A novel auxetic metamaterial with enhanced mechanical properties and tunable auxeticity

An auxetic metamaterial composed of novel re-entrant unit cells was proposed. The new re-entrant structure was constructed by adding wedge-shaped parts to the conventional re-entrant structure. Not only can the additional part regulate the structural stiffness during compression but it can also incr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Thin-walled structures Ročník 174; s. 109162
Hlavní autori: Zhang, Xiang Yu, Ren, Xin, Zhang, Yi, Xie, Yi Min
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.05.2022
Predmet:
ISSN:0263-8231, 1879-3223
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract An auxetic metamaterial composed of novel re-entrant unit cells was proposed. The new re-entrant structure was constructed by adding wedge-shaped parts to the conventional re-entrant structure. Not only can the additional part regulate the structural stiffness during compression but it can also increase the stability of the structure by hindering lateral buckling of the structure, endowing the metamaterial with more significant and stable auxetic behavior in compression. The mechanical and deformation characteristics of the proposed metamaterial were investigated experimentally and numerically. A parametric study was carried out using the validated finite element model to analyze the influence of the size, angle and stiffness of the wedge-shaped part. Due to its improved stiffness and tunability, the proposed auxetic metamaterial has huge potential to be utilized in civil engineering and protection engineering in the form of two-dimensional, three-dimensional and tubular structures. Furthermore, the self-adjusting stiffness property, better stability and enhanced auxeticity make this metamaterial useful for smart materials and intelligent sensors. •The proposed auxetic metamaterial possesses enhanced mechanical properties.•The unit cell was constructed by adding wedge parts to the re-entrant unit.•Large stiffness variation can be achieved without changing auxeticity of the unit.•The stiffness change point was derived and verified.•The self-adjusting stiffness property is promising in smart materials and devices.
AbstractList An auxetic metamaterial composed of novel re-entrant unit cells was proposed. The new re-entrant structure was constructed by adding wedge-shaped parts to the conventional re-entrant structure. Not only can the additional part regulate the structural stiffness during compression but it can also increase the stability of the structure by hindering lateral buckling of the structure, endowing the metamaterial with more significant and stable auxetic behavior in compression. The mechanical and deformation characteristics of the proposed metamaterial were investigated experimentally and numerically. A parametric study was carried out using the validated finite element model to analyze the influence of the size, angle and stiffness of the wedge-shaped part. Due to its improved stiffness and tunability, the proposed auxetic metamaterial has huge potential to be utilized in civil engineering and protection engineering in the form of two-dimensional, three-dimensional and tubular structures. Furthermore, the self-adjusting stiffness property, better stability and enhanced auxeticity make this metamaterial useful for smart materials and intelligent sensors. •The proposed auxetic metamaterial possesses enhanced mechanical properties.•The unit cell was constructed by adding wedge parts to the re-entrant unit.•Large stiffness variation can be achieved without changing auxeticity of the unit.•The stiffness change point was derived and verified.•The self-adjusting stiffness property is promising in smart materials and devices.
ArticleNumber 109162
Author Ren, Xin
Zhang, Xiang Yu
Zhang, Yi
Xie, Yi Min
Author_xml – sequence: 1
  givenname: Xiang Yu
  surname: Zhang
  fullname: Zhang, Xiang Yu
  organization: Center for Innovative Structures, College of Civil Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, PR China
– sequence: 2
  givenname: Xin
  orcidid: 0000-0001-5094-7145
  surname: Ren
  fullname: Ren, Xin
  email: xin.ren@njtech.edu.cn
  organization: Center for Innovative Structures, College of Civil Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, PR China
– sequence: 3
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
  organization: Center for Innovative Structures, College of Civil Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, PR China
– sequence: 4
  givenname: Yi Min
  orcidid: 0000-0001-5720-6649
  surname: Xie
  fullname: Xie, Yi Min
  organization: Centre for Innovative Structures and Materials, School of Engineering, RMIT University, Melbourne, 3001, Australia
BookMark eNp9kM9qwzAMh83oYG23B9gtL5DOdhInYadS9g8Ku2zsaGRboS6pU2y3Xd9-Lt0uO_QkiR-fhL4JGbnBISH3jM4YZeJhPYuHMOOU8zS3TPArMmZN3eYF58WIjCkXRd7wgt2QSQhrSlnN2nJMvuaZG_bYZ7D7xmh1tsEIG4joLfTZwcZVhm4FTqNJkU6d1SnY-mGLPloMGTiTxZ0D1ePfEhuPt-S6gz7g3W-dks_np4_Fa758f3lbzJe55m0dcy0qxWrkrQZWVmULQlTUdLpTSjMlTNOBqlWNgnYKsKwMNgZp2TWATLPWFFNSn_dqP4TgsZPpOkQ7uOjB9pJRefIj1zL5kSc_8uwnkewfufV2A_54kXk8M5he2lv0MmiLJznWo47SDPYC_QM5K4Nf
CitedBy_id crossref_primary_10_1016_j_eml_2024_102274
crossref_primary_10_1088_1361_665X_ac812b
crossref_primary_10_1002_pssb_202300231
