Dynamic multi-objective optimization algorithm based decomposition and preference
Most of the existing dynamic multi-objective evolutionary algorithms (DMOEAs) are effective, which focuses on searching for the approximation of Pareto-optimal front (POF) with well-distributed in handling dynamic multi-objective optimization problems (DMOPs). Nevertheless, in real-world scenarios,...
Uloženo v:
| Vydáno v: | Information sciences Ročník 571; s. 175 - 190 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.09.2021
|
| Témata: | |
| ISSN: | 0020-0255, 1872-6291 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Most of the existing dynamic multi-objective evolutionary algorithms (DMOEAs) are effective, which focuses on searching for the approximation of Pareto-optimal front (POF) with well-distributed in handling dynamic multi-objective optimization problems (DMOPs). Nevertheless, in real-world scenarios, the decision maker (DM) may be only interested in a portion of the corresponding POF (i.e., the region of interest) for different instances, rather than the whole POF. Consequently, a novel DMOEA based decomposition and preference (DACP) is proposed, which incorporates the preference of DM into the dynamic search process and tracks a subset of Pareto-optimal set (POS) approximation with respect to the region of interest (ROI). Due to the presence of dynamics, the ROI, which is defined in which DM gives both the preference point and the neighborhood size, may be changing with time-varying DMOPs. Consequently, our algorithm moves the well-distributed reference points, which are located in the neighborhood range, to around the preference point to lead the evolution of the whole population. When a change occurs, a novel strategy is performed for responding to the current change. Particularly, the population will be reinitialized according to a promising direction obtained by letting a few solutions evolve independently for a short time. Comprehensive experiments show that this approach is very competitivecompared with state-of-the-art methods. |
|---|---|
| AbstractList | Most of the existing dynamic multi-objective evolutionary algorithms (DMOEAs) are effective, which focuses on searching for the approximation of Pareto-optimal front (POF) with well-distributed in handling dynamic multi-objective optimization problems (DMOPs). Nevertheless, in real-world scenarios, the decision maker (DM) may be only interested in a portion of the corresponding POF (i.e., the region of interest) for different instances, rather than the whole POF. Consequently, a novel DMOEA based decomposition and preference (DACP) is proposed, which incorporates the preference of DM into the dynamic search process and tracks a subset of Pareto-optimal set (POS) approximation with respect to the region of interest (ROI). Due to the presence of dynamics, the ROI, which is defined in which DM gives both the preference point and the neighborhood size, may be changing with time-varying DMOPs. Consequently, our algorithm moves the well-distributed reference points, which are located in the neighborhood range, to around the preference point to lead the evolution of the whole population. When a change occurs, a novel strategy is performed for responding to the current change. Particularly, the population will be reinitialized according to a promising direction obtained by letting a few solutions evolve independently for a short time. Comprehensive experiments show that this approach is very competitivecompared with state-of-the-art methods. |
| Author | Yang, Shengxiang Zou, Juan Hu, Yaru Zheng, Jinhua Jiang, Shouyong |
| Author_xml | – sequence: 1 givenname: Yaru surname: Hu fullname: Hu, Yaru email: huyaru1199@gmail.com organization: The Department of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China – sequence: 2 givenname: Jinhua surname: Zheng fullname: Zheng, Jinhua email: jhzheng@xtu.edu.cn organization: Key Laboratory of Intelligent Computing and Information Processing (Ministry of Education), Xiangtan University, Xiangtan, Hunan 411105, China – sequence: 3 givenname: Juan surname: Zou fullname: Zou, Juan email: zoujuan@xtu.edu.cn organization: Key Laboratory of Intelligent Computing and Information Processing (Ministry of Education), Xiangtan University, Xiangtan, Hunan 411105, China – sequence: 4 givenname: Shouyong surname: Jiang fullname: Jiang, Shouyong email: math4neu@gmail.com organization: School of Computer Science, University of Lincoln, Lincoln LN6 7TS, UK – sequence: 5 givenname: Shengxiang surname: Yang fullname: Yang, Shengxiang email: syang@dmu.ac.uk organization: School of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, UK |
| BookMark | eNp9kM1KAzEQgINUsK0-gLd9gV0n6WZ_8CRVq1AQQc8hm2R1lt3NksRCfXpT68lDTzPD8M3PtyCz0Y6GkGsKGQVa3HQZjj5jwGgGeQacn5E5rUqWFqymMzIHYJAC4_yCLLzvACAvi2JOXu_3oxxQJcNXHzC1TWdUwJ1J7BRwwG8Z0I6J7D-sw_A5JI30RifaKDtM1uOxO-pkcqY1zozKXJLzVvbeXP3FJXl_fHhbP6Xbl83z-m6bKlaXIVV5U8pVWVBQldIFpbGsjVRQKMgrDVDzWJuG8ZiryugaFNOtrLluaKv5aknK41zlrPdxvVAYfs8NTmIvKIiDGdGJaEYczAjIRTQTSfqPnBwO0u1PMrdHxsSXdmic8AoP72p00ZjQFk_QP4SigNw |
| CitedBy_id | crossref_primary_10_1002_oca_3095 crossref_primary_10_1016_j_eswa_2024_125765 crossref_primary_10_3390_app13084795 crossref_primary_10_1016_j_swevo_2023_101461 crossref_primary_10_1016_j_ins_2023_119256 crossref_primary_10_1016_j_ins_2022_05_123 crossref_primary_10_1145_3524495 crossref_primary_10_1016_j_ins_2023_03_142 crossref_primary_10_1016_j_tre_2025_104232 crossref_primary_10_3390_s23083951 crossref_primary_10_1016_j_ins_2023_04_006 crossref_primary_10_1109_TCC_2024_3450858 crossref_primary_10_1109_TEVC_2023_3290485 crossref_primary_10_1016_j_ins_2022_09_022 crossref_primary_10_1016_j_asoc_2024_111398 crossref_primary_10_1016_j_asoc_2023_110333 crossref_primary_10_1016_j_eswa_2023_120951 crossref_primary_10_1016_j_swevo_2024_101638 crossref_primary_10_1016_j_ins_2023_119495 crossref_primary_10_3390_math10122117 |
| Cites_doi | 10.1109/TFUZZ.2015.2476516 10.1109/TEVC.2016.2574621 10.1109/TEVC.2018.2884133 10.1016/j.ins.2019.09.016 10.1109/TEVC.2008.925798 10.1109/TCBB.2017.2685320 10.1016/j.ejor.2017.03.048 10.1109/TFUZZ.2015.2426314 10.1016/j.asoc.2017.05.008 10.1109/TEVC.2019.2951217 10.1007/978-3-540-70928-2_60 10.1109/TEVC.2007.892759 10.1111/exsy.12364 10.1109/TCYB.2019.2909806 10.1109/TFUZZ.2018.2851508 10.1007/s00500-019-04423-3 10.1109/TEVC.2019.2925722 10.1109/TEVC.2017.2669638 10.1109/TFUZZ.2018.2848261 10.1109/TEVC.2010.2041060 10.1109/TCYB.2016.2602561 10.1109/TCYB.2018.2842158 10.1109/TEVC.2019.2922834 10.1109/TEVC.2008.920671 10.1109/CEC.2016.7743931 10.1109/TEVC.2013.2293776 10.1016/j.ins.2019.01.066 10.1109/TEVC.2019.2912204 10.1007/s00521-020-04798-7 10.1109/UCC-Companion.2018.00042 10.1109/TCYB.2013.2245892 10.1016/j.swevo.2018.02.004 10.1109/TEVC.2017.2778560 10.1109/TEVC.2020.3004027 10.1109/TCYB.2015.2490738 10.1109/TSMC.2018.2861879 10.1016/j.ejor.2008.07.015 10.1109/TFUZZ.2020.2979119 10.1109/TCYB.2018.2859363 10.1109/TFUZZ.2018.2880700 10.1109/TEVC.2004.831456 10.1016/j.asoc.2019.105673 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Inc. |
| Copyright_xml | – notice: 2021 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2021.04.055 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 190 |
| ExternalDocumentID | 10_1016_j_ins_2021_04_055 S0020025521003844 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-c4b7a37610c8cd611b7a9eac06c048d0095a9eeb25d00c8ed90c2dfa95db1fd53 |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684796000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Sat Nov 29 06:59:08 EST 2025 Tue Nov 18 22:31:03 EST 2025 Fri Feb 23 02:43:35 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dynamic multi-objective evolutionary algorithms (DMOEAs) Reference points Changing preference point The region of interest (ROI) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-c4b7a37610c8cd611b7a9eac06c048d0095a9eeb25d00c8ed90c2dfa95db1fd53 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2021_04_055 crossref_primary_10_1016_j_ins_2021_04_055 elsevier_sciencedirect_doi_10_1016_j_ins_2021_04_055 |
| PublicationCentury | 2000 |
| PublicationDate | September 2021 2021-09-00 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Ou, Zheng, Ruan, Hu, Zou, Li, Tan (b0220) 2019; 85 S. Jiang, S. Yang, X. Yao, K.C. Tan, M. Kaiser, N. Krasnogor, Benchmark functions for the cec’2018 competition on dynamic multiobjective optimization, Tech. rep., Newcastle University (2018). doi:dora.dmu.ac.uk/handle/2086/15156. M. Jiang, Z. Wang, H. Hong, G.G. Yen, Knee point based imbalanced transfer learning for dynamic multi-objective optimization, IEEE Trans. Evol. Comput. (2020) 1–1. doi:10.1109/TEVC.2020.3004027. Jiang, Yang (b0140) 2017; 21 Li, Zhang (b0145) 2009; 13 J. Dutta, P. Barma, A. Mukherjee, S. Kar, T. De, A multi-objective open set orienteering problem, Neural Comput. Appl. 32. doi:10.1007/s00521-020-04798-7. Muruganantham, Tan, Vadakkepat (b0080) 2016; 46 Ben Said, Bechikh, Ghedira (b0125) 2010; 14 Liu, Chen, Yang (b0065) 2019; 27 Zhou, Jin, Zhang (b0195) 2014; 44 F. Zou, G. Yen, L. Tang, A knee-guided prediction approach for dynamic multi-objective optimization, Inf. Sci. 509. doi:10.1016/j.ins.2019.09.016. Majumder, Kar (b0035) 2018; 9 Gee, Tan, Alippi (b0190) 2017; 47 Jiang, Fan, Ip, Chen (b0070) 2016; 24 Li, Chen, Savic, Yao (b0110) 2019; 27 Ismayilov, Topcuoglu (b0025) 2018; 2018 M. Orouskhani, D. Shi, X. Cheng, A fuzzy adaptive dynamic nsga-ii with fuzzy-based borda ranking method and its application to multimedia data analysis, IEEE Trans. Fuzzy Syst. (2020) 1–1. doi:10.1109/TFUZZ.2020.2979119. Rong, Gong, Zhang, Jin, Pedrycz (b0150) 2019; 49 Gee, Tan, Abbass (b0055) 2017; 47 Wang, Ren, Zhang, Huang, Zhou (b0240) 2020; 50 A. Nebro, A.B. Ruiz, C. Barba-Gonzlez, J. Garca-Nieto, M. Luque, J. Aldana Montes, Indm 2: interactive dynamic multi-objective decision making using evolutionary algorithms, Swarm Evol. Comput. 40. doi:10.1016/j.swevo.2018.02.004. Zhang, Yang, Jiang, Wang, Li (b0095) 2020; 24 Wang, Ali, Yue, Liaaen (b0205) 2018; 22 S. Majumder, M. Kar, S. Kar, T. Pal, Uncertain programming models for multi-objective shortest path problem with uncertain parameters, Soft Comput. 24. doi:10.1007/s00500-019-04423-3. Pandey, Datta, Dey, Bhattacharya (b0040) 2019 Goh, Tan (b0185) 2009; 13 Chen, Li, Yao (b0060) 2018; 22 Li, Chen, Min, Yao (b0245) 2018; 48 Nag, Pal, Mudi, Pal (b0085) 2018; 26 Farina, Deb, Amato (b0225) 2004; 8 Yi, Bai, He, Peng, Tang (b0135) 2019; 23 Guo, Cheng, Luo, Gong, Xue (b0045) 2018; 15 Hasan, Lwin, Shabut, Hossain (b0050) 2019 Guo, Zhang, Gong, Zhang, Yang (b0130) 2020; 24 Li, Chen, Li, Jing, Emmerich (b0210) 2018; 2018 Chi, Liu (b0090) 2016; 24 Z. Liang, S. Zheng, Z. Zhu, Hybrid of memory and prediction strategies for dynamic multiobjective optimization, Inf. Sci. 485. doi:10.1016/j.ins.2019.01.066. Cao, Xu, Goodman, Bao, Zhu (b0075) 2020; 24 K. Deb, U. N, K. Sindhya, Dynamic multi-objective optimization and decision-making using modified nsga-ii: a case study on hydro-thermal power scheduling, 2007, pp. 803–817. doi:10.1007/978-3-540-70928-260. Ding, Yang, Xiao, Chai, Jin (b0235) 2019; 3 Helbig, Deb, Engelbrecht (b0115) 2016 R. Liu, J. Li, J. fan, C. Mu, L. Jiao, A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization, Eur. J. Oper. Res. 261. doi:10.1016/j.ejor.2017.03.048. S. Majumder, S. Kar, T. Pal, Rough fuzzy quadratic minimum spanning tree problem, Expert Syst. 36. doi:10.1111/exsy.12364. J. Molina, L. Santana-Quintero, A. Hernndez-Daz, C. Coello, R. Caballero, G-dominance: reference point based dominance for multiobjective metaheuristics, Eur. J. Oper. Res. 197 (2009) 685–692. doi:10.1016/j.ejor.2008.07.015. Gong, Xu, Zhang, Guo, Yang (b0175) 2020; 24 Li, Zhang, Kwong, Li, Wang (b0250) 2014; 18 Rambabu, Vadakkepat, Tan, Jiang (b0005) 2020; 50 Ruan, Yu, Zheng, Zou (b0165) 2017; 58 Zhang, Li (b0215) 2007; 11 Jiang, Wang, Qiu, Guo, Gao, Tan (b0160) 2020 10.1016/j.ins.2021.04.055_b0180 Zhang (10.1016/j.ins.2021.04.055_b0215) 2007; 11 Wang (10.1016/j.ins.2021.04.055_b0205) 2018; 22 Chen (10.1016/j.ins.2021.04.055_b0060) 2018; 22 10.1016/j.ins.2021.04.055_b0020 10.1016/j.ins.2021.04.055_b0100 Li (10.1016/j.ins.2021.04.055_b0245) 2018; 48 Rong (10.1016/j.ins.2021.04.055_b0150) 2019; 49 Goh (10.1016/j.ins.2021.04.055_b0185) 2009; 13 Cao (10.1016/j.ins.2021.04.055_b0075) 2020; 24 Ruan (10.1016/j.ins.2021.04.055_b0165) 2017; 58 Zhou (10.1016/j.ins.2021.04.055_b0195) 2014; 44 Majumder (10.1016/j.ins.2021.04.055_b0035) 2018; 9 Yi (10.1016/j.ins.2021.04.055_b0135) 2019; 23 10.1016/j.ins.2021.04.055_b0170 10.1016/j.ins.2021.04.055_b0015 10.1016/j.ins.2021.04.055_b0010 Li (10.1016/j.ins.2021.04.055_b0110) 2019; 27 Wang (10.1016/j.ins.2021.04.055_b0240) 2020; 50 Jiang (10.1016/j.ins.2021.04.055_b0160) 2020 Li (10.1016/j.ins.2021.04.055_b0145) 2009; 13 Chi (10.1016/j.ins.2021.04.055_b0090) 2016; 24 Gee (10.1016/j.ins.2021.04.055_b0055) 2017; 47 Jiang (10.1016/j.ins.2021.04.055_b0070) 2016; 24 Rambabu (10.1016/j.ins.2021.04.055_b0005) 2020; 50 Li (10.1016/j.ins.2021.04.055_b0250) 2014; 18 Li (10.1016/j.ins.2021.04.055_b0210) 2018; 2018 Guo (10.1016/j.ins.2021.04.055_b0045) 2018; 15 10.1016/j.ins.2021.04.055_b0200 Gong (10.1016/j.ins.2021.04.055_b0175) 2020; 24 Pandey (10.1016/j.ins.2021.04.055_b0040) 2019 10.1016/j.ins.2021.04.055_b0120 Gee (10.1016/j.ins.2021.04.055_b0190) 2017; 47 Farina (10.1016/j.ins.2021.04.055_b0225) 2004; 8 Zhang (10.1016/j.ins.2021.04.055_b0095) 2020; 24 Guo (10.1016/j.ins.2021.04.055_b0130) 2020; 24 Jiang (10.1016/j.ins.2021.04.055_b0140) 2017; 21 10.1016/j.ins.2021.04.055_b0030 Ismayilov (10.1016/j.ins.2021.04.055_b0025) 2018; 2018 Muruganantham (10.1016/j.ins.2021.04.055_b0080) 2016; 46 Liu (10.1016/j.ins.2021.04.055_b0065) 2019; 27 10.1016/j.ins.2021.04.055_b0230 10.1016/j.ins.2021.04.055_b0155 Ding (10.1016/j.ins.2021.04.055_b0235) 2019; 3 Ben Said (10.1016/j.ins.2021.04.055_b0125) 2010; 14 10.1016/j.ins.2021.04.055_b0105 Ou (10.1016/j.ins.2021.04.055_b0220) 2019; 85 Nag (10.1016/j.ins.2021.04.055_b0085) 2018; 26 Hasan (10.1016/j.ins.2021.04.055_b0050) 2019 Helbig (10.1016/j.ins.2021.04.055_b0115) 2016 |
| References_xml | – reference: F. Zou, G. Yen, L. Tang, A knee-guided prediction approach for dynamic multi-objective optimization, Inf. Sci. 509. doi:10.1016/j.ins.2019.09.016. – volume: 24 start-page: 750 year: 2020 end-page: 764 ident: b0130 article-title: Novel interactive preference-based multiobjective evolutionary optimization for bolt supporting networks publication-title: IEEE Trans. Evol. Comput. – reference: S. Majumder, M. Kar, S. Kar, T. Pal, Uncertain programming models for multi-objective shortest path problem with uncertain parameters, Soft Comput. 24. doi:10.1007/s00500-019-04423-3. – volume: 24 start-page: 260 year: 2020 end-page: 274 ident: b0095 article-title: Novel prediction strategies for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 2018 start-page: 103 year: 2018 end-page: 108 ident: b0025 article-title: Dynamic multi-objective workflow scheduling for cloud computing based on evolutionary algorithms publication-title: IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion) – volume: 27 start-page: 849 year: 2019 end-page: 860 ident: b0110 article-title: Interactive decomposition multiobjective optimization via progressively learned value functions publication-title: IEEE Trans. Fuzzy Syst. – volume: 49 start-page: 3362 year: 2019 end-page: 3374 ident: b0150 article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems publication-title: IEEE Trans. Cybern. – volume: 50 start-page: 4732 year: 2020 end-page: 4745 ident: b0240 article-title: A hybrid multiobjective memetic algorithm for multiobjective periodic vehicle routing problem with time windows publication-title: IEEE Trans. Syst., Man, Cybern.: Syst. – volume: 24 start-page: 142 year: 2020 end-page: 156 ident: b0175 article-title: A similarity-based cooperative co-evolutionary algorithm for dynamic interval multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. – volume: 18 start-page: 909 year: 2014 end-page: 923 ident: b0250 article-title: Stable matching-based selection in evolutionary multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 15 start-page: 1891 year: 2018 end-page: 1903 ident: b0045 article-title: Robust dynamic multi-objective vehicle routing optimization method publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. – reference: J. Molina, L. Santana-Quintero, A. Hernndez-Daz, C. Coello, R. Caballero, G-dominance: reference point based dominance for multiobjective metaheuristics, Eur. J. Oper. Res. 197 (2009) 685–692. doi:10.1016/j.ejor.2008.07.015. – volume: 58 start-page: 631 year: 2017 end-page: 647 ident: b0165 article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization publication-title: Appl. Soft Comput. – volume: 2018 start-page: 379 year: 2018 end-page: 384 ident: b0210 article-title: Integrating region preferences in multiobjective evolutionary algorithms based on decomposition publication-title: Tenth International Conference on Advanced Computational Intelligence (ICACI) – volume: 8 start-page: 425 year: 2004 end-page: 442 ident: b0225 article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications publication-title: IEEE Trans. Evol. Comput. – volume: 13 start-page: 284 year: 2009 end-page: 302 ident: b0145 article-title: Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii publication-title: IEEE Trans. Evol. Comput. – volume: 22 start-page: 378 year: 2018 end-page: 393 ident: b0205 article-title: Integrating weight assignment strategies with nsga-ii for supporting user preference multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – reference: R. Liu, J. Li, J. fan, C. Mu, L. Jiao, A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization, Eur. J. Oper. Res. 261. doi:10.1016/j.ejor.2017.03.048. – volume: 26 start-page: 3743 year: 2018 end-page: 3754 ident: b0085 article-title: Robust multiobjective optimization with robust consensus publication-title: IEEE Trans. Fuzzy Syst. – reference: S. Majumder, S. Kar, T. Pal, Rough fuzzy quadratic minimum spanning tree problem, Expert Syst. 36. doi:10.1111/exsy.12364. – reference: A. Nebro, A.B. Ruiz, C. Barba-Gonzlez, J. Garca-Nieto, M. Luque, J. Aldana Montes, Indm 2: interactive dynamic multi-objective decision making using evolutionary algorithms, Swarm Evol. Comput. 40. doi:10.1016/j.swevo.2018.02.004. – volume: 22 start-page: 157 year: 2018 end-page: 171 ident: b0060 article-title: Dynamic multiobjectives optimization with a changing number of objectives publication-title: IEEE Trans. Evol. Comput. – volume: 47 start-page: 4223 year: 2017 end-page: 4234 ident: b0190 article-title: Solving multiobjective optimization problems in unknown dynamic environments: an inverse modeling approach publication-title: IEEE Trans. Cybern. – volume: 47 start-page: 461 year: 2017 end-page: 472 ident: b0055 article-title: A benchmark test suite for dynamic evolutionary multiobjective optimization publication-title: IEEE Trans. Cybern. – volume: 9 start-page: 1 year: 2018 end-page: 25 ident: b0035 article-title: Multi-criteria shortest path for rough graph, Journal of Ambient Intelligence and Humanized publication-title: Computing – start-page: 1 year: 2020 end-page: 12 ident: b0160 article-title: A fast dynamic evolutionary multiobjective algorithm via manifold transfer learning publication-title: IEEE Trans. Cybern. – reference: M. Orouskhani, D. Shi, X. Cheng, A fuzzy adaptive dynamic nsga-ii with fuzzy-based borda ranking method and its application to multimedia data analysis, IEEE Trans. Fuzzy Syst. (2020) 1–1. doi:10.1109/TFUZZ.2020.2979119. – start-page: 361 year: 2019 end-page: 365 ident: b0040 article-title: Multi-objective optimisation of dynamic responses for a rail freight wagon using regression models publication-title: 2019 IEEE 18th International Conference on Cognitive Informatics Cognitive Computing (ICCI*CC) – volume: 27 start-page: 1037 year: 2019 end-page: 1051 ident: b0065 article-title: Developing multiobjective equilibrium optimization method for sustainable uncertain supply chain planning problems publication-title: IEEE Trans. Fuzzy Syst. – volume: 3 start-page: 36 year: 2019 end-page: 48 ident: b0235 article-title: Dynamic evolutionary multiobjective optimization for raw ore allocation in mineral processing publication-title: IEEE Trans. Emerg. Top. Comput. Intell. – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: b0215 article-title: Moea/d: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 13 start-page: 103 year: 2009 end-page: 127 ident: b0185 article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – reference: K. Deb, U. N, K. Sindhya, Dynamic multi-objective optimization and decision-making using modified nsga-ii: a case study on hydro-thermal power scheduling, 2007, pp. 803–817. doi:10.1007/978-3-540-70928-260. – reference: S. Jiang, S. Yang, X. Yao, K.C. Tan, M. Kaiser, N. Krasnogor, Benchmark functions for the cec’2018 competition on dynamic multiobjective optimization, Tech. rep., Newcastle University (2018). doi:dora.dmu.ac.uk/handle/2086/15156. – reference: J. Dutta, P. Barma, A. Mukherjee, S. Kar, T. De, A multi-objective open set orienteering problem, Neural Comput. Appl. 32. doi:10.1007/s00521-020-04798-7. – start-page: 1256 year: 2016 end-page: 1261 ident: b0115 article-title: Key challenges and future directions of dynamic multi-objective optimisation publication-title: 2016 IEEE Congress on Evolutionary Computation (CEC) – reference: M. Jiang, Z. Wang, H. Hong, G.G. Yen, Knee point based imbalanced transfer learning for dynamic multi-objective optimization, IEEE Trans. Evol. Comput. (2020) 1–1. doi:10.1109/TEVC.2020.3004027. – volume: 24 start-page: 305 year: 2020 end-page: 319 ident: b0075 article-title: Evolutionary dynamic multiobjective optimization assisted by a support vector regression predictor publication-title: IEEE Trans. Evol. Comput. – volume: 23 start-page: 788 year: 2019 end-page: 802 ident: b0135 article-title: ar-moea: a novel preference-based dominance relation for evolutionary multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 1 year: 2019 end-page: 6 ident: b0050 article-title: Design and development of a benchmark for dynamic multi-objective optimisation problem in the context of deep reinforcement learning publication-title: 2019 22nd International Conference on Computer and Information Technology (ICCIT) – reference: Z. Liang, S. Zheng, Z. Zhu, Hybrid of memory and prediction strategies for dynamic multiobjective optimization, Inf. Sci. 485. doi:10.1016/j.ins.2019.01.066. – volume: 24 start-page: 708 year: 2016 end-page: 723 ident: b0070 article-title: Fuzzy multiobjective modeling and optimization for one-shot multiattribute exchanges with indivisible demand publication-title: IEEE Trans. Fuzzy Syst. – volume: 46 start-page: 2862 year: 2016 end-page: 2873 ident: b0080 article-title: Evolutionary dynamic multiobjective optimization via kalman filter prediction publication-title: IEEE Trans. Cybern. – volume: 85 year: 2019 ident: b0220 article-title: A pareto-based evolutionary algorithm using decomposition and truncation for dynamic multi-objective optimization publication-title: Appl. Soft Comput. – volume: 21 start-page: 65 year: 2017 end-page: 82 ident: b0140 article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 48 start-page: 3359 year: 2018 end-page: 3370 ident: b0245 article-title: Integration of preferences in decomposition multiobjective optimization publication-title: IEEE Trans. Cybern. – volume: 24 start-page: 71 year: 2016 end-page: 81 ident: b0090 article-title: Learning of fuzzy cognitive maps with varying densities using a multiobjective evolutionary algorithm publication-title: IEEE Trans. Fuzzy Syst. – volume: 50 start-page: 5099 year: 2020 end-page: 5112 ident: b0005 article-title: A mixture-of-experts prediction framework for evolutionary dynamic multiobjective optimization publication-title: IEEE Trans. Cybern. – volume: 44 start-page: 40 year: 2014 end-page: 53 ident: b0195 article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization publication-title: IEEE Trans. Cybern. – volume: 14 start-page: 801 year: 2010 end-page: 818 ident: b0125 article-title: The r-dominance: a new dominance relation for interactive evolutionary multicriteria decision making publication-title: IEEE Trans. Evol. Comput. – volume: 24 start-page: 708 issue: 3 year: 2016 ident: 10.1016/j.ins.2021.04.055_b0070 article-title: Fuzzy multiobjective modeling and optimization for one-shot multiattribute exchanges with indivisible demand publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2015.2476516 – volume: 21 start-page: 65 issue: 1 year: 2017 ident: 10.1016/j.ins.2021.04.055_b0140 article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2574621 – volume: 23 start-page: 788 issue: 5 year: 2019 ident: 10.1016/j.ins.2021.04.055_b0135 article-title: ar-moea: a novel preference-based dominance relation for evolutionary multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2018.2884133 – ident: 10.1016/j.ins.2021.04.055_b0100 doi: 10.1016/j.ins.2019.09.016 – volume: 2018 start-page: 379 year: 2018 ident: 10.1016/j.ins.2021.04.055_b0210 article-title: Integrating region preferences in multiobjective evolutionary algorithms based on decomposition publication-title: Tenth International Conference on Advanced Computational Intelligence (ICACI) – volume: 13 start-page: 284 issue: 2 year: 2009 ident: 10.1016/j.ins.2021.04.055_b0145 article-title: Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.925798 – volume: 15 start-page: 1891 issue: 6 year: 2018 ident: 10.1016/j.ins.2021.04.055_b0045 article-title: Robust dynamic multi-objective vehicle routing optimization method publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. doi: 10.1109/TCBB.2017.2685320 – ident: 10.1016/j.ins.2021.04.055_b0200 doi: 10.1016/j.ejor.2017.03.048 – volume: 24 start-page: 71 issue: 1 year: 2016 ident: 10.1016/j.ins.2021.04.055_b0090 article-title: Learning of fuzzy cognitive maps with varying densities using a multiobjective evolutionary algorithm publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2015.2426314 – volume: 58 start-page: 631 year: 2017 ident: 10.1016/j.ins.2021.04.055_b0165 article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.05.008 – volume: 24 start-page: 750 issue: 4 year: 2020 ident: 10.1016/j.ins.2021.04.055_b0130 article-title: Novel interactive preference-based multiobjective evolutionary optimization for bolt supporting networks publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2951217 – ident: 10.1016/j.ins.2021.04.055_b0180 doi: 10.1007/978-3-540-70928-2_60 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.ins.2021.04.055_b0215 article-title: Moea/d: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – ident: 10.1016/j.ins.2021.04.055_b0020 doi: 10.1111/exsy.12364 – volume: 50 start-page: 5099 issue: 12 year: 2020 ident: 10.1016/j.ins.2021.04.055_b0005 article-title: A mixture-of-experts prediction framework for evolutionary dynamic multiobjective optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2909806 – volume: 27 start-page: 1037 issue: 5 year: 2019 ident: 10.1016/j.ins.2021.04.055_b0065 article-title: Developing multiobjective equilibrium optimization method for sustainable uncertain supply chain planning problems publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2851508 – ident: 10.1016/j.ins.2021.04.055_b0155 doi: 10.1007/s00500-019-04423-3 – start-page: 361 year: 2019 ident: 10.1016/j.ins.2021.04.055_b0040 article-title: Multi-objective optimisation of dynamic responses for a rail freight wagon using regression models – volume: 24 start-page: 305 issue: 2 year: 2020 ident: 10.1016/j.ins.2021.04.055_b0075 article-title: Evolutionary dynamic multiobjective optimization assisted by a support vector regression predictor publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2925722 – volume: 22 start-page: 157 issue: 1 year: 2018 ident: 10.1016/j.ins.2021.04.055_b0060 article-title: Dynamic multiobjectives optimization with a changing number of objectives publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2669638 – volume: 26 start-page: 3743 issue: 6 year: 2018 ident: 10.1016/j.ins.2021.04.055_b0085 article-title: Robust multiobjective optimization with robust consensus publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2848261 – volume: 3 start-page: 36 issue: 1 year: 2019 ident: 10.1016/j.ins.2021.04.055_b0235 article-title: Dynamic evolutionary multiobjective optimization for raw ore allocation in mineral processing publication-title: IEEE Trans. Emerg. Top. Comput. Intell. – volume: 14 start-page: 801 issue: 5 year: 2010 ident: 10.1016/j.ins.2021.04.055_b0125 article-title: The r-dominance: a new dominance relation for interactive evolutionary multicriteria decision making publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2041060 – volume: 47 start-page: 4223 issue: 12 year: 2017 ident: 10.1016/j.ins.2021.04.055_b0190 article-title: Solving multiobjective optimization problems in unknown dynamic environments: an inverse modeling approach publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2602561 – volume: 49 start-page: 3362 issue: 9 year: 2019 ident: 10.1016/j.ins.2021.04.055_b0150 article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2842158 – volume: 24 start-page: 260 issue: 2 year: 2020 ident: 10.1016/j.ins.2021.04.055_b0095 article-title: Novel prediction strategies for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2922834 – volume: 13 start-page: 103 issue: 1 year: 2009 ident: 10.1016/j.ins.2021.04.055_b0185 article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.920671 – volume: 9 start-page: 1 year: 2018 ident: 10.1016/j.ins.2021.04.055_b0035 article-title: Multi-criteria shortest path for rough graph, Journal of Ambient Intelligence and Humanized publication-title: Computing – start-page: 1256 year: 2016 ident: 10.1016/j.ins.2021.04.055_b0115 article-title: Key challenges and future directions of dynamic multi-objective optimisation publication-title: 2016 IEEE Congress on Evolutionary Computation (CEC) doi: 10.1109/CEC.2016.7743931 – start-page: 1 year: 2020 ident: 10.1016/j.ins.2021.04.055_b0160 article-title: A fast dynamic evolutionary multiobjective algorithm via manifold transfer learning publication-title: IEEE Trans. Cybern. – volume: 18 start-page: 909 issue: 6 year: 2014 ident: 10.1016/j.ins.2021.04.055_b0250 article-title: Stable matching-based selection in evolutionary multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2293776 – ident: 10.1016/j.ins.2021.04.055_b0170 doi: 10.1016/j.ins.2019.01.066 – volume: 24 start-page: 142 issue: 1 year: 2020 ident: 10.1016/j.ins.2021.04.055_b0175 article-title: A similarity-based cooperative co-evolutionary algorithm for dynamic interval multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2912204 – ident: 10.1016/j.ins.2021.04.055_b0015 doi: 10.1007/s00521-020-04798-7 – volume: 2018 start-page: 103 year: 2018 ident: 10.1016/j.ins.2021.04.055_b0025 article-title: Dynamic multi-objective workflow scheduling for cloud computing based on evolutionary algorithms publication-title: IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion) doi: 10.1109/UCC-Companion.2018.00042 – volume: 44 start-page: 40 issue: 1 year: 2014 ident: 10.1016/j.ins.2021.04.055_b0195 article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2013.2245892 – ident: 10.1016/j.ins.2021.04.055_b0105 doi: 10.1016/j.swevo.2018.02.004 – start-page: 1 year: 2019 ident: 10.1016/j.ins.2021.04.055_b0050 article-title: Design and development of a benchmark for dynamic multi-objective optimisation problem in the context of deep reinforcement learning – volume: 22 start-page: 378 issue: 3 year: 2018 ident: 10.1016/j.ins.2021.04.055_b0205 article-title: Integrating weight assignment strategies with nsga-ii for supporting user preference multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2778560 – volume: 47 start-page: 461 issue: 2 year: 2017 ident: 10.1016/j.ins.2021.04.055_b0055 article-title: A benchmark test suite for dynamic evolutionary multiobjective optimization publication-title: IEEE Trans. Cybern. – ident: 10.1016/j.ins.2021.04.055_b0010 doi: 10.1109/TEVC.2020.3004027 – volume: 46 start-page: 2862 issue: 12 year: 2016 ident: 10.1016/j.ins.2021.04.055_b0080 article-title: Evolutionary dynamic multiobjective optimization via kalman filter prediction publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2490738 – volume: 50 start-page: 4732 issue: 11 year: 2020 ident: 10.1016/j.ins.2021.04.055_b0240 article-title: A hybrid multiobjective memetic algorithm for multiobjective periodic vehicle routing problem with time windows publication-title: IEEE Trans. Syst., Man, Cybern.: Syst. doi: 10.1109/TSMC.2018.2861879 – ident: 10.1016/j.ins.2021.04.055_b0120 doi: 10.1016/j.ejor.2008.07.015 – ident: 10.1016/j.ins.2021.04.055_b0030 doi: 10.1109/TFUZZ.2020.2979119 – volume: 48 start-page: 3359 issue: 12 year: 2018 ident: 10.1016/j.ins.2021.04.055_b0245 article-title: Integration of preferences in decomposition multiobjective optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2859363 – volume: 27 start-page: 849 issue: 5 year: 2019 ident: 10.1016/j.ins.2021.04.055_b0110 article-title: Interactive decomposition multiobjective optimization via progressively learned value functions publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2880700 – volume: 8 start-page: 425 issue: 5 year: 2004 ident: 10.1016/j.ins.2021.04.055_b0225 article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.831456 – ident: 10.1016/j.ins.2021.04.055_b0230 – volume: 85 year: 2019 ident: 10.1016/j.ins.2021.04.055_b0220 article-title: A pareto-based evolutionary algorithm using decomposition and truncation for dynamic multi-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105673 |
| SSID | ssj0004766 |
| Score | 2.4887886 |
| Snippet | Most of the existing dynamic multi-objective evolutionary algorithms (DMOEAs) are effective, which focuses on searching for the approximation of Pareto-optimal... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 175 |
| SubjectTerms | Changing preference point Dynamic multi-objective evolutionary algorithms (DMOEAs) Reference points The region of interest (ROI) |
| Title | Dynamic multi-objective optimization algorithm based decomposition and preference |
| URI | https://dx.doi.org/10.1016/j.ins.2021.04.055 |
| Volume | 571 |
| WOSCitedRecordID | wos000684796000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbapYf2UAFtVdqCfKg4sIoUhzi2j6ilAoRQK4G06iVybG93V5Cg3U1F_30n8eTBFhAceomSKJl9zOf5xvY8CPlsNbd8DANJqEgHQAE60BkM98Rom-zHWsW-zuypODuTo5H6jjv4i7qdgMhzeXOjrv-rquEeKLtKnX2CuluhcAPOQelwBLXD8VGK_-p7zPtQwaDIZt6kDQswDleYdTnUl7-K-XQ5uRpWNGaH1lWx5RjA1RQPwFTAvv-K2Uv1U0ieiw4ZtT3X87JbjXYY8DvNJ2VLAD-L0ieEdMg8mTbr1pOi_FMgneJqRMTacKsuOyAMqnlK38Jy32UFbSTzrVKQbpnvFvqPJfeLCjOYflRF1SNWF6RFsbeqZq-wWRtj2ISvzVIQkVYi0jBOQcRzshYJruSArB0cH45OujRa4be2m5_QbILX4YAr3-NuN6bnmpyvk9c4p6AHHgsb5JnLN8mrXqXJTbKN-Sl0l_ZUSNGyvyE_EDV0BTW0jxraoobWqKG3UEMBNbRDzVty8e3w_MtRgN02AhMpsQxMnAkNdMNCI41NGINLBbQcJgasvK18cbh2WcTh3EhnVWgiO9aK24yNLd9_RwZ5kbv3hMok4zq2RgjrYuEy6bi2UsVMZibRTm-RsPnzUoOl6KuOKJfpvUrbInvtK9e-DstDD8eNRlIcC95BTAFd97_24Smf8ZG87PD_iQyW89Jtkxfm93K6mO8gtP4CPcuX8g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+multi-objective+optimization+algorithm+based+decomposition+and+preference&rft.jtitle=Information+sciences&rft.au=Hu%2C+Yaru&rft.au=Zheng%2C+Jinhua&rft.au=Zou%2C+Juan&rft.au=Jiang%2C+Shouyong&rft.date=2021-09-01&rft.issn=0020-0255&rft.volume=571&rft.spage=175&rft.epage=190&rft_id=info:doi/10.1016%2Fj.ins.2021.04.055&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2021_04_055 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |