EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification

In this paper, we present a patch-based land use and land cover classification approach using Sentinel-2 satellite images. The Sentinel-2 satellite images are openly and freely accessible, and are provided in the earth observation program Copernicus. We present a novel dataset, based on these images...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing Jg. 12; H. 7; S. 2217 - 2226
Hauptverfasser: Helber, Patrick, Bischke, Benjamin, Dengel, Andreas, Borth, Damian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1939-1404, 2151-1535
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we present a patch-based land use and land cover classification approach using Sentinel-2 satellite images. The Sentinel-2 satellite images are openly and freely accessible, and are provided in the earth observation program Copernicus. We present a novel dataset, based on these images that covers 13 spectral bands and is comprised of ten classes with a total of 27 000 labeled and geo-referenced images. Benchmarks are provided for this novel dataset with its spectral bands using state-of-the-art deep convolutional neural networks. An overall classification accuracy of 98.57% was achieved with the proposed novel dataset. The resulting classification system opens a gate toward a number of earth observation applications. We demonstrate how this classification system can be used for detecting land use and land cover changes, and how it can assist in improving geographical maps. The geo-referenced dataset EuroSAT is made publicly available at https://github.com/phelber/eurosat.
AbstractList In this paper, we present a patch-based land use and land cover classification approach using Sentinel-2 satellite images. The Sentinel-2 satellite images are openly and freely accessible, and are provided in the earth observation program Copernicus. We present a novel dataset, based on these images that covers 13 spectral bands and is comprised of ten classes with a total of 27 000 labeled and geo-referenced images. Benchmarks are provided for this novel dataset with its spectral bands using state-of-the-art deep convolutional neural networks. An overall classification accuracy of 98.57% was achieved with the proposed novel dataset. The resulting classification system opens a gate toward a number of earth observation applications. We demonstrate how this classification system can be used for detecting land use and land cover changes, and how it can assist in improving geographical maps. The geo-referenced dataset EuroSAT is made publicly available at https://github.com/phelber/eurosat .
Author Helber, Patrick
Dengel, Andreas
Borth, Damian
Bischke, Benjamin
Author_xml – sequence: 1
  givenname: Patrick
  orcidid: 0000-0001-8454-4301
  surname: Helber
  fullname: Helber, Patrick
  email: Patrick.Helber@dfki.de
  organization: Technische Universität Kaiserslautern, Kaiserslautern, Germany
– sequence: 2
  givenname: Benjamin
  orcidid: 0000-0002-6473-3348
  surname: Bischke
  fullname: Bischke, Benjamin
  email: Benjamin.Bischke@dfki.de
  organization: Technische Universität Kaiserslautern, Kaiserslautern, Germany
– sequence: 3
  givenname: Andreas
  surname: Dengel
  fullname: Dengel, Andreas
  email: Andreas.Dengel@dfki.de
  organization: Technische Universität Kaiserslautern, Kaiserslautern, Germany
– sequence: 4
  givenname: Damian
  surname: Borth
  fullname: Borth, Damian
  email: damian.borth@unisg.ch
  organization: Institute for Computer Science, University of St. Gallen, St. Gallen, Switzerland
BookMark eNqFkMtOAjEUQBuDiYB-AZsmrgf7mLZTdyPgK0QTgXVTOhct4gy2g4l_78AQF25cNTc5597m9FCnrEpAaEDJkFKirx5n8_xlNmSE6iHTNGMpO0FdRgVNqOCig7pUc53QlKRnqBfjmhDJlOZdZCa7UM3y-TXO8VP1BRs8trWNUGNbFngMsMVTsKH05Su-gdK9fdjwjldVwNM9sIhwAA_DqPEDHm1sjH7lna19VZ6j05XdRLg4vn20uJ3MR_fJ9PnuYZRPE8e0qhMnJCmYW2phC66sVJRYybOMA5fU8SVzjlqZWi0kLdSSUS6lAGKLVDqytMD76LLduw3V5w5ibdbVLpTNScOYIoykUomG0i3lQhVjgJVxvj78sw7WbwwlZt_TtD3Nvqc59mxc_sfdBt_U-P7HGrSWB4BfI1NcqkzwH33Igj8
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1109_JSTARS_2024_3493237
crossref_primary_10_3390_rs12244046
crossref_primary_10_1109_JSTARS_2020_3023730
crossref_primary_10_1109_TNNLS_2025_3566559
crossref_primary_10_3390_rs12071097
crossref_primary_10_5194_essd_15_555_2023
crossref_primary_10_3389_fnins_2024_1523331
crossref_primary_10_3390_rs17172928
crossref_primary_10_1016_j_knosys_2025_113653
crossref_primary_10_3390_rs13173533
crossref_primary_10_1109_TGRS_2024_3385655
crossref_primary_10_1016_j_hssust_2025_08_004
crossref_primary_10_1016_j_patcog_2025_111460
crossref_primary_10_1109_JSTARS_2025_3597196
crossref_primary_10_26833_ijeg_1528938
crossref_primary_10_1109_TMM_2024_3387743
crossref_primary_10_1016_j_cej_2025_160780
crossref_primary_10_1109_TPAMI_2024_3362475
crossref_primary_10_1109_TPAMI_2021_3075372
crossref_primary_10_1109_TCSVT_2024_3403167
crossref_primary_10_1038_s41598_024_67186_4
crossref_primary_10_1109_JSTARS_2021_3090085
crossref_primary_10_1109_TGRS_2024_3371481
crossref_primary_10_3390_rs13214294
crossref_primary_10_1145_3582688
crossref_primary_10_1016_j_isprsjprs_2025_06_003
crossref_primary_10_1109_ACCESS_2020_3015261
crossref_primary_10_1016_j_jag_2021_102664
crossref_primary_10_1109_JSTARS_2021_3073965
crossref_primary_10_1016_j_compenvurbsys_2024_102072
crossref_primary_10_1038_s44387_025_00010_0
crossref_primary_10_3390_rs17111886
crossref_primary_10_1016_j_inffus_2024_102919
crossref_primary_10_1016_j_neunet_2025_107339
crossref_primary_10_1007_s13042_022_01725_1
crossref_primary_10_1016_j_neunet_2025_107453
crossref_primary_10_1109_ACCESS_2021_3124200
crossref_primary_10_1007_s10462_024_10915_y
crossref_primary_10_1038_s41597_025_05771_6
crossref_primary_10_3390_su15107854
crossref_primary_10_1016_j_heliyon_2024_e37962
crossref_primary_10_1109_TAI_2024_3386500
crossref_primary_10_3390_math12050758
crossref_primary_10_1007_s11263_024_02243_z
crossref_primary_10_1007_s10462_024_10803_5
crossref_primary_10_1007_s12145_024_01301_x
crossref_primary_10_1109_TIP_2025_3546840
crossref_primary_10_1016_j_mex_2025_103533
crossref_primary_10_1109_JSTARS_2020_3032672
crossref_primary_10_1016_j_knosys_2025_113798
crossref_primary_10_1038_s41598_025_97378_5
crossref_primary_10_1007_s11263_023_01918_3
crossref_primary_10_1016_j_heliyon_2024_e37814
crossref_primary_10_1016_j_isprsjprs_2025_06_019
crossref_primary_10_1109_ACCESS_2025_3561151
crossref_primary_10_1016_j_scs_2021_103158
crossref_primary_10_1109_JSTARS_2022_3233105
crossref_primary_10_1016_j_neucom_2024_128290
crossref_primary_10_1016_j_patcog_2025_111359
crossref_primary_10_1007_s42235_025_00654_3
crossref_primary_10_3390_rs16152778
crossref_primary_10_5194_essd_15_681_2023
crossref_primary_10_1016_j_neunet_2025_107472
crossref_primary_10_1109_MGRS_2023_3293459
crossref_primary_10_3390_math8091511
crossref_primary_10_3390_s22228750
crossref_primary_10_1109_TKDE_2024_3397689
crossref_primary_10_3390_ijgi9100560
crossref_primary_10_1109_ACCESS_2024_3354976
crossref_primary_10_1109_TGRS_2024_3460081
crossref_primary_10_1007_s10994_025_06811_3
crossref_primary_10_1145_3707459
crossref_primary_10_1016_j_ecolmodel_2025_111164
crossref_primary_10_1016_j_asr_2024_03_053
crossref_primary_10_3390_rs12244152
crossref_primary_10_3390_s22239218
crossref_primary_10_3390_sym17060929
crossref_primary_10_1016_j_patcog_2025_111547
crossref_primary_10_1109_JSTARS_2025_3590590
crossref_primary_10_1109_TIP_2024_3414122
crossref_primary_10_1007_s12518_025_00639_1
crossref_primary_10_1080_10095020_2021_1994358
crossref_primary_10_1016_j_image_2025_117407
crossref_primary_10_3390_electronics13234694
crossref_primary_10_1117_1_JEI_32_4_043004
crossref_primary_10_1016_j_dib_2023_109724
crossref_primary_10_3390_rs13152908
crossref_primary_10_1109_TPAMI_2025_3552309
crossref_primary_10_3390_rs15204987
crossref_primary_10_1109_JSTARS_2022_3153287
crossref_primary_10_1109_LSP_2025_3528362
crossref_primary_10_1016_j_jvcir_2024_104280
crossref_primary_10_1080_19479832_2023_2199005
crossref_primary_10_1016_j_jag_2024_103698
crossref_primary_10_1080_10106049_2025_2521828
crossref_primary_10_1109_ACCESS_2025_3564834
crossref_primary_10_1038_s41597_022_01775_8
crossref_primary_10_1007_s11263_023_01876_w
crossref_primary_10_3390_rs13204172
crossref_primary_10_1109_LSP_2025_3544969
crossref_primary_10_1017_eds_2023_39
crossref_primary_10_1038_s43247_023_01146_0
crossref_primary_10_1145_3673231
crossref_primary_10_3390_rs15153907
crossref_primary_10_1016_j_egyr_2024_02_001
crossref_primary_10_1080_2150704X_2023_2167057
crossref_primary_10_1109_JSTARS_2021_3070368
crossref_primary_10_3390_data6020017
crossref_primary_10_1016_j_jestch_2025_101969
crossref_primary_10_1016_j_neunet_2024_107083
crossref_primary_10_1109_JSTARS_2021_3103216
crossref_primary_10_1038_s41598_023_28588_y
crossref_primary_10_1109_TAI_2024_3423813
crossref_primary_10_1109_TGRS_2019_2951820
crossref_primary_10_1109_JSTARS_2022_3221788
crossref_primary_10_1007_s11227_025_07392_7
crossref_primary_10_3390_rs14143317
crossref_primary_10_1109_TMM_2024_3521785
crossref_primary_10_1007_s11119_021_09806_x
crossref_primary_10_1109_LGRS_2024_3402681
crossref_primary_10_3390_rs17132172
crossref_primary_10_1016_j_neunet_2021_08_034
crossref_primary_10_1109_TGRS_2024_3407824
crossref_primary_10_3390_rs14174380
crossref_primary_10_1049_ipr2_70189
crossref_primary_10_1109_TGRS_2024_3466896
crossref_primary_10_1109_TGRS_2021_3102629
crossref_primary_10_3390_rs17020308
crossref_primary_10_1007_s13735_025_00357_9
crossref_primary_10_3390_rs16163107
crossref_primary_10_1016_j_knosys_2025_114316
crossref_primary_10_3390_s24113624
crossref_primary_10_1016_j_displa_2024_102862
crossref_primary_10_3390_s19225012
crossref_primary_10_1109_TC_2021_3061086
crossref_primary_10_3390_app10103456
crossref_primary_10_1080_01431161_2022_2143734
crossref_primary_10_1109_JSTARS_2020_3013091
crossref_primary_10_32604_cmc_2022_026880
crossref_primary_10_3389_frai_2025_1580973
crossref_primary_10_1080_13658816_2022_2087223
crossref_primary_10_1109_JSTARS_2023_3276781
crossref_primary_10_1111_exsy_13136
crossref_primary_10_1016_j_jag_2022_102678
crossref_primary_10_1109_ACCESS_2020_3009412
crossref_primary_10_1016_j_fmre_2023_10_014
crossref_primary_10_1016_j_ijdrr_2020_102030
crossref_primary_10_1109_LGRS_2020_2969491
crossref_primary_10_1109_TGRS_2022_3216831
crossref_primary_10_3390_app14167235
crossref_primary_10_3390_info15060293
crossref_primary_10_1109_ACCESS_2025_3556746
crossref_primary_10_1109_TNNLS_2025_3547882
crossref_primary_10_1007_s00530_025_01707_7
crossref_primary_10_3390_rs14194837
crossref_primary_10_1007_s11042_023_17612_y
crossref_primary_10_1007_s11760_025_04603_9
crossref_primary_10_1016_j_isprsjprs_2022_11_012
crossref_primary_10_1016_j_isprsjprs_2022_11_011
crossref_primary_10_1016_j_patcog_2023_110096
crossref_primary_10_3390_rs13214201
crossref_primary_10_1080_19475705_2023_2196370
crossref_primary_10_1016_j_knosys_2025_113011
crossref_primary_10_3390_electronics14030418
crossref_primary_10_1080_17538947_2025_2522394
crossref_primary_10_1109_ACCESS_2022_3221123
crossref_primary_10_3390_ijgi12010014
crossref_primary_10_1109_LGRS_2022_3232224
crossref_primary_10_1007_s10489_024_05758_7
crossref_primary_10_1109_TCSVT_2025_3541960
crossref_primary_10_1109_TIP_2025_3587587
crossref_primary_10_3390_rs13020300
crossref_primary_10_1109_TMM_2023_3311646
crossref_primary_10_1080_01431161_2024_2358544
crossref_primary_10_1016_j_ecolind_2023_110904
crossref_primary_10_1109_TGRS_2024_3352908
crossref_primary_10_1017_eds_2025_10013
crossref_primary_10_3390_rs14143361
crossref_primary_10_1080_13658816_2024_2387200
crossref_primary_10_1109_TGRS_2025_3572824
crossref_primary_10_1016_j_rse_2022_113076
crossref_primary_10_1016_j_srs_2024_100183
crossref_primary_10_1016_j_knosys_2021_107807
crossref_primary_10_3390_data8100153
crossref_primary_10_1109_TGRS_2021_3051641
crossref_primary_10_1080_10106049_2023_2242693
crossref_primary_10_1109_TMM_2022_3215310
crossref_primary_10_1109_JSTARS_2023_3316306
crossref_primary_10_3233_SJI_190555
crossref_primary_10_1109_TGRS_2021_3116147
crossref_primary_10_1016_j_future_2024_107524
crossref_primary_10_1017_dap_2024_87
crossref_primary_10_1177_14780771251352965
crossref_primary_10_1016_j_cageo_2024_105676
crossref_primary_10_3390_rs12203358
crossref_primary_10_1016_j_isprsjprs_2025_08_029
crossref_primary_10_1109_TIP_2024_3362062
crossref_primary_10_1109_TIP_2025_3553781
crossref_primary_10_1080_01431161_2023_2204200
crossref_primary_10_1016_j_cities_2024_105021
crossref_primary_10_1109_LGRS_2022_3211861
crossref_primary_10_1109_JSTARS_2024_3368018
crossref_primary_10_1109_JSTARS_2024_3408154
crossref_primary_10_3390_land11070993
crossref_primary_10_1109_LGRS_2021_3116601
crossref_primary_10_1109_ACCESS_2023_3320639
crossref_primary_10_1016_j_inffus_2025_103334
crossref_primary_10_3390_rs13214351
crossref_primary_10_3390_rs15133408
crossref_primary_10_1016_j_future_2025_107715
crossref_primary_10_1109_TGRS_2025_3590697
crossref_primary_10_3390_app15179785
crossref_primary_10_1109_LSP_2025_3588803
crossref_primary_10_1007_s11042_025_20919_7
crossref_primary_10_1007_s12040_024_02298_z
crossref_primary_10_3390_rs15143575
crossref_primary_10_1088_1757_899X_1022_1_012120
crossref_primary_10_1016_j_isprsjprs_2024_06_001
crossref_primary_10_1109_MGRS_2023_3281651
crossref_primary_10_1016_j_wasman_2024_08_003
crossref_primary_10_1016_j_tree_2024_11_013
crossref_primary_10_1109_ACCESS_2020_3020591
crossref_primary_10_1109_TIP_2022_3219237
crossref_primary_10_3390_rs12020213
crossref_primary_10_1109_LGRS_2021_3134020
crossref_primary_10_1109_TGRS_2025_3556335
crossref_primary_10_1016_j_knosys_2025_114475
crossref_primary_10_1016_j_jvcir_2025_104550
crossref_primary_10_1016_j_rsase_2021_100655
crossref_primary_10_1016_j_cageo_2022_105251
crossref_primary_10_1109_TCSVT_2024_3432753
crossref_primary_10_1016_j_artint_2023_103875
crossref_primary_10_1016_j_patcog_2024_111300
crossref_primary_10_1002_cav_2071
crossref_primary_10_1109_JSTARS_2020_2995711
crossref_primary_10_1007_s12524_024_01869_3
crossref_primary_10_1016_j_neucom_2021_02_026
crossref_primary_10_1016_j_srs_2025_100277
crossref_primary_10_1109_ACCESS_2022_3184328
crossref_primary_10_3390_e27030301
crossref_primary_10_1016_j_neunet_2025_107785
crossref_primary_10_1109_JAS_2025_125210
crossref_primary_10_1109_TIP_2025_3573498
crossref_primary_10_1007_s12524_024_02115_6
crossref_primary_10_1109_JSTARS_2024_3445506
crossref_primary_10_4018_JDM_306188
crossref_primary_10_1016_j_compeleceng_2024_109270
crossref_primary_10_1109_TGRS_2024_3417421
crossref_primary_10_1186_s40537_023_00772_x
crossref_primary_10_1007_s11063_022_11072_5
crossref_primary_10_1016_j_procs_2023_01_124
crossref_primary_10_1109_TGRS_2024_3409624
crossref_primary_10_1109_LGRS_2020_2990284
crossref_primary_10_1109_LSP_2025_3582567
crossref_primary_10_3390_rs14236017
crossref_primary_10_1016_j_atech_2023_100367
crossref_primary_10_3390_rs17142481
crossref_primary_10_1016_j_jag_2025_104368
crossref_primary_10_1109_TGRS_2025_3526725
crossref_primary_10_1016_j_compag_2024_109042
crossref_primary_10_1109_JSTARS_2024_3409417
crossref_primary_10_1111_mice_70033
crossref_primary_10_1016_j_asr_2025_08_070
crossref_primary_10_1145_3712700
crossref_primary_10_1016_j_neucom_2023_126433
crossref_primary_10_1109_ACCESS_2020_3048083
crossref_primary_10_1109_JSTARS_2022_3179026
crossref_primary_10_1016_j_eswa_2025_129643
crossref_primary_10_1109_ACCESS_2023_3327339
crossref_primary_10_1109_TCSVT_2022_3188462
crossref_primary_10_1109_JAS_2025_125324
crossref_primary_10_1109_JSTARS_2024_3424954
crossref_primary_10_1145_3718362
crossref_primary_10_1109_ACCESS_2024_3458403
crossref_primary_10_3390_rs13214255
crossref_primary_10_3390_data8120185
crossref_primary_10_3390_su141912465
crossref_primary_10_1049_cvi2_12231
crossref_primary_10_1109_ACCESS_2024_3479691
crossref_primary_10_1109_MGRS_2024_3403423
crossref_primary_10_1109_TGRS_2024_3449154
crossref_primary_10_1109_TGRS_2023_3276853
crossref_primary_10_1007_s11263_025_02412_8
crossref_primary_10_1016_j_isprsjprs_2023_05_005
crossref_primary_10_1016_j_jag_2021_102577
crossref_primary_10_3390_rs12203398
crossref_primary_10_1109_TCAD_2024_3523424
crossref_primary_10_3390_rs16030533
crossref_primary_10_1016_j_isprsjprs_2020_01_028
crossref_primary_10_1016_j_inffus_2025_103140
crossref_primary_10_1016_j_inffus_2025_103382
crossref_primary_10_1016_j_patcog_2024_110559
crossref_primary_10_1016_j_isprsjprs_2023_06_016
crossref_primary_10_3390_rs12203276
crossref_primary_10_1007_s10708_024_11214_3
crossref_primary_10_1038_s41598_025_87405_w
crossref_primary_10_1109_TGRS_2021_3097938
crossref_primary_10_1016_j_patcog_2023_110142
crossref_primary_10_1016_j_cageo_2022_105042
crossref_primary_10_3390_app142310776
crossref_primary_10_1016_j_rsase_2022_100703
crossref_primary_10_1109_JSTARS_2023_3316733
crossref_primary_10_1007_s41748_024_00499_6
crossref_primary_10_1016_j_cviu_2024_104254
crossref_primary_10_1109_TMC_2025_3545429
crossref_primary_10_1016_j_jag_2021_102568
crossref_primary_10_1016_j_compag_2024_109185
crossref_primary_10_1007_s00521_025_11314_2
crossref_primary_10_1007_s13157_022_01651_6
crossref_primary_10_1007_s13735_024_00333_9
crossref_primary_10_1140_epjqt_s40507_025_00369_8
crossref_primary_10_1007_s11263_023_01904_9
crossref_primary_10_1016_j_eswa_2025_128577
crossref_primary_10_1109_ACCESS_2020_3028030
crossref_primary_10_1109_LGRS_2021_3096244
crossref_primary_10_1109_TGRS_2023_3282048
crossref_primary_10_3390_rs14030782
crossref_primary_10_1109_ACCESS_2022_3172939
crossref_primary_10_1109_JSTARS_2024_3421622
crossref_primary_10_1109_LGRS_2024_3365509
crossref_primary_10_3390_app14135920
crossref_primary_10_1109_TIP_2024_3374222
crossref_primary_10_3390_rs16091501
crossref_primary_10_3390_rs13224520
crossref_primary_10_1016_j_isprsjprs_2024_08_005
crossref_primary_10_1016_j_neunet_2024_106536
crossref_primary_10_1016_j_neunet_2024_106414
crossref_primary_10_1109_JSTARS_2023_3269852
crossref_primary_10_1109_TIP_2023_3306916
crossref_primary_10_1109_TMC_2024_3454634
crossref_primary_10_1016_j_asoc_2023_110555
crossref_primary_10_1109_JSTARS_2021_3134785
crossref_primary_10_1007_s00521_025_11488_9
crossref_primary_10_1016_j_cag_2024_01_012
crossref_primary_10_1016_j_jag_2022_103130
crossref_primary_10_1016_j_neucom_2025_130056
crossref_primary_10_1109_TCSVT_2023_3294332
crossref_primary_10_3390_jimaging10010023
crossref_primary_10_1117_1_JRS_16_044510
crossref_primary_10_3390_rs15082027
crossref_primary_10_32604_rig_2023_047627
crossref_primary_10_1109_JSTARS_2020_3005403
crossref_primary_10_1145_3675170
crossref_primary_10_1088_1748_9326_ad948c
crossref_primary_10_1080_03036758_2022_2059767
crossref_primary_10_1088_2515_7620_ad549f
crossref_primary_10_1016_j_cviu_2021_103279
crossref_primary_10_1016_j_knosys_2024_111726
crossref_primary_10_1016_j_knosys_2023_110358
crossref_primary_10_3390_rs15205050
crossref_primary_10_1016_j_neucom_2025_131253
crossref_primary_10_1109_LGRS_2022_3173419
crossref_primary_10_1007_s11263_024_02204_6
crossref_primary_10_1109_ACCESS_2021_3061477
crossref_primary_10_1016_j_patrec_2025_03_010
crossref_primary_10_3390_a16110510
crossref_primary_10_1109_JSTARS_2024_3427392
crossref_primary_10_1016_j_jag_2024_103938
crossref_primary_10_1016_j_imavis_2024_105171
crossref_primary_10_1109_TC_2025_3566864
crossref_primary_10_3390_info16020081
crossref_primary_10_1007_s11263_025_02354_1
crossref_primary_10_1109_JSTARS_2024_3490775
crossref_primary_10_3390_rs15153774
crossref_primary_10_26599_BDMA_2024_9020087
crossref_primary_10_1016_j_neucom_2025_131003
crossref_primary_10_1080_13658816_2023_2264921
crossref_primary_10_3390_rs15061696
crossref_primary_10_1016_j_patrec_2025_03_025
crossref_primary_10_3390_rs17010162
crossref_primary_10_1109_TGRS_2024_3469568
crossref_primary_10_3390_rs16030443
crossref_primary_10_1109_JSTARS_2025_3568398
crossref_primary_10_1109_TGRS_2021_3091482
crossref_primary_10_3390_su151813441
crossref_primary_10_1109_TGRS_2024_3354031
crossref_primary_10_3390_app13021173
crossref_primary_10_1109_JSTARS_2022_3197937
crossref_primary_10_3390_land12081573
crossref_primary_10_1007_s44196_025_00853_0
crossref_primary_10_1016_j_neucom_2025_130028
crossref_primary_10_1109_TGRS_2024_3516538
crossref_primary_10_1109_TPAMI_2024_3369699
crossref_primary_10_1007_s11263_024_02172_x
crossref_primary_10_1109_ACCESS_2020_3011127
crossref_primary_10_1109_TGRS_2025_3564591
crossref_primary_10_1109_JSTARS_2025_3595365
crossref_primary_10_1109_JSTARS_2024_3418891
crossref_primary_10_1016_j_asr_2023_05_007
crossref_primary_10_1016_j_rsase_2025_101505
crossref_primary_10_1080_01490419_2025_2474481
crossref_primary_10_3390_land11101692
crossref_primary_10_1109_TGRS_2020_3007029
crossref_primary_10_3390_s23218966
crossref_primary_10_1016_j_cageo_2020_104557
crossref_primary_10_1109_TMM_2024_3379896
crossref_primary_10_1111_aje_13300
crossref_primary_10_1016_j_inffus_2022_06_003
crossref_primary_10_1016_j_neucom_2024_127530
crossref_primary_10_1016_j_patcog_2025_112074
crossref_primary_10_1109_LGRS_2020_3038420
crossref_primary_10_1155_2021_9921095
crossref_primary_10_1002_esp_5985
crossref_primary_10_1016_j_patcog_2024_110861
crossref_primary_10_1049_ipr2_12540
crossref_primary_10_1134_S1028334X23600081
crossref_primary_10_1016_j_scico_2024_103218
crossref_primary_10_3390_rs15174156
crossref_primary_10_3390_sym17050796
crossref_primary_10_1109_TGRS_2023_3270204
crossref_primary_10_1111_exsy_70082
crossref_primary_10_1109_JSTARS_2022_3202246
crossref_primary_10_1109_TPAMI_2023_3272697
crossref_primary_10_1109_LGRS_2020_3014108
crossref_primary_10_1371_journal_pone_0309997
crossref_primary_10_3390_rs16203853
crossref_primary_10_3390_rs11242916
crossref_primary_10_1007_s11263_023_01891_x
crossref_primary_10_1080_01431161_2020_1849852
crossref_primary_10_1186_s12302_020_00397_4
crossref_primary_10_3390_s23083805
crossref_primary_10_1007_s41060_024_00713_8
crossref_primary_10_1007_s10661_024_12719_7
crossref_primary_10_1007_s12524_024_02100_z
crossref_primary_10_1109_TGRS_2024_3504742
crossref_primary_10_1016_j_isprsjprs_2025_02_024
crossref_primary_10_1007_s00138_024_01620_5
crossref_primary_10_1080_13658816_2023_2191256
crossref_primary_10_1016_j_rsase_2024_101223
crossref_primary_10_3390_rs13071243
crossref_primary_10_1109_JSTARS_2020_3027954
crossref_primary_10_1109_TMM_2023_3282492
crossref_primary_10_1109_TGRS_2023_3267185
crossref_primary_10_1016_j_rsase_2025_101727
crossref_primary_10_1109_JSTARS_2022_3226563
crossref_primary_10_1007_s11356_021_17177_z
crossref_primary_10_1109_TIP_2024_3468884
crossref_primary_10_1007_s13735_020_00200_3
crossref_primary_10_1016_j_cviu_2025_104493
crossref_primary_10_1142_S021946782550038X
crossref_primary_10_1109_LGRS_2021_3108014
crossref_primary_10_1109_TIFS_2025_3599257
crossref_primary_10_1016_j_eswa_2025_129139
crossref_primary_10_3390_rs17121961
crossref_primary_10_1016_j_tust_2024_105829
crossref_primary_10_1016_j_patcog_2024_110960
crossref_primary_10_1145_3655030
crossref_primary_10_3390_app12189176
crossref_primary_10_1109_LGRS_2022_3161360
crossref_primary_10_3390_s25072231
crossref_primary_10_1007_s11042_023_16291_z
crossref_primary_10_3390_ani13203168
crossref_primary_10_3390_rs17010086
crossref_primary_10_1007_s00371_025_04080_8
crossref_primary_10_3390_s20041226
crossref_primary_10_1016_j_displa_2025_103217
crossref_primary_10_1007_s42064_024_0249_x
crossref_primary_10_1109_TIFS_2022_3169922
crossref_primary_10_1111_tgis_13236
crossref_primary_10_3390_s23188010
crossref_primary_10_1051_bioconf_20249700007
crossref_primary_10_1109_JSTARS_2025_3542194
crossref_primary_10_3390_app15095196
crossref_primary_10_1007_s41324_021_00425_2
crossref_primary_10_1109_TGRS_2024_3520879