crossref_primary_10_1016_j_heliyon_2025_e43430
crossref_primary_10_1088_1361_6463_acc74b
crossref_primary_10_1016_j_tws_2024_112719
crossref_primary_10_1080_15376494_2025_2507838
crossref_primary_10_1016_j_compstruct_2022_115706
crossref_primary_10_1016_j_euromechsol_2023_104951
crossref_primary_10_3390_ma17246152
crossref_primary_10_1016_j_engstruct_2022_114788
crossref_primary_10_1016_j_tws_2024_112168
crossref_primary_10_1007_s43452_025_01290_8
crossref_primary_10_1016_j_compstruct_2023_117573
crossref_primary_10_1016_j_ijimpeng_2023_104606
crossref_primary_10_1016_j_ijsolstr_2024_113040
crossref_primary_10_1016_j_mechmat_2024_104974
crossref_primary_10_1177_14644207241229995
crossref_primary_10_1002_adem_202302020
crossref_primary_10_1016_j_ijmecsci_2022_107286
crossref_primary_10_1108_MMMS_08_2024_0221
crossref_primary_10_1016_j_ijmecsci_2023_108670
crossref_primary_10_3390_app14031028
crossref_primary_10_1063_5_0230888
crossref_primary_10_1111_jace_19105
crossref_primary_10_1016_j_conbuildmat_2022_129298
crossref_primary_10_1016_j_compstruct_2024_118436
crossref_primary_10_1016_j_euromechsol_2024_105475
crossref_primary_10_1016_j_compstruct_2024_118835
crossref_primary_10_1016_j_compstruct_2023_117206
crossref_primary_10_1016_j_tws_2025_113305
crossref_primary_10_1016_j_tws_2023_110555
crossref_primary_10_1016_j_tws_2023_111247
crossref_primary_10_1080_09205071_2024_2324842
crossref_primary_10_1016_j_jnoncrysol_2024_123275
crossref_primary_10_1016_j_tws_2022_110491
crossref_primary_10_1007_s11433_023_2311_3
crossref_primary_10_1002_pssb_202400385
crossref_primary_10_1016_j_tws_2024_111609
crossref_primary_10_1007_s10483_025_3246_9
crossref_primary_10_1016_j_tws_2025_113517
crossref_primary_10_1080_15376494_2023_2175397
crossref_primary_10_3390_jcs9030096
crossref_primary_10_1016_j_mtcomm_2023_107700
crossref_primary_10_1016_j_istruc_2024_106467
crossref_primary_10_1016_j_conbuildmat_2024_135055
crossref_primary_10_1016_j_euromechsol_2025_105709
crossref_primary_10_1002_adem_202301876
crossref_primary_10_1016_j_compstruct_2022_116222
crossref_primary_10_1016_j_mtcomm_2024_108079
crossref_primary_10_1016_j_matdes_2025_114784
crossref_primary_10_1007_s11431_024_2739_x
crossref_primary_10_1016_j_compstruct_2025_119284
crossref_primary_10_1002_adem_202301192
crossref_primary_10_3390_app132413097
crossref_primary_10_1016_j_compstruct_2025_119166
crossref_primary_10_1016_j_tws_2024_111718
crossref_primary_10_1016_j_eml_2024_102266
crossref_primary_10_1016_j_compstruct_2024_117921
crossref_primary_10_1016_j_tws_2024_112415
crossref_primary_10_1016_j_istruc_2023_105466
crossref_primary_10_1016_j_engstruct_2022_114891
crossref_primary_10_1007_s10483_025_3231_6
crossref_primary_10_3390_ma17164067
crossref_primary_10_3390_ma16093473
crossref_primary_10_1016_j_tws_2025_113000
crossref_primary_10_1016_j_tws_2022_110152
crossref_primary_10_1016_j_tws_2025_113292
crossref_primary_10_1080_15376494_2025_2484431
crossref_primary_10_1016_j_euromechsol_2023_105167
crossref_primary_10_1108_RPJ_05_2024_0219
crossref_primary_10_1016_j_actbio_2025_06_043
crossref_primary_10_1016_j_istruc_2025_109007
crossref_primary_10_1002_adem_202501675
crossref_primary_10_1002_adfm_202421746
crossref_primary_10_1016_j_ijmecsci_2025_110021
crossref_primary_10_1088_2053_1591_ad9dbc
crossref_primary_10_1016_j_ijmecsci_2023_108617
crossref_primary_10_1016_j_tws_2024_111558
crossref_primary_10_1016_j_tws_2022_109997
crossref_primary_10_1016_j_compstruct_2023_117254
crossref_primary_10_1016_j_ijmecsci_2023_108336
crossref_primary_10_1016_j_ijmecsci_2023_108732
crossref_primary_10_1016_j_tws_2024_111791
crossref_primary_10_1088_1361_665X_ad62ca
crossref_primary_10_1016_j_tws_2022_109917
crossref_primary_10_1108_AEAT_05_2023_0122
crossref_primary_10_1016_j_conbuildmat_2023_133478
crossref_primary_10_1016_j_compstruct_2024_118633
crossref_primary_10_1002_pssb_202400450
crossref_primary_10_1080_15376494_2024_2313713
crossref_primary_10_1016_j_mtcomm_2024_108828
crossref_primary_10_1016_j_tws_2024_111815
crossref_primary_10_1016_j_conbuildmat_2023_132276
crossref_primary_10_1016_j_ijmecsci_2022_107999
crossref_primary_10_1088_1367_2630_ad617b
crossref_primary_10_1016_j_tws_2024_112599
crossref_primary_10_1016_j_euromechsol_2022_104905
crossref_primary_10_1080_15376494_2022_2126567
crossref_primary_10_1002_adfm_202413789
crossref_primary_10_1016_j_rineng_2025_107291
crossref_primary_10_1016_j_engstruct_2025_120565
crossref_primary_10_1002_adem_202501176
crossref_primary_10_1016_j_ast_2024_109730
crossref_primary_10_1016_j_addma_2022_102789
crossref_primary_10_1177_00219983241262880
crossref_primary_10_1080_15376494_2024_2441980
crossref_primary_10_1016_j_ijsolstr_2024_112724
crossref_primary_10_1002_pssb_202400465
crossref_primary_10_1016_j_ijmecsci_2023_108917
crossref_primary_10_3390_coatings15060689
crossref_primary_10_1016_j_engstruct_2023_115732
crossref_primary_10_1016_j_tws_2024_112504
crossref_primary_10_1016_j_engstruct_2022_115377
crossref_primary_10_1038_s41467_025_59662_w
crossref_primary_10_1016_j_ijmecsci_2022_108075
crossref_primary_10_1016_j_addma_2023_103525
crossref_primary_10_1016_j_engstruct_2025_121000
crossref_primary_10_1002_pssb_202400470
crossref_primary_10_1016_j_compstruct_2024_118410
crossref_primary_10_1016_j_ceramint_2025_01_019
crossref_primary_10_1007_s00707_024_04117_4
crossref_primary_10_1016_j_compstruct_2024_118803
crossref_primary_10_1016_j_tws_2023_110650
crossref_primary_10_1016_j_wavemoti_2024_103432
crossref_primary_10_1016_j_ijmecsci_2022_107414
crossref_primary_10_1016_j_tws_2025_113722
crossref_primary_10_1016_j_tws_2024_111883
crossref_primary_10_1016_j_tws_2025_113206
crossref_primary_10_1016_j_polymertesting_2023_108015
crossref_primary_10_1016_j_tws_2024_111764
crossref_primary_10_1016_j_matdes_2023_112530
crossref_primary_10_1142_S1758825125500553
crossref_primary_10_1080_15376494_2025_2503470
Cites_doi 10.1088/1361-665X/ab6696
10.1016/j.compstruct.2017.04.007
10.1177/1045389X04046610
10.1016/j.tws.2021.107758
10.1016/j.compstruct.2021.114922
10.1016/j.compstruct.2018.11.050
10.1016/j.ijmecsci.2020.106021
10.1016/j.tws.2021.108584
10.1002/pssb.202000439
10.1016/j.compositesb.2019.05.012
10.1007/s10853-017-1809-8
10.1016/j.matdes.2020.109277
10.1016/j.apacoust.2006.12.001
10.1016/j.engstruct.2021.113223
10.1016/j.compositesb.2020.108400
10.1088/1361-665X/aaa61c
10.1088/0964-1726/25/6/065012
10.1016/j.compositesb.2016.11.011
10.1016/j.compositesb.2020.107817
10.1088/0964-1726/24/9/095016
10.1016/j.compositesb.2020.108379
10.1016/j.commatsci.2012.02.012
10.1016/j.compstruct.2016.10.090
10.1016/j.matdes.2017.11.025
10.1016/j.tws.2021.107682
10.1016/j.ijmecsci.2020.106105
10.1016/j.tws.2014.07.017
10.1016/j.compositesb.2022.109733
10.1016/j.compstruct.2017.10.013
10.1016/j.ijmecsci.2020.105619
10.1016/j.compstruct.2022.115269
10.1016/j.conbuildmat.2022.126453
10.1016/j.engstruct.2021.112976
10.1016/j.compositesb.2020.107858
10.1016/j.ijimpeng.2022.104193
10.1016/j.compstruct.2015.11.036
10.1016/j.compositesb.2020.108340
10.1016/j.apenergy.2020.115217
10.1002/adfm.201606695
10.1016/j.apacoust.2021.107930
10.1016/j.compositesb.2020.108117
10.1016/j.compstruct.2021.114997
10.1016/j.compositesb.2019.05.002
10.1016/j.matdes.2017.11.024
10.1177/002199839302701203
10.1016/j.proeng.2017.08.054
10.1016/j.compstruct.2021.115043
10.1002/mame.201200028
10.3390/ma13092193
10.1126/science.235.4792.1038
10.1016/j.polymertesting.2019.106189
10.1016/j.compositesb.2021.109303
10.1016/j.matchemphys.2019.03.015
10.1016/j.compositesb.2018.06.027
10.1016/j.isci.2020.101637
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.tws.2022.109162
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3223
ExternalDocumentID 10_1016_j_tws_2022_109162
S0263823122001501
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
WH7
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-c65b17e29ca14549a6650dfcfbbc1b6d8fab7b7e60fbae45de8de04f8ae1c19d3
ISICitedReferencesCount 156
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792272200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-8231
IngestDate Tue Nov 18 22:20:20 EST 2025
Sat Nov 29 07:20:03 EST 2025
Fri Feb 23 02:40:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Negative Poisson’s ratio
Tunable stiffness
Auxetic
Re-entrant structure
Metamaterial
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-c65b17e29ca14549a6650dfcfbbc1b6d8fab7b7e60fbae45de8de04f8ae1c19d3
ORCID 0000-0001-5720-6649
0000-0001-5094-7145
ParticipantIDs crossref_citationtrail_10_1016_j_tws_2022_109162
crossref_primary_10_1016_j_tws_2022_109162
elsevier_sciencedirect_doi_10_1016_j_tws_2022_109162
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Thin-walled structures
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Rudykh (b23) 2019; 172
Dogan, Bhusal, Cecen, Miri (b26) 2020; 20
Chen, Wang, Ma (b54) 2020; 81
Zhang, Lu, You (b34) 2020; 201
Zhang, Ren, Han, Cheng, Jiang, Zhang, Zhang, Xie (b32) 2022; 164
Jiang, Ren, Wang, Zhang, Zhang, Luo, Xie, Scarpa, Alderson, Evans (b6) 2022; 235
Oh, Kim, Nguyen, Oh (b39) 2020; 186
Wang, Ho, Zhang, Wang (b62) 2017; 3
Brighenti (b30) 2014; 84
La Malfa, Puce, Rizzi, De Vittorio (b18) 2020; 10
Eghbali, Younesian, Farhangdoust (b40) 2020; 270
Luo, Han, Zhang, Zhang, Ren, Xie (b12) 2021; 163
Wang, Dai, Huang (b2) 2020; 23
Lv, Li, Dong (b36) 2021; 191
Quan, Han, Hou, Zhang, Tian, Lu (b22) 2020; 187
Wang, Li, Zhang, Cui, Yang, Lu (b35) 2020; 202
Prawoto (b45) 2012; 58
Gao, Ding, Liao (b57) 2022; 287
Eleftheriades, Kim, Ataloglou, Dorrah (b4) 2021
Ahmed, Li, Zeng (b17) 2019; 229
Ren, Zhang, Han, Han, Zhang, Zhang, Xie (b29) 2022; 170
Hosseinkhani, Younesian, Ranjbar, Scarpa (b38) 2021; 177
Ren, Shen, Ghaedizadeh, Tian, Xie (b58) 2016; 25
Ren, Shen, Tran, Ngo, Xie (b8) 2018; 139
Zhang, Sun, Ren, Zhang, Tao, Xie (b11) 2022; 281
Zhang, Lai, He, Liu, Zi, Wang (b19) 2017; 27
Sun, Ren, Zhang, Tao, Zhang, Xie (b28) 2022; 39
Zhang, Ren, Wang, Zhang, Xie (b53) 2021; 226
Zhong, Ren, Zhang, Luo, Zhang, Xie (b44) 2022; 322
Zhang, Ren (b60) 2020; 257
Ren, Shen, Ghaedizadeh, Tian, Xie (b59) 2015; 24
Lu, Li, Yang, Xie (b46) 2016; 138
Hu, Dong, Luo, Qin, Sun (b10) 2020; 201
Ren, Das, Tran, Ngo, Xie (b9) 2018; 27
Lakes, Elms (b41) 2016; 27
Huang, Ren, Zeng, Zhang, Luo, Zhang, Xie (b14) 2021; 246
Zhang, Ren, Zhang, Huang, Sun, Xie (b13) 2021; 249
Qi, Jiang, Remennikov, Pei, Liu, Wang, Liao, Yang (b42) 2020; 197
Lakes (b7) 1987; 235
Chen, Wu, Xie, Wang, Zhou (b47) 2020; 178
Li, Gao, Dong, Lam, Zhang (b52) 2020; 29
Gao, Wang, Zhou, Ma (b56) 2018; 139
Wan, Xiao, Huang, Xiao, Xu, Li, Eisenbeis, Wang, Huang, Cheng, Jin, Zwick, Cui (b5) 2021
Lu, Li, Tian (b61) 2015; 1
Zhang, Ren, Jiang, Zhang, Luo, Zhang, Xie (b24) 2022; 282
Robertson (b64) 1997; 382
Ren, Shen, Tran, Ngo, Xie (b15) 2018; 184
Huang, Zhang, Scarpa, Liu, Leng (b20) 2017; 110
Ng, Hui (b1) 2008; 69
Alderson, Alderson, McDonald, Mottershead, Nazare, Withers, Yao (b16) 2013; 298
Yao, Luo, Xu, Wang, Li, Deng (b31) 2018; 152
Fu, Chen, H.u (b48) 2017; 160
Fu, Chen, Hu (b49) 2017; 175
Jin, Xie, Gao, Zhou, Li, Du, He (b25) 2021; 197
Peng, Bargman (b50) 2021; 190
Dudek, Attard, Gatt, Grima-Cornish, Grima (b55) 2020; 13
Li, Yin, Dong, Lakes (b51) 2017; 53
Gibson, Ashby (b63) 1997
Zhang, Wang, Ren, Xie, Wu, Zhou, Wang, Han (b27) 2021; 163
Novak, Starčevič, Vesenjak, Ren (b37) 2019; 210
Wang, Zhang, Fang, Sun (b33) 2020
Scarpa, Smith (b3) 2016; 15
Xue, Wang, Han (b21) 2019; 171
Luo, Ren, Zhang, Zhang, Zhang, Luo, Cheng, Xie (b43) 2022; 280
Huang (10.1016/j.tws.2022.109162_b14) 2021; 246
Gibson (10.1016/j.tws.2022.109162_b63) 1997
Lakes (10.1016/j.tws.2022.109162_b7) 1987; 235
Lv (10.1016/j.tws.2022.109162_b36) 2021; 191
Zhang (10.1016/j.tws.2022.109162_b32) 2022; 164
Lu (10.1016/j.tws.2022.109162_b46) 2016; 138
Scarpa (10.1016/j.tws.2022.109162_b3) 2016; 15
Peng (10.1016/j.tws.2022.109162_b50) 2021; 190
Hosseinkhani (10.1016/j.tws.2022.109162_b38) 2021; 177
Zhang (10.1016/j.tws.2022.109162_b53) 2021; 226
Zhang (10.1016/j.tws.2022.109162_b60) 2020; 257
Brighenti (10.1016/j.tws.2022.109162_b30) 2014; 84
Gao (10.1016/j.tws.2022.109162_b56) 2018; 139
Jiang (10.1016/j.tws.2022.109162_b6) 2022; 235
Wang (10.1016/j.tws.2022.109162_b62) 2017; 3
Hu (10.1016/j.tws.2022.109162_b10) 2020; 201
Eghbali (10.1016/j.tws.2022.109162_b40) 2020; 270
Li (10.1016/j.tws.2022.109162_b52) 2020; 29
Yao (10.1016/j.tws.2022.109162_b31) 2018; 152
Zhong (10.1016/j.tws.2022.109162_b44) 2022; 322
Chen (10.1016/j.tws.2022.109162_b54) 2020; 81
Luo (10.1016/j.tws.2022.109162_b12) 2021; 163
Wang (10.1016/j.tws.2022.109162_b33) 2020
Lu (10.1016/j.tws.2022.109162_b61) 2015; 1
Prawoto (10.1016/j.tws.2022.109162_b45) 2012; 58
Novak (10.1016/j.tws.2022.109162_b37) 2019; 210
Ren (10.1016/j.tws.2022.109162_b58) 2016; 25
Luo (10.1016/j.tws.2022.109162_b43) 2022; 280
Fu (10.1016/j.tws.2022.109162_b48) 2017; 160
Qi (10.1016/j.tws.2022.109162_b42) 2020; 197
La Malfa (10.1016/j.tws.2022.109162_b18) 2020; 10
Ren (10.1016/j.tws.2022.109162_b9) 2018; 27
Zhang (10.1016/j.tws.2022.109162_b34) 2020; 201
Zhang (10.1016/j.tws.2022.109162_b19) 2017; 27
Zhang (10.1016/j.tws.2022.109162_b27) 2021; 163
Sun (10.1016/j.tws.2022.109162_b28) 2022; 39
Fu (10.1016/j.tws.2022.109162_b49) 2017; 175
Ren (10.1016/j.tws.2022.109162_b29) 2022; 170
Huang (10.1016/j.tws.2022.109162_b20) 2017; 110
Li (10.1016/j.tws.2022.109162_b23) 2019; 172
Wan (10.1016/j.tws.2022.109162_b5) 2021
Ren (10.1016/j.tws.2022.109162_b8) 2018; 139
Ahmed (10.1016/j.tws.2022.109162_b17) 2019; 229
Xue (10.1016/j.tws.2022.109162_b21) 2019; 171
Li (10.1016/j.tws.2022.109162_b51) 2017; 53
Quan (10.1016/j.tws.2022.109162_b22) 2020; 187
Jin (10.1016/j.tws.2022.109162_b25) 2021; 197
Ng (10.1016/j.tws.2022.109162_b1) 2008; 69
Zhang (10.1016/j.tws.2022.109162_b11) 2022; 281
Dudek (10.1016/j.tws.2022.109162_b55) 2020; 13
Ren (10.1016/j.tws.2022.109162_b59) 2015; 24
Alderson (10.1016/j.tws.2022.109162_b16) 2013; 298
Zhang (10.1016/j.tws.2022.109162_b24) 2022; 282
Chen (10.1016/j.tws.2022.109162_b47) 2020; 178
Dogan (10.1016/j.tws.2022.109162_b26) 2020; 20
Lakes (10.1016/j.tws.2022.109162_b41) 2016; 27
Robertson (10.1016/j.tws.2022.109162_b64) 1997; 382
Oh (10.1016/j.tws.2022.109162_b39) 2020; 186
Zhang (10.1016/j.tws.2022.109162_b13) 2021; 249
Ren (10.1016/j.tws.2022.109162_b15) 2018; 184
Wang (10.1016/j.tws.2022.109162_b2) 2020; 23
Wang (10.1016/j.tws.2022.109162_b35) 2020; 202
Eleftheriades (10.1016/j.tws.2022.109162_b4) 2021
Gao (10.1016/j.tws.2022.109162_b57) 2022; 287
References_xml – volume: 69
  start-page: 293
  year: 2008
  end-page: 301
  ident: b1
  article-title: Low frequency sound insulation using stiffness control with honeycomb panels
  publication-title: Appl. Acoust.
– volume: 139
  start-page: 336
  year: 2018
  end-page: 342
  ident: b8
  article-title: Design and characterisation of a tuneable 3D buckling-induced auxetic metamaterial
  publication-title: Mater. Des.
– year: 2021
  ident: b5
  article-title: Joint modulations of electromagnetic waves and digital signals on a single metasurface platform to reach programmable wireless communications
  publication-title: Eng.-PRC
– volume: 249
  year: 2021
  ident: b13
  article-title: A novel buckling-restrained brace with auxetic perforated core: Experimental and numerical studies
  publication-title: Eng. Struct.
– volume: 197
  year: 2021
  ident: b25
  article-title: Fabrication of multi-scale and tunable auxetic scaffolds for tissue engineering
  publication-title: Mater. Des.
– volume: 139
  start-page: 380
  year: 2018
  end-page: 391
  ident: b56
  article-title: Theoretical, numerical and experimental analysis of three-dimensional double-V honeycomb
  publication-title: Mater Design
– volume: 84
  start-page: 432
  year: 2014
  end-page: 442
  ident: b30
  article-title: Smart behaviour of layered plates through the use of auxetic materials
  publication-title: Thin-Walled Struct.
– volume: 287
  year: 2022
  ident: b57
  article-title: Effective elastic properties of irregular auxetic structures
  publication-title: Compos. Struct.
– volume: 3
  start-page: 653
  year: 2017
  end-page: 662
  ident: b62
  article-title: A review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications
  publication-title: Eng.-PRC
– volume: 163
  year: 2021
  ident: b27
  article-title: A novel type of tubular structure with auxeticity both in radial direction and wall thickness
  publication-title: Thin-Walled Struct.
– year: 1997
  ident: b63
  article-title: Cellular Solids: Structure and Properties
– volume: 270
  year: 2020
  ident: b40
  article-title: Enhancement of the low-frequency acoustic energy harvesting with auxetic resonators
  publication-title: Appl. Energy
– volume: 27
  year: 2018
  ident: b9
  article-title: Auxetic metamaterials and structures: a review
  publication-title: Smart Mater. Struct.
– volume: 177
  year: 2021
  ident: b38
  article-title: Enhancement of the vibro-acoustic performance of anti-tetra-chiral auxetic sandwich panels using topologically optimized local resonators
  publication-title: Appl. Acoust.
– volume: 53
  start-page: 3493
  year: 2017
  end-page: 3499
  ident: b51
  article-title: Strong re-entrant cellular structures with negative Poisson’s ratio
  publication-title: J. Mater. Sci.
– volume: 138
  start-page: 243
  year: 2016
  end-page: 252
  ident: b46
  article-title: Novel structure with negative Poisson’s ratio and enhanced Young’s modulus
  publication-title: Compos. Struct.
– volume: 23
  year: 2020
  ident: b2
  article-title: Thermal metamaterial: fundamental, application, and outlook
  publication-title: iScience
– volume: 27
  start-page: 1193
  year: 2016
  end-page: 1202
  ident: b41
  article-title: Indentability of conventional and negative Poisson’s ratio foams
  publication-title: J. Compos. Mater.
– volume: 235
  year: 2022
  ident: b6
  article-title: Manufacturing, characteristics and applications of auxetic foams: a state-of-the-art review
  publication-title: Composites B
– volume: 27
  year: 2017
  ident: b19
  article-title: Auxetic foam-based contact-mode triboelectric nanogenerator with highly sensitive self-powered strain sensing capabilities to monitor human body movement
  publication-title: Adv. Funct. Mater.
– volume: 175
  start-page: 101
  year: 2017
  end-page: 110
  ident: b49
  article-title: Bilinear elastic characteristic of enhanced auxetic honeycombs
  publication-title: Compos. Struct.
– volume: 235
  start-page: 1038
  year: 1987
  end-page: 1040
  ident: b7
  article-title: Foam structures with a negative Poisson’s ratio
  publication-title: Science
– volume: 110
  start-page: 72
  year: 2017
  end-page: 82
  ident: b20
  article-title: In-plane elasticity of a novel auxetic honeycomb design
  publication-title: Composites B
– volume: 246
  year: 2021
  ident: b14
  article-title: Based on auxetic foam: A novel type of seismic metamaterial for Lamb waves
  publication-title: Eng. Struct.
– volume: 25
  year: 2016
  ident: b58
  article-title: A simple auxetic tubular structure with tuneable mechanical properties
  publication-title: Smart Mater. Struct.
– volume: 163
  year: 2021
  ident: b12
  article-title: Design, manufacturing and applications of auxetic tubular structures: A review
  publication-title: Thin-Walled Struct.
– year: 2020
  ident: b33
  article-title: Design, characterization, and 3d printing of cardiovascular stents with zero Poisson’s ratio in longitudinal deformation
  publication-title: Eng.-PRC
– volume: 186
  year: 2020
  ident: b39
  article-title: Auxetic graphene oxide-porous foam for acoustic wave and shock energy dissipation
  publication-title: Composites B
– volume: 202
  year: 2020
  ident: b35
  article-title: Ultra-low density architectured metamaterial with superior mechanical properties and energy absorption capability
  publication-title: Composites B
– volume: 229
  start-page: 167
  year: 2019
  end-page: 173
  ident: b17
  article-title: Stretchable and compressible piezoresistive sensors from auxetic foam and silver nanowire
  publication-title: Mater. Chem. Phys.
– volume: 1
  start-page: 085
  year: 2015
  end-page: 089
  ident: b61
  article-title: Development trends in additive manufacturing and 3D printing
  publication-title: Composites B
– volume: 298
  start-page: 318
  year: 2013
  end-page: 327
  ident: b16
  article-title: Piezomorphic materials
  publication-title: Macromol. Mater. Eng.
– volume: 24
  year: 2015
  ident: b59
  article-title: Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties
  publication-title: Smart Mater. Struct.
– volume: 58
  start-page: 140
  year: 2012
  end-page: 153
  ident: b45
  article-title: Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio
  publication-title: Comput. Mater. Sci.
– volume: 226
  year: 2021
  ident: b53
  article-title: A novel combined auxetic tubular structure with enhanced tunable stiffness
  publication-title: Composites B
– volume: 13
  start-page: 2193
  year: 2020
  ident: b55
  article-title: The multidirectional auxeticity and negative linear compressibility of a 3D mechanical metamaterial
  publication-title: Materials
– volume: 322
  year: 2022
  ident: b44
  article-title: Mechanical properties of concrete composites with auxetic single and layered honeycomb structures
  publication-title: Constr Build Mater.
– volume: 280
  year: 2022
  ident: b43
  article-title: Mechanical properties of foam-filled hexagonal and re-entrant honeycombs under uniaxial compression
  publication-title: Compos. Struct.
– volume: 201
  year: 2020
  ident: b34
  article-title: Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review
  publication-title: Composites B
– volume: 184
  start-page: 288
  year: 2018
  end-page: 298
  ident: b15
  article-title: Auxetic nail: Design and experimental study
  publication-title: Compos. Struct.
– volume: 160
  start-page: 574
  year: 2017
  end-page: 585
  ident: b48
  article-title: A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength
  publication-title: Compos. Struct.
– volume: 201
  year: 2020
  ident: b10
  article-title: 3D printing of chiral carbon fiber reinforced polylactic acid composites with negative Poisson’s ratios
  publication-title: Composites B
– volume: 281
  year: 2022
  ident: b11
  article-title: Design and analysis of an auxetic metamaterial with tuneable stiffness
  publication-title: Compos. Struct.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 11
  ident: b18
  article-title: A flexible carbon nanotubes-Based auxetic sponge electrode for strain sensors
  publication-title: Nanomaterials-Basel
– volume: 191
  year: 2021
  ident: b36
  article-title: Study on blast resistance of a composite sandwich panel with isotropic foam core with negative Poisson’s ratio
  publication-title: Int. J. Mech. Sci.
– volume: 178
  year: 2020
  ident: b47
  article-title: Re-entrant auxetic lattices with enhanced stiffness: A numerical study
  publication-title: Int. J. Mech. Sci.
– volume: 152
  start-page: 1
  year: 2018
  end-page: 7
  ident: b31
  article-title: Fabrication and characterization of auxetic shape memory composite foams
  publication-title: Composites B
– volume: 187
  year: 2020
  ident: b22
  article-title: 3D printed continuous fiber reinforced composite auxetic honeycomb structures
  publication-title: Composites B
– volume: 170
  year: 2022
  ident: b29
  article-title: Mechanical properties of foam-filled auxetic circular tubes: experimental and numerical study
  publication-title: Thin-Walled Struct.
– volume: 15
  start-page: 973
  year: 2016
  end-page: 979
  ident: b3
  article-title: Passive and MR fluid-coated auxetic PU foam mechanical, acoustic, and electromagnetic properties
  publication-title: J. Intell. Mater. Syst. Struct.
– volume: 171
  start-page: 183
  year: 2019
  end-page: 191
  ident: b21
  article-title: Enhanced compressive mechanical properties of aluminum based auxetic lattice structures filled with polymers
  publication-title: Composites B
– volume: 210
  start-page: 167
  year: 2019
  end-page: 178
  ident: b37
  article-title: Blast response study of the sandwich composite panels with 3D chiral auxetic core
  publication-title: Compos. Struct.
– volume: 29
  year: 2020
  ident: b52
  article-title: A novel 3D re-entrant unit cell structure with negative Poisson’s ratio and tunable stiffness
  publication-title: Smart Mater. Struct.
– year: 2021
  ident: b4
  article-title: Prospects of Huygens’ metasurfaces for antenna applications
  publication-title: Eng.-PRC
– volume: 282
  year: 2022
  ident: b24
  article-title: A novel auxetic chiral lattice composite: experimental and numerical study
  publication-title: Compos. Struct.
– volume: 20
  year: 2020
  ident: b26
  article-title: 3D Printing metamaterials towards tissue engineering
  publication-title: Appl. Mater. Today
– volume: 197
  year: 2020
  ident: b42
  article-title: Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs
  publication-title: Composites B
– volume: 81
  year: 2020
  ident: b54
  article-title: Damping mechanisms of CFRP three-dimensional double-arrow-head auxetic metamaterials
  publication-title: Polym. Test.
– volume: 172
  start-page: 352
  year: 2019
  end-page: 362
  ident: b23
  article-title: Tunable microstructure transformations and auxetic behavior in 3D-printed multiphase composites: The role of inclusion distribution
  publication-title: Composites B
– volume: 190
  year: 2021
  ident: b50
  article-title: A novel hybrid-honeycomb structure: Enhanced stiffness, tunable auxeticity and negative thermal expansion
  publication-title: Int. J. Mech. Sci.
– volume: 257
  year: 2020
  ident: b60
  article-title: A simple methodology to generate metamaterials and structures with negative Poisson’s ratio
  publication-title: Phys. Status Solid B
– volume: 39
  start-page: 1820
  year: 2022
  end-page: 1830
  ident: b28
  article-title: An auxetic tubular structure with tuneable stiffness
  publication-title: Acta Mater. Compos. Sin.
– volume: 382
  start-page: 25
  year: 1997
  end-page: 42
  ident: b64
  article-title: The mechanics of two-dimensional cellular materials
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 164
  year: 2022
  ident: b32
  article-title: Static and dynamic properties of a perforated metallic auxetic metamaterial with tunable stiffness and energy absorption
  publication-title: Int. J. Impact Eng.
– volume: 29
  issue: 4
  year: 2020
  ident: 10.1016/j.tws.2022.109162_b52
  article-title: A novel 3D re-entrant unit cell structure with negative Poisson’s ratio and tunable stiffness
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ab6696
– volume: 175
  start-page: 101
  year: 2017
  ident: 10.1016/j.tws.2022.109162_b49
  article-title: Bilinear elastic characteristic of enhanced auxetic honeycombs
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.04.007
– volume: 15
  start-page: 973
  issue: 12
  year: 2016
  ident: 10.1016/j.tws.2022.109162_b3
  article-title: Passive and MR fluid-coated auxetic PU foam mechanical, acoustic, and electromagnetic properties
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X04046610
– volume: 163
  year: 2021
  ident: 10.1016/j.tws.2022.109162_b27
  article-title: A novel type of tubular structure with auxeticity both in radial direction and wall thickness
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2021.107758
– volume: 280
  year: 2022
  ident: 10.1016/j.tws.2022.109162_b43
  article-title: Mechanical properties of foam-filled hexagonal and re-entrant honeycombs under uniaxial compression
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.114922
– volume: 210
  start-page: 167
  year: 2019
  ident: 10.1016/j.tws.2022.109162_b37
  article-title: Blast response study of the sandwich composite panels with 3D chiral auxetic core
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2018.11.050
– volume: 190
  year: 2021
  ident: 10.1016/j.tws.2022.109162_b50
  article-title: A novel hybrid-honeycomb structure: Enhanced stiffness, tunable auxeticity and negative thermal expansion
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2020.106021
– volume: 170
  year: 2022
  ident: 10.1016/j.tws.2022.109162_b29
  article-title: Mechanical properties of foam-filled auxetic circular tubes: experimental and numerical study
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2021.108584
– volume: 257
  issue: 10
  year: 2020
  ident: 10.1016/j.tws.2022.109162_b60
  article-title: A simple methodology to generate metamaterials and structures with negative Poisson’s ratio
  publication-title: Phys. Status Solid B
  doi: 10.1002/pssb.202000439
– volume: 172
  start-page: 352
  year: 2019
  ident: 10.1016/j.tws.2022.109162_b23
  article-title: Tunable microstructure transformations and auxetic behavior in 3D-printed multiphase composites: The role of inclusion distribution
  publication-title: Composites B
  doi: 10.1016/j.compositesb.2019.05.012
– volume: 53
  start-page: 3493
  issue: 5
  year: 2017
  ident: 10.1016/j.tws.2022.109162_b51
  article-title: Strong re-entrant cellular structures with negative Poisson’s ratio
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-017-1809-8
– volume: 197
  year: 2021
  ident: 10.1016/j.tws.2022.109162_b25
  article-title: Fabrication of multi-scale and tunable auxetic scaffolds for tissue engineering
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109277
– volume: 69
  start-page: 293
  issue: 4
  year: 2008
  ident: 10.1016/j.tws.2022.109162_b1
  article-title: Low frequency sound insulation using stiffness control with honeycomb panels
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2006.12.001
– volume: 249
  year: 2021
  ident: 10.1016/j.tws.2022.109162_b13
  article-title: A novel buckling-restrained brace with auxetic perforated core: Experimental and numerical studies
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2021.113223
– volume: 201
  year: 2020
  ident: 10.1016/j.tws.2022.109162_b10
  article-title: 3D printing of chiral carbon fiber reinforced polylactic acid composites with negative Poisson’s ratios
  publication-title: Composites B
  doi: 10.1016/j.compositesb.2020.108400
– volume: 27
  issue: 2
  year: 2018
  ident: 10.1016/j.tws.2022.109162_b9
  article-title: Auxetic metamaterials and structures: a review
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aaa61c
– volume: 382
  start-page: 25
  issue: 1782
  year: 1997
  ident: 10.1016/j.tws.2022.109162_b64
  article-title: The mechanics of two-dimensional cellular materials
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 25
  issue: 6
  year: 2016
  ident: 10.1016/j.tws.2022.109162_b58
  article-title: A simple auxetic tubular structure with tuneable mechanical properties
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/6/065012
– volume: 110
  start-page: 72
  year: 2017
  ident: 10.1016/j.tws.2022.109162_b20
  article-title: In-plane elasticity of a novel auxetic honeycomb design
  publication-title: Composites B
  doi: 10.1016/j.compositesb.2016.11.011
– volume: 186
  year: 2020
  ident: 10.1016/j.tws.2022.109162_b39
  article-title: Auxetic graphene oxide-porous foam for acoustic wave and shock energy dissipation
  publication-title: Composites B
  doi: 10.1016/j.compositesb.2020.107817
– year: 2020
  ident: 10.1016/j.tws.2022.109162_b33
  article-title: Design, characterization, and 3d printing of cardiovascular stents with zero Poisson’s ratio in longitudinal deformation
  publication-title: Eng.-PRC
– volume: 24
  issue: 9
  year: 2015
  ident: 10.1016/j.tws.2022.109162_b59
  article-title: Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/9/095016
– volume: 202
  year: 2020
  ident: 10.1016/j.tws.2022.109162_b35
  article-title: Ultra-low density architectured metamaterial with superior mechanical properties and energy absorption capability
  publication-title: Composites B
  doi: 10.1016/j.compositesb.2020.108379
– volume: 10
  start-page: 1
  issue: 12
  year: 2020
  ident: 10.1016/j.tws.2022.109162_b18
  article-title: A flexible carbon nanotubes-Based auxetic sponge electrode for strain sensors
  publication-title: Nanomaterials-Basel
– volume: 58
  start-page: 140
  year: 2012
  ident: 10.1016/j.tws.2022.109162_b45
  article-title: Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2012.02.012
– volume: 160
  start-page: 574
  year: 2017
  ident: 10.1016/j.tws.2022.109162_b48
  article-title: A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2016.10.090
– volume: 139
  start-page: 336
  year: 2018
  ident: 10.1016/j.tws.2022.109162_b8
  article-title: Design and characterisation of a tuneable 3D buckling-induced auxetic metamaterial
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.11.025
– year: 2021
  ident: 10.1016/j.tws.2022.109162_b5
  article-title: Joint modulations of electromagnetic waves and digital signals on a single metasurface platform to reach programmable wireless communications
  publication-title: Eng.-PRC
– volume: 163
  year: 2021
  ident: 10.1016/j.tws.2022.109162_b12
  article-title: Design, manufacturing and applications of auxetic tubular structures: A review
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2021.107682
– volume: 191
  year: 2021
  ident: 10.1016/j.tws.2022.109162_b36
  article-title: Study on blast resistance of a composite sandwich panel with isotropic foam core with negative Poisson’s ratio
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2020.106105
– volume: 84
  start-page: 432
  year: 2014
  ident: 10.1016/j.tws.2022.109162_b30
  article-title: Smart behaviour of layered plates through the use of auxetic materials
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2014.07.017
– volume: 235
  year: 2022
  ident: 10.1016/j.tws.2022.109162_b6
  article-title: Manufacturing, characteristics and applications of auxetic foams: a state-of-the-art review
  publication-title: Composites B
  doi: 10.1016/j.compositesb.2022.109733
– volume: 184
  start-page: 288
  year: 2018
  ident: 10.1016/j.tws.2022.109162_b15
  article-title: Auxetic nail: Design and experimental study
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.10.013
– volume: 178
  year: 2020
  ident: 10.1016/j.tws.2022.109162_b47
  article-title: Re-entrant auxetic lattices with enhanced stiffness: A numerical study
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2020.105619
– volume: 287
  year: 2022
  ident: 10.1016/j.tws.2022.109162_b57
  article-title: Effective elastic properties of irregular auxetic structures
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2022.115269
– volume: 322
  year: 2022
  ident: 10.1016/j.tws.2022.109162_b44
  article-title: Mechanical properties of concrete composites with auxetic single and layered honeycomb structures
  publication-title: Constr Build Mater.
  doi: 10.1016/j.conbuildmat.2022.126453
– year: 2021
  ident: 10.1016/j.tws.2022.109162_b4
  article-title: Prospects of Huygens’ metasurfaces for antenna applications
  publication-title: Eng.-PRC
– volume: 20
  year: 2020
  ident: 10.1016/j.tws.2022.109162_b26
  article-title: 3D Printing metamaterials towards tissue engineering
  publication-title: Appl. Mater. Today
– volume: 246
  year: 2021
  ident: 10.1016/j.tws.2022.109162_b14
  article-title: Based on auxetic foam: A novel type of seismic metamaterial for Lamb waves
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2021.112976
– volume: 187
  year: 2020
  ident: 10.1016/j.tws.2022.109162_b22
  article-title: 3D printed continuous fiber reinforced composite auxetic honeycomb structures
  publication-title: Composites B
  doi: 10.1016/j.compositesb.2020.107858
– volume: 164
  year: 2022
  ident: 10.1016/j.tws.2022.109162_b32
  article-title: Static and dynamic properties of a perforated metallic auxetic metamaterial with tunable stiffness and energy absorption
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2022.104193
– volume: 138
  start-page: 243
  year: 2016
  ident: 10.1016/j.tws.2022.109162_b46
  article-title: Novel structure with negative Poisson’s ratio and enhanced Young’s modulus
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2015.11.036
– volume: 201
  year: 2020
  ident: 10.1016/j.tws.2022.109162_b34
  article-title: Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review
  publication-title: Composites B
  doi: 10.1016/j.compositesb.2020.108340
– volume: 270
  year: 2020
  ident: 10.1016/j.tws.2022.109162_b40
  article-title: Enhancement of the low-frequency acoustic energy harvesting with auxetic resonators
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115217
– volume: 27
  issue: 25
  year: 2017
  ident: 10.1016/j.tws.2022.109162_b19
  article-title: Auxetic foam-based contact-mode triboelectric nanogenerator with highly sensitive self-powered strain sensing capabilities to monitor human body movement
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201606695
– volume: 177
  year: 2021
  ident: 10.1016/j.tws.2022.109162_b38
  article-title: Enhancement of the vibro-acoustic performance of anti-tetra-chiral auxetic sandwich panels using topologically optimized local resonators
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2021.107930
– volume: 39
  start-page: 1820
  issue: 4
  year: 2022
  ident: 10.1016/j.tws.2022.109162_b28
  article-title: An auxetic tubular structure with tuneable stiffness
  publication-title: Acta Mater. Compos. Sin.
– volume: 197
  year: 2020
  ident: 10.1016/j.tws.2022.109162_b42
  article-title: Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs
  publication-title: Composites B
  doi: 10.1016/j.compositesb.2020.108117
– volume: 281
  year: 2022
  ident: 10.1016/j.tws.2022.109162_b11
  article-title: Design and analysis of an auxetic metamaterial with tuneable stiffness
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.114997
– volume: 171
  start-page: 183
  year: 2019
  ident: 10.1016/j.tws.2022.109162_b21
  article-title: Enhanced compressive mechanical properties of aluminum based auxetic lattice structures filled with polymers
  publication-title: Composites B
  doi: 10.1016/j.compositesb.2019.05.002
– volume: 139
  start-page: 380
  year: 2018
  ident: 10.1016/j.tws.2022.109162_b56
  article-title: Theoretical, numerical and experimental analysis of three-dimensional double-V honeycomb
  publication-title: Mater Design
  doi: 10.1016/j.matdes.2017.11.024
– volume: 27
  start-page: 1193
  issue: 12
  year: 2016
  ident: 10.1016/j.tws.2022.109162_b41
  article-title: Indentability of conventional and negative Poisson’s ratio foams
  publication-title: J. Compos. Mater.
  doi: 10.1177/002199839302701203
– volume: 3
  start-page: 653
  issue: 5
  year: 2017
  ident: 10.1016/j.tws.2022.109162_b62
  article-title: A review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications
  publication-title: Eng.-PRC
  doi: 10.1016/j.proeng.2017.08.054
– volume: 282
  year: 2022
  ident: 10.1016/j.tws.2022.109162_b24
  article-title: A novel auxetic chiral lattice composite: experimental and numerical study
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.115043
– year: 1997
  ident: 10.1016/j.tws.2022.109162_b63
– volume: 298
  start-page: 318
  issue: 3
  year: 2013
  ident: 10.1016/j.tws.2022.109162_b16
  article-title: Piezomorphic materials
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201200028
– volume: 13
  start-page: 2193
  issue: 9
  year: 2020
  ident: 10.1016/j.tws.2022.109162_b55
  article-title: The multidirectional auxeticity and negative linear compressibility of a 3D mechanical metamaterial
  publication-title: Materials
  doi: 10.3390/ma13092193
– volume: 235
  start-page: 1038
  issue: 4792
  year: 1987
  ident: 10.1016/j.tws.2022.109162_b7
  article-title: Foam structures with a negative Poisson’s ratio
  publication-title: Science
  doi: 10.1126/science.235.4792.1038
– volume: 81
  year: 2020
  ident: 10.1016/j.tws.2022.109162_b54
  article-title: Damping mechanisms of CFRP three-dimensional double-arrow-head auxetic metamaterials
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2019.106189
– volume: 226
  year: 2021
  ident: 10.1016/j.tws.2022.109162_b53
  article-title: A novel combined auxetic tubular structure with enhanced tunable stiffness
  publication-title: Composites B
  doi: 10.1016/j.compositesb.2021.109303
– volume: 229
  start-page: 167
  year: 2019
  ident: 10.1016/j.tws.2022.109162_b17
  article-title: Stretchable and compressible piezoresistive sensors from auxetic foam and silver nanowire
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2019.03.015
– volume: 152
  start-page: 1
  year: 2018
  ident: 10.1016/j.tws.2022.109162_b31
  article-title: Fabrication and characterization of auxetic shape memory composite foams
  publication-title: Composites B
  doi: 10.1016/j.compositesb.2018.06.027
– volume: 23
  issue: 10
  year: 2020
  ident: 10.1016/j.tws.2022.109162_b2
  article-title: Thermal metamaterial: fundamental, application, and outlook
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101637
– volume: 1
  start-page: 085
  issue: 1
  year: 2015
  ident: 10.1016/j.tws.2022.109162_b61
  article-title: Development trends in additive manufacturing and 3D printing
  publication-title: Composites B
SSID ssj0017194
Score 2.6348214
Snippet An auxetic metamaterial composed of novel re-entrant unit cells was proposed. The new re-entrant structure was constructed by adding wedge-shaped parts to the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109162
SubjectTerms Auxetic
Metamaterial
Negative Poisson’s ratio
Re-entrant structure
Tunable stiffness
Title A novel auxetic metamaterial with enhanced mechanical properties and tunable auxeticity
URI https://dx.doi.org/10.1016/j.tws.2022.109162
Volume 174
WOSCitedRecordID wos000792272200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3223
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017194
  issn: 0263-8231
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZQywEOiKcoL_nAicho4zixfVxVRYBEhUQR2VNkOw6kKulqH-3-_I4fSXYpIEDiEkWWHUczXybjeSL0shHKKG5rAgynhHHGiLSqICKXpqA1HHMt880m-PGxKEv5MWaXLH07Ad51YrOR8__KahgDZrvU2b9g9_BQGIB7YDpcge1w_SPGT5Pu_MKeJWq9cQmKrke0ArXUbx3Mrrb7Fvz-363L-_Vsmjuj_MJVVw0xleuQUxUf0q52vL-u2Se5dF1Y6iQUoF0vxljEwQZdAvS-JrP14NQJIq5su2tTZ20_VAaHyaxNPsR50SYBx9khAjAYyvpkmTEyaelrvGbEeR3DryfIW8ElAZmS7Qjk0LfnmnAPdobT16tLV2edUlcKK42yfLdm9ie3l9uKUl9DEY7H-5TnEsTe_vTdUfl-cDTx1PfKHN6td3z7EMAfNvq56rKljpzcRXfiOQJPA__voRu2u49ub1WXfIC-TLFHAo5MxNtIwA4JuEcCHpGARyRgQAKOSMAjEh6iz2-OTg7fkthHgxgq-YqYItcpt1QalbKcSVWAWl43ptHapLqoRaM019wWk0Yry_LaitpOGHzGNjWprLNHaK877-xjhDOZWUob0PG1ZkIpIYtUUdVwIQ1o4uIATXoSVSYWmXe9Ts6qPprwtAKqVo6qVaDqAXo1LJmHCiu_m8x6uldRRQyqXwUg-fWyJ_-27Cm6NaL7GdqDD8o-RzfNxapdLl5EKF0BfaiM0g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+auxetic+metamaterial+with+enhanced+mechanical+properties+and+tunable+auxeticity&rft.jtitle=Thin-walled+structures&rft.au=Zhang%2C+Xiang+Yu&rft.au=Ren%2C+Xin&rft.au=Zhang%2C+Yi&rft.au=Xie%2C+Yi+Min&rft.date=2022-05-01&rft.pub=Elsevier+Ltd&rft.issn=0263-8231&rft.eissn=1879-3223&rft.volume=174&rft_id=info:doi/10.1016%2Fj.tws.2022.109162&rft.externalDocID=S0263823122001501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8231&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8231&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8231&client=summon