2021; 191 Zhang (10.1016/j.tws.2022.109162_b32) 2022; 164 Lu (10.1016/j.tws.2022.109162_b46) 2016; 138 Scarpa (10.1016/j.tws.2022.109162_b3) 2016; 15 Peng (10.1016/j.tws.2022.109162_b50) 2021; 190 Hosseinkhani (10.1016/j.tws.2022.109162_b38) 2021; 177 Zhang (10.1016/j.tws.2022.109162_b53) 2021; 226 Zhang (10.1016/j.tws.2022.109162_b60) 2020; 257 Brighenti (10.1016/j.tws.2022.109162_b30) 2014; 84 Gao (10.1016/j.tws.2022.109162_b56) 2018; 139 Jiang (10.1016/j.tws.2022.109162_b6) 2022; 235 Wang (10.1016/j.tws.2022.109162_b62) 2017; 3 Hu (10.1016/j.tws.2022.109162_b10) 2020; 201 Eghbali (10.1016/j.tws.2022.109162_b40) 2020; 270 Li (10.1016/j.tws.2022.109162_b52) 2020; 29 Yao (10.1016/j.tws.2022.109162_b31) 2018; 152 Zhong (10.1016/j.tws.2022.109162_b44) 2022; 322 Chen (10.1016/j.tws.2022.109162_b54) 2020; 81 Luo (10.1016/j.tws.2022.109162_b12) 2021; 163 Wang (10.1016/j.tws.2022.109162_b33) 2020 Lu (10.1016/j.tws.2022.109162_b61) 2015; 1 Prawoto (10.1016/j.tws.2022.109162_b45) 2012; 58 Novak (10.1016/j.tws.2022.109162_b37) 2019; 210 Ren (10.1016/j.tws.2022.109162_b58) 2016; 25 Luo (10.1016/j.tws.2022.109162_b43) 2022; 280 Fu (10.1016/j.tws.2022.109162_b48) 2017; 160 Qi (10.1016/j.tws.2022.109162_b42) 2020; 197 La Malfa (10.1016/j.tws.2022.109162_b18) 2020; 10 Ren (10.1016/j.tws.2022.109162_b9) 2018; 27 Zhang (10.1016/j.tws.2022.109162_b34) 2020; 201 Zhang (10.1016/j.tws.2022.109162_b19) 2017; 27 Zhang (10.1016/j.tws.2022.109162_b27) 2021; 163 Sun (10.1016/j.tws.2022.109162_b28) 2022; 39 Fu (10.1016/j.tws.2022.109162_b49) 2017; 175 Ren (10.1016/j.tws.2022.109162_b29) 2022; 170 Huang (10.1016/j.tws.2022.109162_b20) 2017; 110 Li (10.1016/j.tws.2022.109162_b23) 2019; 172 Wan (10.1016/j.tws.2022.109162_b5) 2021 Ren (10.1016/j.tws.2022.109162_b8) 2018; 139 Ahmed (10.1016/j.tws.2022.109162_b17) 2019; 229 Xue (10.1016/j.tws.2022.109162_b21) 2019; 171 Li (10.1016/j.tws.2022.109162_b51) 2017; 53 Quan (10.1016/j.tws.2022.109162_b22) 2020; 187 Jin (10.1016/j.tws.2022.109162_b25) 2021; 197 Ng (10.1016/j.tws.2022.109162_b1) 2008; 69 Zhang (10.1016/j.tws.2022.109162_b11) 2022; 281 Dudek (10.1016/j.tws.2022.109162_b55) 2020; 13 Ren (10.1016/j.tws.2022.109162_b59) 2015; 24 Alderson (10.1016/j.tws.2022.109162_b16) 2013; 298 Zhang (10.1016/j.tws.2022.109162_b24) 2022; 282 Chen (10.1016/j.tws.2022.109162_b47) 2020; 178 Dogan (10.1016/j.tws.2022.109162_b26) 2020; 20 Lakes (10.1016/j.tws.2022.109162_b41) 2016; 27 Robertson (10.1016/j.tws.2022.109162_b64) 1997; 382 Oh (10.1016/j.tws.2022.109162_b39) 2020; 186 Zhang (10.1016/j.tws.2022.109162_b13) 2021; 249 Ren (10.1016/j.tws.2022.109162_b15) 2018; 184 Wang (10.1016/j.tws.2022.109162_b2) 2020; 23 Wang (10.1016/j.tws.2022.109162_b35) 2020; 202 Eleftheriades (10.1016/j.tws.2022.109162_b4) 2021 Gao (10.1016/j.tws.2022.109162_b57) 2022; 287 |
| References_xml | – volume: 69 start-page: 293 year: 2008 end-page: 301 ident: b1 article-title: Low frequency sound insulation using stiffness control with honeycomb panels publication-title: Appl. Acoust. – volume: 139 start-page: 336 year: 2018 end-page: 342 ident: b8 article-title: Design and characterisation of a tuneable 3D buckling-induced auxetic metamaterial publication-title: Mater. Des. – year: 2021 ident: b5 article-title: Joint modulations of electromagnetic waves and digital signals on a single metasurface platform to reach programmable wireless communications publication-title: Eng.-PRC – volume: 249 year: 2021 ident: b13 article-title: A novel buckling-restrained brace with auxetic perforated core: Experimental and numerical studies publication-title: Eng. Struct. – volume: 197 year: 2021 ident: b25 article-title: Fabrication of multi-scale and tunable auxetic scaffolds for tissue engineering publication-title: Mater. Des. – volume: 139 start-page: 380 year: 2018 end-page: 391 ident: b56 article-title: Theoretical, numerical and experimental analysis of three-dimensional double-V honeycomb publication-title: Mater Design – volume: 84 start-page: 432 year: 2014 end-page: 442 ident: b30 article-title: Smart behaviour of layered plates through the use of auxetic materials publication-title: Thin-Walled Struct. – volume: 287 year: 2022 ident: b57 article-title: Effective elastic properties of irregular auxetic structures publication-title: Compos. Struct. – volume: 3 start-page: 653 year: 2017 end-page: 662 ident: b62 article-title: A review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications publication-title: Eng.-PRC – volume: 163 year: 2021 ident: b27 article-title: A novel type of tubular structure with auxeticity both in radial direction and wall thickness publication-title: Thin-Walled Struct. – year: 1997 ident: b63 article-title: Cellular Solids: Structure and Properties – volume: 270 year: 2020 ident: b40 article-title: Enhancement of the low-frequency acoustic energy harvesting with auxetic resonators publication-title: Appl. Energy – volume: 27 year: 2018 ident: b9 article-title: Auxetic metamaterials and structures: a review publication-title: Smart Mater. Struct. – volume: 177 year: 2021 ident: b38 article-title: Enhancement of the vibro-acoustic performance of anti-tetra-chiral auxetic sandwich panels using topologically optimized local resonators publication-title: Appl. Acoust. – volume: 53 start-page: 3493 year: 2017 end-page: 3499 ident: b51 article-title: Strong re-entrant cellular structures with negative Poisson’s ratio publication-title: J. Mater. Sci. – volume: 138 start-page: 243 year: 2016 end-page: 252 ident: b46 article-title: Novel structure with negative Poisson’s ratio and enhanced Young’s modulus publication-title: Compos. Struct. – volume: 23 year: 2020 ident: b2 article-title: Thermal metamaterial: fundamental, application, and outlook publication-title: iScience – volume: 27 start-page: 1193 year: 2016 end-page: 1202 ident: b41 article-title: Indentability of conventional and negative Poisson’s ratio foams publication-title: J. Compos. Mater. – volume: 235 year: 2022 ident: b6 article-title: Manufacturing, characteristics and applications of auxetic foams: a state-of-the-art review publication-title: Composites B – volume: 27 year: 2017 ident: b19 article-title: Auxetic foam-based contact-mode triboelectric nanogenerator with highly sensitive self-powered strain sensing capabilities to monitor human body movement publication-title: Adv. Funct. Mater. – volume: 175 start-page: 101 year: 2017 end-page: 110 ident: b49 article-title: Bilinear elastic characteristic of enhanced auxetic honeycombs publication-title: Compos. Struct. – volume: 235 start-page: 1038 year: 1987 end-page: 1040 ident: b7 article-title: Foam structures with a negative Poisson’s ratio publication-title: Science – volume: 110 start-page: 72 year: 2017 end-page: 82 ident: b20 article-title: In-plane elasticity of a novel auxetic honeycomb design publication-title: Composites B – volume: 246 year: 2021 ident: b14 article-title: Based on auxetic foam: A novel type of seismic metamaterial for Lamb waves publication-title: Eng. Struct. – volume: 25 year: 2016 ident: b58 article-title: A simple auxetic tubular structure with tuneable mechanical properties publication-title: Smart Mater. Struct. – volume: 163 year: 2021 ident: b12 article-title: Design, manufacturing and applications of auxetic tubular structures: A review publication-title: Thin-Walled Struct. – year: 2020 ident: b33 article-title: Design, characterization, and 3d printing of cardiovascular stents with zero Poisson’s ratio in longitudinal deformation publication-title: Eng.-PRC – volume: 186 year: 2020 ident: b39 article-title: Auxetic graphene oxide-porous foam for acoustic wave and shock energy dissipation publication-title: Composites B – volume: 202 year: 2020 ident: b35 article-title: Ultra-low density architectured metamaterial with superior mechanical properties and energy absorption capability publication-title: Composites B – volume: 229 start-page: 167 year: 2019 end-page: 173 ident: b17 article-title: Stretchable and compressible piezoresistive sensors from auxetic foam and silver nanowire publication-title: Mater. Chem. Phys. – volume: 1 start-page: 085 year: 2015 end-page: 089 ident: b61 article-title: Development trends in additive manufacturing and 3D printing publication-title: Composites B – volume: 298 start-page: 318 year: 2013 end-page: 327 ident: b16 article-title: Piezomorphic materials publication-title: Macromol. Mater. Eng. – volume: 24 year: 2015 ident: b59 article-title: Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties publication-title: Smart Mater. Struct. – volume: 58 start-page: 140 year: 2012 end-page: 153 ident: b45 article-title: Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio publication-title: Comput. Mater. Sci. – volume: 226 year: 2021 ident: b53 article-title: A novel combined auxetic tubular structure with enhanced tunable stiffness publication-title: Composites B – volume: 13 start-page: 2193 year: 2020 ident: b55 article-title: The multidirectional auxeticity and negative linear compressibility of a 3D mechanical metamaterial publication-title: Materials – volume: 322 year: 2022 ident: b44 article-title: Mechanical properties of concrete composites with auxetic single and layered honeycomb structures publication-title: Constr Build Mater. – volume: 280 year: 2022 ident: b43 article-title: Mechanical properties of foam-filled hexagonal and re-entrant honeycombs under uniaxial compression publication-title: Compos. Struct. – volume: 201 year: 2020 ident: b34 article-title: Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review publication-title: Composites B – volume: 184 start-page: 288 year: 2018 end-page: 298 ident: b15 article-title: Auxetic nail: Design and experimental study publication-title: Compos. Struct. – volume: 160 start-page: 574 year: 2017 end-page: 585 ident: b48 article-title: A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength publication-title: Compos. Struct. – volume: 201 year: 2020 ident: b10 article-title: 3D printing of chiral carbon fiber reinforced polylactic acid composites with negative Poisson’s ratios publication-title: Composites B – volume: 281 year: 2022 ident: b11 article-title: Design and analysis of an auxetic metamaterial with tuneable stiffness publication-title: Compos. Struct. – volume: 10 start-page: 1 year: 2020 end-page: 11 ident: b18 article-title: A flexible carbon nanotubes-Based auxetic sponge electrode for strain sensors publication-title: Nanomaterials-Basel – volume: 191 year: 2021 ident: b36 article-title: Study on blast resistance of a composite sandwich panel with isotropic foam core with negative Poisson’s ratio publication-title: Int. J. Mech. Sci. – volume: 178 year: 2020 ident: b47 article-title: Re-entrant auxetic lattices with enhanced stiffness: A numerical study publication-title: Int. J. Mech. Sci. – volume: 152 start-page: 1 year: 2018 end-page: 7 ident: b31 article-title: Fabrication and characterization of auxetic shape memory composite foams publication-title: Composites B – volume: 187 year: 2020 ident: b22 article-title: 3D printed continuous fiber reinforced composite auxetic honeycomb structures publication-title: Composites B – volume: 170 year: 2022 ident: b29 article-title: Mechanical properties of foam-filled auxetic circular tubes: experimental and numerical study publication-title: Thin-Walled Struct. – volume: 15 start-page: 973 year: 2016 end-page: 979 ident: b3 article-title: Passive and MR fluid-coated auxetic PU foam mechanical, acoustic, and electromagnetic properties publication-title: J. Intell. Mater. Syst. Struct. – volume: 171 start-page: 183 year: 2019 end-page: 191 ident: b21 article-title: Enhanced compressive mechanical properties of aluminum based auxetic lattice structures filled with polymers publication-title: Composites B – volume: 210 start-page: 167 year: 2019 end-page: 178 ident: b37 article-title: Blast response study of the sandwich composite panels with 3D chiral auxetic core publication-title: Compos. Struct. – volume: 29 year: 2020 ident: b52 article-title: A novel 3D re-entrant unit cell structure with negative Poisson’s ratio and tunable stiffness publication-title: Smart Mater. Struct. – year: 2021 ident: b4 article-title: Prospects of Huygens’ metasurfaces for antenna applications publication-title: Eng.-PRC – volume: 282 year: 2022 ident: b24 article-title: A novel auxetic chiral lattice composite: experimental and numerical study publication-title: Compos. Struct. – volume: 20 year: 2020 ident: b26 article-title: 3D Printing metamaterials towards tissue engineering publication-title: Appl. Mater. Today – volume: 197 year: 2020 ident: b42 article-title: Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs publication-title: Composites B – volume: 81 year: 2020 ident: b54 article-title: Damping mechanisms of CFRP three-dimensional double-arrow-head auxetic metamaterials publication-title: Polym. Test. – volume: 172 start-page: 352 year: 2019 end-page: 362 ident: b23 article-title: Tunable microstructure transformations and auxetic behavior in 3D-printed multiphase composites: The role of inclusion distribution publication-title: Composites B – volume: 190 year: 2021 ident: b50 article-title: A novel hybrid-honeycomb structure: Enhanced stiffness, tunable auxeticity and negative thermal expansion publication-title: Int. J. Mech. Sci. – volume: 257 year: 2020 ident: b60 article-title: A simple methodology to generate metamaterials and structures with negative Poisson’s ratio publication-title: Phys. Status Solid B – volume: 39 start-page: 1820 year: 2022 end-page: 1830 ident: b28 article-title: An auxetic tubular structure with tuneable stiffness publication-title: Acta Mater. Compos. Sin. – volume: 382 start-page: 25 year: 1997 end-page: 42 ident: b64 article-title: The mechanics of two-dimensional cellular materials publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – volume: 164 year: 2022 ident: b32 article-title: Static and dynamic properties of a perforated metallic auxetic metamaterial with tunable stiffness and energy absorption publication-title: Int. J. Impact Eng. – volume: 29 issue: 4 year: 2020 ident: 10.1016/j.tws.2022.109162_b52 article-title: A novel 3D re-entrant unit cell structure with negative Poisson’s ratio and tunable stiffness publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ab6696 – volume: 175 start-page: 101 year: 2017 ident: 10.1016/j.tws.2022.109162_b49 article-title: Bilinear elastic characteristic of enhanced auxetic honeycombs publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.04.007 – volume: 15 start-page: 973 issue: 12 year: 2016 ident: 10.1016/j.tws.2022.109162_b3 article-title: Passive and MR fluid-coated auxetic PU foam mechanical, acoustic, and electromagnetic properties publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X04046610 – volume: 163 year: 2021 ident: 10.1016/j.tws.2022.109162_b27 article-title: A novel type of tubular structure with auxeticity both in radial direction and wall thickness publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2021.107758 – volume: 280 year: 2022 ident: 10.1016/j.tws.2022.109162_b43 article-title: Mechanical properties of foam-filled hexagonal and re-entrant honeycombs under uniaxial compression publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.114922 – volume: 210 start-page: 167 year: 2019 ident: 10.1016/j.tws.2022.109162_b37 article-title: Blast response study of the sandwich composite panels with 3D chiral auxetic core publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2018.11.050 – volume: 190 year: 2021 ident: 10.1016/j.tws.2022.109162_b50 article-title: A novel hybrid-honeycomb structure: Enhanced stiffness, tunable auxeticity and negative thermal expansion publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2020.106021 – volume: 170 year: 2022 ident: 10.1016/j.tws.2022.109162_b29 article-title: Mechanical properties of foam-filled auxetic circular tubes: experimental and numerical study publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2021.108584 – volume: 257 issue: 10 year: 2020 ident: 10.1016/j.tws.2022.109162_b60 article-title: A simple methodology to generate metamaterials and structures with negative Poisson’s ratio publication-title: Phys. Status Solid B doi: 10.1002/pssb.202000439 – volume: 172 start-page: 352 year: 2019 ident: 10.1016/j.tws.2022.109162_b23 article-title: Tunable microstructure transformations and auxetic behavior in 3D-printed multiphase composites: The role of inclusion distribution publication-title: Composites B doi: 10.1016/j.compositesb.2019.05.012 – volume: 53 start-page: 3493 issue: 5 year: 2017 ident: 10.1016/j.tws.2022.109162_b51 article-title: Strong re-entrant cellular structures with negative Poisson’s ratio publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1809-8 – volume: 197 year: 2021 ident: 10.1016/j.tws.2022.109162_b25 article-title: Fabrication of multi-scale and tunable auxetic scaffolds for tissue engineering publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.109277 – volume: 69 start-page: 293 issue: 4 year: 2008 ident: 10.1016/j.tws.2022.109162_b1 article-title: Low frequency sound insulation using stiffness control with honeycomb panels publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2006.12.001 – volume: 249 year: 2021 ident: 10.1016/j.tws.2022.109162_b13 article-title: A novel buckling-restrained brace with auxetic perforated core: Experimental and numerical studies publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2021.113223 – volume: 201 year: 2020 ident: 10.1016/j.tws.2022.109162_b10 article-title: 3D printing of chiral carbon fiber reinforced polylactic acid composites with negative Poisson’s ratios publication-title: Composites B doi: 10.1016/j.compositesb.2020.108400 – volume: 27 issue: 2 year: 2018 ident: 10.1016/j.tws.2022.109162_b9 article-title: Auxetic metamaterials and structures: a review publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aaa61c – volume: 382 start-page: 25 issue: 1782 year: 1997 ident: 10.1016/j.tws.2022.109162_b64 article-title: The mechanics of two-dimensional cellular materials publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – volume: 25 issue: 6 year: 2016 ident: 10.1016/j.tws.2022.109162_b58 article-title: A simple auxetic tubular structure with tuneable mechanical properties publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/6/065012 – volume: 110 start-page: 72 year: 2017 ident: 10.1016/j.tws.2022.109162_b20 article-title: In-plane elasticity of a novel auxetic honeycomb design publication-title: Composites B doi: 10.1016/j.compositesb.2016.11.011 – volume: 186 year: 2020 ident: 10.1016/j.tws.2022.109162_b39 article-title: Auxetic graphene oxide-porous foam for acoustic wave and shock energy dissipation publication-title: Composites B doi: 10.1016/j.compositesb.2020.107817 – year: 2020 ident: 10.1016/j.tws.2022.109162_b33 article-title: Design, characterization, and 3d printing of cardiovascular stents with zero Poisson’s ratio in longitudinal deformation publication-title: Eng.-PRC – volume: 24 issue: 9 year: 2015 ident: 10.1016/j.tws.2022.109162_b59 article-title: Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/9/095016 – volume: 202 year: 2020 ident: 10.1016/j.tws.2022.109162_b35 article-title: Ultra-low density architectured metamaterial with superior mechanical properties and energy absorption capability publication-title: Composites B doi: 10.1016/j.compositesb.2020.108379 – volume: 10 start-page: 1 issue: 12 year: 2020 ident: 10.1016/j.tws.2022.109162_b18 article-title: A flexible carbon nanotubes-Based auxetic sponge electrode for strain sensors publication-title: Nanomaterials-Basel – volume: 58 start-page: 140 year: 2012 ident: 10.1016/j.tws.2022.109162_b45 article-title: Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2012.02.012 – volume: 160 start-page: 574 year: 2017 ident: 10.1016/j.tws.2022.109162_b48 article-title: A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2016.10.090 – volume: 139 start-page: 336 year: 2018 ident: 10.1016/j.tws.2022.109162_b8 article-title: Design and characterisation of a tuneable 3D buckling-induced auxetic metamaterial publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.11.025 – year: 2021 ident: 10.1016/j.tws.2022.109162_b5 article-title: Joint modulations of electromagnetic waves and digital signals on a single metasurface platform to reach programmable wireless communications publication-title: Eng.-PRC – volume: 163 year: 2021 ident: 10.1016/j.tws.2022.109162_b12 article-title: Design, manufacturing and applications of auxetic tubular structures: A review publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2021.107682 – volume: 191 year: 2021 ident: 10.1016/j.tws.2022.109162_b36 article-title: Study on blast resistance of a composite sandwich panel with isotropic foam core with negative Poisson’s ratio publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2020.106105 – volume: 84 start-page: 432 year: 2014 ident: 10.1016/j.tws.2022.109162_b30 article-title: Smart behaviour of layered plates through the use of auxetic materials publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2014.07.017 – volume: 235 year: 2022 ident: 10.1016/j.tws.2022.109162_b6 article-title: Manufacturing, characteristics and applications of auxetic foams: a state-of-the-art review publication-title: Composites B doi: 10.1016/j.compositesb.2022.109733 – volume: 184 start-page: 288 year: 2018 ident: 10.1016/j.tws.2022.109162_b15 article-title: Auxetic nail: Design and experimental study publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.10.013 – volume: 178 year: 2020 ident: 10.1016/j.tws.2022.109162_b47 article-title: Re-entrant auxetic lattices with enhanced stiffness: A numerical study publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2020.105619 – volume: 287 year: 2022 ident: 10.1016/j.tws.2022.109162_b57 article-title: Effective elastic properties of irregular auxetic structures publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2022.115269 – volume: 322 year: 2022 ident: 10.1016/j.tws.2022.109162_b44 article-title: Mechanical properties of concrete composites with auxetic single and layered honeycomb structures publication-title: Constr Build Mater. doi: 10.1016/j.conbuildmat.2022.126453 – year: 2021 ident: 10.1016/j.tws.2022.109162_b4 article-title: Prospects of Huygens’ metasurfaces for antenna applications publication-title: Eng.-PRC – volume: 20 year: 2020 ident: 10.1016/j.tws.2022.109162_b26 article-title: 3D Printing metamaterials towards tissue engineering publication-title: Appl. Mater. Today – volume: 246 year: 2021 ident: 10.1016/j.tws.2022.109162_b14 article-title: Based on auxetic foam: A novel type of seismic metamaterial for Lamb waves publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2021.112976 – volume: 187 year: 2020 ident: 10.1016/j.tws.2022.109162_b22 article-title: 3D printed continuous fiber reinforced composite auxetic honeycomb structures publication-title: Composites B doi: 10.1016/j.compositesb.2020.107858 – volume: 164 year: 2022 ident: 10.1016/j.tws.2022.109162_b32 article-title: Static and dynamic properties of a perforated metallic auxetic metamaterial with tunable stiffness and energy absorption publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2022.104193 – volume: 138 start-page: 243 year: 2016 ident: 10.1016/j.tws.2022.109162_b46 article-title: Novel structure with negative Poisson’s ratio and enhanced Young’s modulus publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2015.11.036 – volume: 201 year: 2020 ident: 10.1016/j.tws.2022.109162_b34 article-title: Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review publication-title: Composites B doi: 10.1016/j.compositesb.2020.108340 – volume: 270 year: 2020 ident: 10.1016/j.tws.2022.109162_b40 article-title: Enhancement of the low-frequency acoustic energy harvesting with auxetic resonators publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115217 – volume: 27 issue: 25 year: 2017 ident: 10.1016/j.tws.2022.109162_b19 article-title: Auxetic foam-based contact-mode triboelectric nanogenerator with highly sensitive self-powered strain sensing capabilities to monitor human body movement publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201606695 – volume: 177 year: 2021 ident: 10.1016/j.tws.2022.109162_b38 article-title: Enhancement of the vibro-acoustic performance of anti-tetra-chiral auxetic sandwich panels using topologically optimized local resonators publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2021.107930 – volume: 39 start-page: 1820 issue: 4 year: 2022 ident: 10.1016/j.tws.2022.109162_b28 article-title: An auxetic tubular structure with tuneable stiffness publication-title: Acta Mater. Compos. Sin. – volume: 197 year: 2020 ident: 10.1016/j.tws.2022.109162_b42 article-title: Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs publication-title: Composites B doi: 10.1016/j.compositesb.2020.108117 – volume: 281 year: 2022 ident: 10.1016/j.tws.2022.109162_b11 article-title: Design and analysis of an auxetic metamaterial with tuneable stiffness publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.114997 – volume: 171 start-page: 183 year: 2019 ident: 10.1016/j.tws.2022.109162_b21 article-title: Enhanced compressive mechanical properties of aluminum based auxetic lattice structures filled with polymers publication-title: Composites B doi: 10.1016/j.compositesb.2019.05.002 – volume: 139 start-page: 380 year: 2018 ident: 10.1016/j.tws.2022.109162_b56 article-title: Theoretical, numerical and experimental analysis of three-dimensional double-V honeycomb publication-title: Mater Design doi: 10.1016/j.matdes.2017.11.024 – volume: 27 start-page: 1193 issue: 12 year: 2016 ident: 10.1016/j.tws.2022.109162_b41 article-title: Indentability of conventional and negative Poisson’s ratio foams publication-title: J. Compos. Mater. doi: 10.1177/002199839302701203 – volume: 3 start-page: 653 issue: 5 year: 2017 ident: 10.1016/j.tws.2022.109162_b62 article-title: A review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications publication-title: Eng.-PRC doi: 10.1016/j.proeng.2017.08.054 – volume: 282 year: 2022 ident: 10.1016/j.tws.2022.109162_b24 article-title: A novel auxetic chiral lattice composite: experimental and numerical study publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.115043 – year: 1997 ident: 10.1016/j.tws.2022.109162_b63 – volume: 298 start-page: 318 issue: 3 year: 2013 ident: 10.1016/j.tws.2022.109162_b16 article-title: Piezomorphic materials publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201200028 – volume: 13 start-page: 2193 issue: 9 year: 2020 ident: 10.1016/j.tws.2022.109162_b55 article-title: The multidirectional auxeticity and negative linear compressibility of a 3D mechanical metamaterial publication-title: Materials doi: 10.3390/ma13092193 – volume: 235 start-page: 1038 issue: 4792 year: 1987 ident: 10.1016/j.tws.2022.109162_b7 article-title: Foam structures with a negative Poisson’s ratio publication-title: Science doi: 10.1126/science.235.4792.1038 – volume: 81 year: 2020 ident: 10.1016/j.tws.2022.109162_b54 article-title: Damping mechanisms of CFRP three-dimensional double-arrow-head auxetic metamaterials publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2019.106189 – volume: 226 year: 2021 ident: 10.1016/j.tws.2022.109162_b53 article-title: A novel combined auxetic tubular structure with enhanced tunable stiffness publication-title: Composites B doi: 10.1016/j.compositesb.2021.109303 – volume: 229 start-page: 167 year: 2019 ident: 10.1016/j.tws.2022.109162_b17 article-title: Stretchable and compressible piezoresistive sensors from auxetic foam and silver nanowire publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2019.03.015 – volume: 152 start-page: 1 year: 2018 ident: 10.1016/j.tws.2022.109162_b31 article-title: Fabrication and characterization of auxetic shape memory composite foams publication-title: Composites B doi: 10.1016/j.compositesb.2018.06.027 – volume: 23 issue: 10 year: 2020 ident: 10.1016/j.tws.2022.109162_b2 article-title: Thermal metamaterial: fundamental, application, and outlook publication-title: iScience doi: 10.1016/j.isci.2020.101637 – volume: 1 start-page: 085 issue: 1 year: 2015 ident: 10.1016/j.tws.2022.109162_b61 article-title: Development trends in additive manufacturing and 3D printing publication-title: Composites B |
| SSID | ssj0017194 |
| Score | 2.6348214 |
| Snippet | An auxetic metamaterial composed of novel re-entrant unit cells was proposed. The new re-entrant structure was constructed by adding wedge-shaped parts to the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109162 |
| SubjectTerms | Auxetic Metamaterial Negative Poisson’s ratio Re-entrant structure Tunable stiffness |
| Title | A novel auxetic metamaterial with enhanced mechanical properties and tunable auxeticity |
| URI | https://dx.doi.org/10.1016/j.tws.2022.109162 |
| Volume | 174 |
| WOSCitedRecordID | wos000792272200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3223 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017194 issn: 0263-8231 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZQywEOiKcoL_nAicho4zixfVxVRYBEhUQR2VNkOw6kKulqH-3-_I4fSXYpIEDiEkWWHUczXybjeSL0shHKKG5rAgynhHHGiLSqICKXpqA1HHMt880m-PGxKEv5MWaXLH07Ad51YrOR8__KahgDZrvU2b9g9_BQGIB7YDpcge1w_SPGT5Pu_MKeJWq9cQmKrke0ArXUbx3Mrrb7Fvz-363L-_Vsmjuj_MJVVw0xleuQUxUf0q52vL-u2Se5dF1Y6iQUoF0vxljEwQZdAvS-JrP14NQJIq5su2tTZ20_VAaHyaxNPsR50SYBx9khAjAYyvpkmTEyaelrvGbEeR3DryfIW8ElAZmS7Qjk0LfnmnAPdobT16tLV2edUlcKK42yfLdm9ie3l9uKUl9DEY7H-5TnEsTe_vTdUfl-cDTx1PfKHN6td3z7EMAfNvq56rKljpzcRXfiOQJPA__voRu2u49ub1WXfIC-TLFHAo5MxNtIwA4JuEcCHpGARyRgQAKOSMAjEh6iz2-OTg7fkthHgxgq-YqYItcpt1QalbKcSVWAWl43ptHapLqoRaM019wWk0Yry_LaitpOGHzGNjWprLNHaK877-xjhDOZWUob0PG1ZkIpIYtUUdVwIQ1o4uIATXoSVSYWmXe9Ts6qPprwtAKqVo6qVaDqAXo1LJmHCiu_m8x6uldRRQyqXwUg-fWyJ_-27Cm6NaL7GdqDD8o-RzfNxapdLl5EKF0BfaiM0g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+auxetic+metamaterial+with+enhanced+mechanical+properties+and+tunable+auxeticity&rft.jtitle=Thin-walled+structures&rft.au=Zhang%2C+Xiang+Yu&rft.au=Ren%2C+Xin&rft.au=Zhang%2C+Yi&rft.au=Xie%2C+Yi+Min&rft.date=2022-05-01&rft.pub=Elsevier+Ltd&rft.issn=0263-8231&rft.eissn=1879-3223&rft.volume=174&rft_id=info:doi/10.1016%2Fj.tws.2022.109162&rft.externalDocID=S0263823122001501 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8231&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8231&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8231&client=summon |