crossref_primary_10_1080_01431161_2023_2295835
crossref_primary_10_1088_1742_6596_2091_1_012060
crossref_primary_10_1080_01431161_2025_2561125
crossref_primary_10_1088_1755_1315_704_1_012048
crossref_primary_10_1007_s13201_023_02003_3
crossref_primary_10_1007_s11263_025_02419_1
crossref_primary_10_1109_JSTARS_2022_3164771
crossref_primary_10_1109_LGRS_2022_3228518
crossref_primary_10_1109_TGRS_2024_3445887
crossref_primary_10_1016_j_asoc_2023_111124
crossref_primary_10_3390_rs13010078
crossref_primary_10_1016_j_jcp_2020_109676
crossref_primary_10_1080_19479832_2025_2476544
crossref_primary_10_1016_j_neucom_2024_128421
crossref_primary_10_1109_TGRS_2024_3509721
crossref_primary_10_1109_TGRS_2025_3552642
crossref_primary_10_1109_TCSVT_2025_3544680
crossref_primary_10_1145_3769084
crossref_primary_10_3390_s24248028
crossref_primary_10_1080_22797254_2024_2352386
crossref_primary_10_1109_JSTARS_2024_3435081
crossref_primary_10_1109_LGRS_2025_3587580
crossref_primary_10_1016_j_patcog_2023_109652
crossref_primary_10_3390_rs14102494
crossref_primary_10_1109_LGRS_2021_3069799
crossref_primary_10_1002_cpe_7733
crossref_primary_10_1080_20964471_2025_2512685
crossref_primary_10_1016_j_neucom_2025_130574
crossref_primary_10_1016_j_neunet_2025_107173
crossref_primary_10_1016_j_jag_2023_103591
crossref_primary_10_1109_TGRS_2021_3136641
crossref_primary_10_1109_TGRS_2024_3390838
crossref_primary_10_1017_eds_2025_19
crossref_primary_10_1109_TMM_2024_3355650
crossref_primary_10_1109_JSTARS_2021_3126082
crossref_primary_10_1007_s12517_022_09947_x
crossref_primary_10_1016_j_neucom_2025_129464
crossref_primary_10_1007_s10489_024_06088_4
crossref_primary_10_1016_j_artint_2025_104417
crossref_primary_10_18273_revbol_v46n1_2024004
crossref_primary_10_3390_rs15092343
crossref_primary_10_3390_rs14010053
crossref_primary_10_3390_rs14092237
crossref_primary_10_1109_TIM_2024_3485403
crossref_primary_10_3390_electronics14010026
crossref_primary_10_3390_app132011235
crossref_primary_10_32628_IJSRSET218258
crossref_primary_10_3390_rs16050818
crossref_primary_10_1109_LGRS_2024_3375370
crossref_primary_10_1007_s11227_024_06482_2
crossref_primary_10_3390_land11081212
crossref_primary_10_1109_LGRS_2022_3141465
crossref_primary_10_1038_s41598_025_11864_4
crossref_primary_10_1109_TGRS_2025_3572360
crossref_primary_10_1007_s00530_025_01878_3
crossref_primary_10_3390_rs17111901
crossref_primary_10_1109_TNNLS_2024_3443394
crossref_primary_10_1016_j_isprsjprs_2025_05_002
crossref_primary_10_3389_fpls_2022_839327
crossref_primary_10_1016_j_knosys_2024_112303
crossref_primary_10_3390_data10050067
crossref_primary_10_1109_TCSVT_2024_3435003
crossref_primary_10_1109_ACCESS_2021_3122569
crossref_primary_10_1007_s10994_025_06745_w
crossref_primary_10_1016_j_ecoinf_2025_103078
crossref_primary_10_1016_j_knosys_2024_111458
crossref_primary_10_1109_JSTARS_2022_3204888
crossref_primary_10_1109_TSC_2024_3478768
crossref_primary_10_1109_TCSVT_2024_3508768
crossref_primary_10_1016_j_knosys_2025_113819
crossref_primary_10_1016_j_jksuci_2020_09_005
crossref_primary_10_1109_TPAMI_2024_3460180
crossref_primary_10_1016_j_knosys_2025_112974
crossref_primary_10_1007_s10489_024_05818_y
crossref_primary_10_1007_s12665_025_12317_x
crossref_primary_10_3390_rs13142709
crossref_primary_10_1109_TMM_2023_3291588
crossref_primary_10_3390_rs14153776
crossref_primary_10_1080_2150704X_2020_1821120
crossref_primary_10_1007_s00530_024_01600_9
crossref_primary_10_1109_TGRS_2022_3188913
crossref_primary_10_1007_s11263_025_02451_1
crossref_primary_10_1016_j_measen_2022_100437
crossref_primary_10_1038_s41598_025_85838_x
crossref_primary_10_1016_j_isprsjprs_2020_12_010
crossref_primary_10_1109_JSTARS_2022_3142898
crossref_primary_10_1080_2150704X_2021_1918789
crossref_primary_10_1016_j_neucom_2025_130774
crossref_primary_10_3390_rs16173210
crossref_primary_10_1109_JSTARS_2023_3296505
crossref_primary_10_3390_rs13010039
crossref_primary_10_1016_j_isprsjprs_2024_02_005
crossref_primary_10_1007_s11263_025_02508_1
crossref_primary_10_1016_j_patcog_2025_112224
crossref_primary_10_3390_rs12244135
crossref_primary_10_1109_TCSVT_2024_3424566
crossref_primary_10_1109_TGRS_2022_3231215
crossref_primary_10_1109_JSTARS_2022_3225665
crossref_primary_10_1016_j_neucom_2024_128117
crossref_primary_10_1016_j_engappai_2024_107892
crossref_primary_10_1007_s13735_023_00286_5
crossref_primary_10_1016_j_neunet_2024_106980
crossref_primary_10_3390_rs14163995
crossref_primary_10_1007_s13748_024_00313_4
crossref_primary_10_1126_science_abe8628
crossref_primary_10_5194_essd_15_317_2023
crossref_primary_10_1109_LGRS_2023_3245095
crossref_primary_10_1109_LGRS_2023_3251652
crossref_primary_10_1109_TGRS_2021_3126428
crossref_primary_10_1007_s11356_024_33296_9
crossref_primary_10_1109_ACCESS_2021_3049431
crossref_primary_10_3390_rs15010157
crossref_primary_10_1002_sat_1482
crossref_primary_10_1007_s11263_025_02450_2
crossref_primary_10_3390_app12105106
crossref_primary_10_3390_rs16010003
crossref_primary_10_3389_fenvs_2022_1010630
crossref_primary_10_1109_TCSVT_2024_3489024
crossref_primary_10_1109_ACCESS_2025_3538617
crossref_primary_10_1109_LGRS_2022_3174277
crossref_primary_10_1016_j_patcog_2025_112012
crossref_primary_10_3390_app12126000
crossref_primary_10_1080_08839514_2022_2137650
crossref_primary_10_3390_sym14061097
crossref_primary_10_1109_TGRS_2025_3585342
crossref_primary_10_1016_j_jcp_2023_112155
crossref_primary_10_32362_2500_316X_2022_10_5_28_37
crossref_primary_10_1109_ACCESS_2020_3012130
crossref_primary_10_1109_TMM_2024_3521702
crossref_primary_10_3390_s21238083
crossref_primary_10_1109_JSTARS_2025_3566457
crossref_primary_10_1016_j_procs_2023_08_190
crossref_primary_10_1080_2150704X_2022_2136019
crossref_primary_10_1109_TMM_2024_3413318
crossref_primary_10_1080_0952813X_2022_2092558
crossref_primary_10_1109_TWC_2024_3427377
crossref_primary_10_3390_electronics14183680
crossref_primary_10_3390_s20092733
crossref_primary_10_1109_TNNLS_2024_3443088
crossref_primary_10_1016_j_knosys_2025_113620
crossref_primary_10_1080_22797254_2025_2512531
crossref_primary_10_1109_JSTARS_2024_3369950
crossref_primary_10_1016_j_isprsjprs_2023_01_014
crossref_primary_10_1109_JSTARS_2025_3555567
crossref_primary_10_1007_s13735_023_00287_4
crossref_primary_10_1109_TCSVT_2023_3245584
crossref_primary_10_1016_j_imavis_2023_104894
crossref_primary_10_3390_rs16213946
crossref_primary_10_1109_JSTARS_2023_3271312
Cites_doi 10.1109/ICIP.2018.8451836
10.1109/LGRS.2015.2499239
10.1007/s11263-015-0816-y
10.3390/rs10050719
10.1109/JSTARS.2017.2755672
10.1007/978-3-319-46493-0_38
10.1117/1.JRS.10.035004
10.1162/neco.1989.1.4.541
10.1109/LGRS.2015.2483680
10.1145/1869790.1869829
10.1007/978-1-4612-6333-3
10.1109/CVPR.2015.7298594
10.1145/2964284.2984063
10.1080/01431161.2011.608740
10.1109/CVPRW.2016.90
10.1109/TGRS.2017.2685945
10.1109/CVPRW.2015.7301382
10.1016/j.isprsjprs.2018.01.004
10.1109/MCG.2016.69
10.1145/2820783.2820816
10.1109/CVPR.2016.308
10.1016/j.patcog.2016.07.001
10.1109/IGARSS.2018.8519248
10.1145/3065386
10.1109/JPROC.2017.2675998
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/JSTARS.2019.2918242
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 2226
ExternalDocumentID 10_1109_JSTARS_2019_2918242
8736785
Genre orig-research
GrantInformation_xml – fundername: Nvidia
  grantid: xxx
  funderid: 10.13039/100007065
– fundername: BMBF Project DeFuseNN
  grantid: 01IW17002
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
RIG
ID FETCH-LOGICAL-c297t-c560d2cb95ad37a6710a63883e361c3b2cc1a64a9561d7b213665e0ad46c0bae3
IEDL.DBID RIE
ISICitedReferencesCount 781
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000480354800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Jul 25 10:41:03 EDT 2025
Sat Nov 29 04:51:03 EST 2025
Tue Nov 18 20:50:30 EST 2025
Wed Aug 27 02:50:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-c560d2cb95ad37a6710a63883e361c3b2cc1a64a9561d7b213665e0ad46c0bae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6473-3348
0000-0001-8454-4301
PQID 2270204675
PQPubID 75722
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_JSTARS_2019_2918242
ieee_primary_8736785
crossref_primary_10_1109_JSTARS_2019_2918242
proquest_journals_2270204675
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
castelluccio (ref6) 2015
ref37
ref15
ref36
ref30
ref33
ref11
ref32
ref10
bischke (ref2) 0
xia (ref28) 0
ref1
ref17
ref19
lin (ref14) 2013
ma (ref16) 2016; 10
bischke (ref4) 0
ahmad (ref31) 0
ref26
ref25
ref20
ref22
(ref38) 2012
ref21
ref27
szegedy (ref24) 0
ni (ref18) 2015
ref29
ref8
simonyan (ref23) 2014
ref7
ref9
bischke (ref5) 0
ref3
References_xml – ident: ref33
  doi: 10.1109/ICIP.2018.8451836
– ident: ref17
  doi: 10.1109/LGRS.2015.2499239
– ident: ref21
  doi: 10.1007/s11263-015-0816-y
– ident: ref32
  doi: 10.3390/rs10050719
– ident: ref35
  doi: 10.1109/JSTARS.2017.2755672
– ident: ref10
  doi: 10.1007/978-3-319-46493-0_38
– ident: ref30
  doi: 10.1117/1.JRS.10.035004
– ident: ref13
  doi: 10.1162/neco.1989.1.4.541
– ident: ref15
  doi: 10.1109/LGRS.2015.2483680
– ident: ref29
  doi: 10.1145/1869790.1869829
– ident: ref8
  doi: 10.1007/978-1-4612-6333-3
– ident: ref25
  doi: 10.1109/CVPR.2015.7298594
– year: 2013
  ident: ref14
  article-title: Network in network
– ident: ref3
  doi: 10.1145/2964284.2984063
– ident: ref22
  doi: 10.1080/01431161.2011.608740
– year: 0
  ident: ref2
  article-title: Detection of flooding events in social multimedia and satellite imagery using deep neural networks
  publication-title: Proc MediaEval
– ident: ref11
  doi: 10.1109/CVPRW.2016.90
– year: 2015
  ident: ref18
  article-title: Large-scale deep learning on the YFCC100M dataset
– ident: ref27
  doi: 10.1109/TGRS.2017.2685945
– ident: ref20
  doi: 10.1109/CVPRW.2015.7301382
– year: 0
  ident: ref4
  article-title: Multi-task learning for segmentation of buildings footprints with deep neural networks
  publication-title: IEEE Int Conf Image Process
– year: 0
  ident: ref24
  article-title: Inception-v4, Inception-ResNet and the impact of residual connections on learning
  publication-title: Proc Thirty-First AAAI Conf Artif Intell
– ident: ref37
  doi: 10.1016/j.isprsjprs.2018.01.004
– year: 0
  ident: ref5
  article-title: The multimedia satellite task: Emergency response for flooding events
  publication-title: Proc MediaEval
– ident: ref36
  doi: 10.1109/MCG.2016.69
– ident: ref1
  doi: 10.1145/2820783.2820816
– year: 2015
  ident: ref6
  article-title: Land use classification in remote sensing images by convolutional neural networks
– year: 2014
  ident: ref23
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref26
  doi: 10.1109/CVPR.2016.308
– ident: ref19
  doi: 10.1016/j.patcog.2016.07.001
– ident: ref34
  doi: 10.1109/IGARSS.2018.8519248
– ident: ref12
  doi: 10.1145/3065386
– ident: ref7
  doi: 10.1109/JPROC.2017.2675998
– year: 0
  ident: ref31
  article-title: CNN and gan based satellite and social media data fusion for disaster detection
  publication-title: Proc MediaEval Workshop Dublin Ireland
– year: 2012
  ident: ref38
– volume: 10
  start-page: 1113
  year: 2016
  ident: ref16
  article-title: Satellite imagery classification based on deep convolution network
  publication-title: World Acad Sci Eng Technol Int J Comput Elect Autom Control Inf Eng
– start-page: 298
  year: 0
  ident: ref28
  article-title: Structural high-resolution satellite image indexing
  publication-title: Proc ISPRS TC VII Symp 100 Years Int Soc Photogrammetry Remote Sens
– ident: ref9
  doi: 10.1109/CVPR.2016.90
SSID ssj0062793
Score 2.693639
Snippet In this paper, we present a patch-based land use and land cover classification approach using Sentinel-2 satellite images. The Sentinel-2 satellite images are...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2217
SubjectTerms Artificial neural networks
Band spectra
Benchmark testing
Benchmarks
Classification
Dataset
Datasets
deep convolutional neural network
Deep learning
Earth
earth observation
Feature extraction
Image classification
Land cover
land cover classification
Land use
land use classification
Machine learning
Neural networks
Remote sensing
satellite image classification
Satellite imagery
satellite images
Satellites
Spaceborne remote sensing
Spatial resolution
Spectral bands
Title EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification
URI https://ieeexplore.ieee.org/document/8736785
https://www.proquest.com/docview/2270204675
Volume 12
WOSCitedRecordID wos000480354800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD6oKPjibYrzRh58tK5N2qTxbd4fZIhu4Fs5Tc9UnJtsVfDfm6TdQBTBtxZOSsl3rsm5ABwi2aDBVfcYKsIgTnMVaLRRa0yyQJXmJjKxHzahOp304UHfzsHRrBaGiHzyGR27R3-XX4zMuzsqa6VKWN2azMO8Uqqq1ZpqXcmVb7Br_REduJYxdYehKNQty-Ltu3uXxqWPubYOdcy_WSE_VuWHLvYG5nL1f7-2Biu1I8naFfLrMEfDDVi68oN6PxuQuWP2-3b3hLVZZ_RBA3aOpbVYJcNhwc6J3ljdWvWRnVpOfXrF8QuzHiy7cQS9CXlC_3Lm0jyZH5_pEos8lpvQu7zonl0H9TCFwHCtysBY16bgJtcJFkKhtJ4FWtlLBQkZGZFzYyKUMbpC10LlPBJSJhRiEUsT5khiCxaGoyFtA5MRCsERue6L2GCUJ7lOOYm-lei-orgJfLq5mak7jbuBF4PMRxyhzipEModIViPShKPZoreq0cbf5A0Hwoy03v8m7E1RzGphnGTc1dyF1iIkO7-v2oVl9-0qC3cPFsrxO-3DovkonyfjA89nXzY2zgA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH9isIldxjZAdIPNhx0JJLZjx7t1fE6UahpF4ma9OK-AgBa1AWn__WwnrTQxIXFLpGcl8u992u8D4BuSDxpCdY-jKk1kUerEoI9aJakKdVG6zMk4bEL3-8XFhfm1ANvzWhgiislntBMe411-NXYP4ahst9DC69b8FSzlUvKsqdaa6V3FdWyx6z0Sk4SmMW2PoSw1u57Ju7_PQiKX2eHGu9SS_2OH4mCVJ9o4mpjDlZf93Ht417qSrNtg_wEWaPQR3hzFUb1_VsGGg_az7uA767L--JFu2T7W3mbVDEcV2ye6Z21z1Uv2w_Pq1R1Obpj3YVkvEJxPKRLGl72Q6MniAM2QWhTRXIPzw4PB3nHSjlNIHDe6Tpx3biruSpNjJTQq71ugl75CkFCZEyV3LkMlMZS6VrrkmVAqpxQrqVxaIol1WByNR7QBTGUoBEfkZiikw6zMS1NwEkMv00NNsgN8trnWtb3Gw8iLWxtjjtTYBhEbELEtIh3Yni-6b1ptPE--GkCYk7b734HNGYq2Fcep5aHqLvU2If_0_1VfYfl4cNqzvZ_9k8_wNnynycndhMV68kBb8No91tfTyZfIc38BGWnRRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EuroSAT%3A+A+Novel+Dataset+and+Deep+Learning+Benchmark+for+Land+Use+and+Land+Cover+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Helber%2C+Patrick&rft.au=Bischke%2C+Benjamin&rft.au=Dengel%2C+Andreas&rft.au=Borth%2C+Damian&rft.date=2019-07-01&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=12&rft.issue=7&rft.spage=2217&rft.epage=2226&rft_id=info:doi/10.1109%2FJSTARS.2019.2918242&rft.externalDocID=8736785
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon