Dynamic multi-objective optimization algorithm based decomposition and preference

Most of the existing dynamic multi-objective evolutionary algorithms (DMOEAs) are effective, which focuses on searching for the approximation of Pareto-optimal front (POF) with well-distributed in handling dynamic multi-objective optimization problems (DMOPs). Nevertheless, in real-world scenarios,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 571; s. 175 - 190
Hlavní autoři: Hu, Yaru, Zheng, Jinhua, Zou, Juan, Jiang, Shouyong, Yang, Shengxiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.09.2021
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Most of the existing dynamic multi-objective evolutionary algorithms (DMOEAs) are effective, which focuses on searching for the approximation of Pareto-optimal front (POF) with well-distributed in handling dynamic multi-objective optimization problems (DMOPs). Nevertheless, in real-world scenarios, the decision maker (DM) may be only interested in a portion of the corresponding POF (i.e., the region of interest) for different instances, rather than the whole POF. Consequently, a novel DMOEA based decomposition and preference (DACP) is proposed, which incorporates the preference of DM into the dynamic search process and tracks a subset of Pareto-optimal set (POS) approximation with respect to the region of interest (ROI). Due to the presence of dynamics, the ROI, which is defined in which DM gives both the preference point and the neighborhood size, may be changing with time-varying DMOPs. Consequently, our algorithm moves the well-distributed reference points, which are located in the neighborhood range, to around the preference point to lead the evolution of the whole population. When a change occurs, a novel strategy is performed for responding to the current change. Particularly, the population will be reinitialized according to a promising direction obtained by letting a few solutions evolve independently for a short time. Comprehensive experiments show that this approach is very competitivecompared with state-of-the-art methods.
AbstractList Most of the existing dynamic multi-objective evolutionary algorithms (DMOEAs) are effective, which focuses on searching for the approximation of Pareto-optimal front (POF) with well-distributed in handling dynamic multi-objective optimization problems (DMOPs). Nevertheless, in real-world scenarios, the decision maker (DM) may be only interested in a portion of the corresponding POF (i.e., the region of interest) for different instances, rather than the whole POF. Consequently, a novel DMOEA based decomposition and preference (DACP) is proposed, which incorporates the preference of DM into the dynamic search process and tracks a subset of Pareto-optimal set (POS) approximation with respect to the region of interest (ROI). Due to the presence of dynamics, the ROI, which is defined in which DM gives both the preference point and the neighborhood size, may be changing with time-varying DMOPs. Consequently, our algorithm moves the well-distributed reference points, which are located in the neighborhood range, to around the preference point to lead the evolution of the whole population. When a change occurs, a novel strategy is performed for responding to the current change. Particularly, the population will be reinitialized according to a promising direction obtained by letting a few solutions evolve independently for a short time. Comprehensive experiments show that this approach is very competitivecompared with state-of-the-art methods.
Author Yang, Shengxiang
Zou, Juan
Hu, Yaru
Zheng, Jinhua
Jiang, Shouyong
Author_xml – sequence: 1
  givenname: Yaru
  surname: Hu
  fullname: Hu, Yaru
  email: huyaru1199@gmail.com
  organization: The Department of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China
– sequence: 2
  givenname: Jinhua
  surname: Zheng
  fullname: Zheng, Jinhua
  email: jhzheng@xtu.edu.cn
  organization: Key Laboratory of Intelligent Computing and Information Processing (Ministry of Education), Xiangtan University, Xiangtan, Hunan 411105, China
– sequence: 3
  givenname: Juan
  surname: Zou
  fullname: Zou, Juan
  email: zoujuan@xtu.edu.cn
  organization: Key Laboratory of Intelligent Computing and Information Processing (Ministry of Education), Xiangtan University, Xiangtan, Hunan 411105, China
– sequence: 4
  givenname: Shouyong
  surname: Jiang
  fullname: Jiang, Shouyong
  email: math4neu@gmail.com
  organization: School of Computer Science, University of Lincoln, Lincoln LN6 7TS, UK
– sequence: 5
  givenname: Shengxiang
  surname: Yang
  fullname: Yang, Shengxiang
  email: syang@dmu.ac.uk
  organization: School of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, UK
BookMark eNp9kM1KAzEQgINUsK0-gLd9gV0n6WZ_8CRVq1AQQc8hm2R1lt3NksRCfXpT68lDTzPD8M3PtyCz0Y6GkGsKGQVa3HQZjj5jwGgGeQacn5E5rUqWFqymMzIHYJAC4_yCLLzvACAvi2JOXu_3oxxQJcNXHzC1TWdUwJ1J7BRwwG8Z0I6J7D-sw_A5JI30RifaKDtM1uOxO-pkcqY1zozKXJLzVvbeXP3FJXl_fHhbP6Xbl83z-m6bKlaXIVV5U8pVWVBQldIFpbGsjVRQKMgrDVDzWJuG8ZiryugaFNOtrLluaKv5aknK41zlrPdxvVAYfs8NTmIvKIiDGdGJaEYczAjIRTQTSfqPnBwO0u1PMrdHxsSXdmic8AoP72p00ZjQFk_QP4SigNw
CitedBy_id crossref_primary_10_1002_oca_3095
crossref_primary_10_1016_j_eswa_2024_125765
crossref_primary_10_3390_app13084795
crossref_primary_10_1016_j_swevo_2023_101461
crossref_primary_10_1016_j_ins_2023_119256
crossref_primary_10_1016_j_ins_2022_05_123
crossref_primary_10_1145_3524495
crossref_primary_10_1016_j_ins_2023_03_142
crossref_primary_10_1016_j_tre_2025_104232
crossref_primary_10_3390_s23083951
crossref_primary_10_1016_j_ins_2023_04_006
crossref_primary_10_1109_TCC_2024_3450858
crossref_primary_10_1109_TEVC_2023_3290485
crossref_primary_10_1016_j_ins_2022_09_022
crossref_primary_10_1016_j_asoc_2024_111398
crossref_primary_10_1016_j_asoc_2023_110333
crossref_primary_10_1016_j_eswa_2023_120951
crossref_primary_10_1016_j_swevo_2024_101638
crossref_primary_10_1016_j_ins_2023_119495
crossref_primary_10_3390_math10122117
Cites_doi 10.1109/TFUZZ.2015.2476516
10.1109/TEVC.2016.2574621
10.1109/TEVC.2018.2884133
10.1016/j.ins.2019.09.016
10.1109/TEVC.2008.925798
10.1109/TCBB.2017.2685320
10.1016/j.ejor.2017.03.048
10.1109/TFUZZ.2015.2426314
10.1016/j.asoc.2017.05.008
10.1109/TEVC.2019.2951217
10.1007/978-3-540-70928-2_60
10.1109/TEVC.2007.892759
10.1111/exsy.12364
10.1109/TCYB.2019.2909806
10.1109/TFUZZ.2018.2851508
10.1007/s00500-019-04423-3
10.1109/TEVC.2019.2925722
10.1109/TEVC.2017.2669638
10.1109/TFUZZ.2018.2848261
10.1109/TEVC.2010.2041060
10.1109/TCYB.2016.2602561
10.1109/TCYB.2018.2842158
10.1109/TEVC.2019.2922834
10.1109/TEVC.2008.920671
10.1109/CEC.2016.7743931
10.1109/TEVC.2013.2293776
10.1016/j.ins.2019.01.066
10.1109/TEVC.2019.2912204
10.1007/s00521-020-04798-7
10.1109/UCC-Companion.2018.00042
10.1109/TCYB.2013.2245892
10.1016/j.swevo.2018.02.004
10.1109/TEVC.2017.2778560
10.1109/TEVC.2020.3004027
10.1109/TCYB.2015.2490738
10.1109/TSMC.2018.2861879
10.1016/j.ejor.2008.07.015
10.1109/TFUZZ.2020.2979119
10.1109/TCYB.2018.2859363
10.1109/TFUZZ.2018.2880700
10.1109/TEVC.2004.831456
10.1016/j.asoc.2019.105673
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2021.04.055
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 190
ExternalDocumentID 10_1016_j_ins_2021_04_055
S0020025521003844
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-c4b7a37610c8cd611b7a9eac06c048d0095a9eeb25d00c8ed90c2dfa95db1fd53
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684796000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 06:59:08 EST 2025
Tue Nov 18 22:31:03 EST 2025
Fri Feb 23 02:43:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dynamic multi-objective evolutionary algorithms (DMOEAs)
Reference points
Changing preference point
The region of interest (ROI)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-c4b7a37610c8cd611b7a9eac06c048d0095a9eeb25d00c8ed90c2dfa95db1fd53
PageCount 16
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2021_04_055
crossref_primary_10_1016_j_ins_2021_04_055
elsevier_sciencedirect_doi_10_1016_j_ins_2021_04_055
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ou, Zheng, Ruan, Hu, Zou, Li, Tan (b0220) 2019; 85
S. Jiang, S. Yang, X. Yao, K.C. Tan, M. Kaiser, N. Krasnogor, Benchmark functions for the cec’2018 competition on dynamic multiobjective optimization, Tech. rep., Newcastle University (2018). doi:dora.dmu.ac.uk/handle/2086/15156.
M. Jiang, Z. Wang, H. Hong, G.G. Yen, Knee point based imbalanced transfer learning for dynamic multi-objective optimization, IEEE Trans. Evol. Comput. (2020) 1–1. doi:10.1109/TEVC.2020.3004027.
Jiang, Yang (b0140) 2017; 21
Li, Zhang (b0145) 2009; 13
J. Dutta, P. Barma, A. Mukherjee, S. Kar, T. De, A multi-objective open set orienteering problem, Neural Comput. Appl. 32. doi:10.1007/s00521-020-04798-7.
Muruganantham, Tan, Vadakkepat (b0080) 2016; 46
Ben Said, Bechikh, Ghedira (b0125) 2010; 14
Liu, Chen, Yang (b0065) 2019; 27
Zhou, Jin, Zhang (b0195) 2014; 44
F. Zou, G. Yen, L. Tang, A knee-guided prediction approach for dynamic multi-objective optimization, Inf. Sci. 509. doi:10.1016/j.ins.2019.09.016.
Majumder, Kar (b0035) 2018; 9
Gee, Tan, Alippi (b0190) 2017; 47
Jiang, Fan, Ip, Chen (b0070) 2016; 24
Li, Chen, Savic, Yao (b0110) 2019; 27
Ismayilov, Topcuoglu (b0025) 2018; 2018
M. Orouskhani, D. Shi, X. Cheng, A fuzzy adaptive dynamic nsga-ii with fuzzy-based borda ranking method and its application to multimedia data analysis, IEEE Trans. Fuzzy Syst. (2020) 1–1. doi:10.1109/TFUZZ.2020.2979119.
Rong, Gong, Zhang, Jin, Pedrycz (b0150) 2019; 49
Gee, Tan, Abbass (b0055) 2017; 47
Wang, Ren, Zhang, Huang, Zhou (b0240) 2020; 50
A. Nebro, A.B. Ruiz, C. Barba-Gonzlez, J. Garca-Nieto, M. Luque, J. Aldana Montes, Indm 2: interactive dynamic multi-objective decision making using evolutionary algorithms, Swarm Evol. Comput. 40. doi:10.1016/j.swevo.2018.02.004.
Zhang, Yang, Jiang, Wang, Li (b0095) 2020; 24
Wang, Ali, Yue, Liaaen (b0205) 2018; 22
S. Majumder, M. Kar, S. Kar, T. Pal, Uncertain programming models for multi-objective shortest path problem with uncertain parameters, Soft Comput. 24. doi:10.1007/s00500-019-04423-3.
Pandey, Datta, Dey, Bhattacharya (b0040) 2019
Goh, Tan (b0185) 2009; 13
Chen, Li, Yao (b0060) 2018; 22
Li, Chen, Min, Yao (b0245) 2018; 48
Nag, Pal, Mudi, Pal (b0085) 2018; 26
Farina, Deb, Amato (b0225) 2004; 8
Yi, Bai, He, Peng, Tang (b0135) 2019; 23
Guo, Cheng, Luo, Gong, Xue (b0045) 2018; 15
Hasan, Lwin, Shabut, Hossain (b0050) 2019
Guo, Zhang, Gong, Zhang, Yang (b0130) 2020; 24
Li, Chen, Li, Jing, Emmerich (b0210) 2018; 2018
Chi, Liu (b0090) 2016; 24
Z. Liang, S. Zheng, Z. Zhu, Hybrid of memory and prediction strategies for dynamic multiobjective optimization, Inf. Sci. 485. doi:10.1016/j.ins.2019.01.066.
Cao, Xu, Goodman, Bao, Zhu (b0075) 2020; 24
K. Deb, U. N, K. Sindhya, Dynamic multi-objective optimization and decision-making using modified nsga-ii: a case study on hydro-thermal power scheduling, 2007, pp. 803–817. doi:10.1007/978-3-540-70928-260.
Ding, Yang, Xiao, Chai, Jin (b0235) 2019; 3
Helbig, Deb, Engelbrecht (b0115) 2016
R. Liu, J. Li, J. fan, C. Mu, L. Jiao, A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization, Eur. J. Oper. Res. 261. doi:10.1016/j.ejor.2017.03.048.
S. Majumder, S. Kar, T. Pal, Rough fuzzy quadratic minimum spanning tree problem, Expert Syst. 36. doi:10.1111/exsy.12364.
J. Molina, L. Santana-Quintero, A. Hernndez-Daz, C. Coello, R. Caballero, G-dominance: reference point based dominance for multiobjective metaheuristics, Eur. J. Oper. Res. 197 (2009) 685–692. doi:10.1016/j.ejor.2008.07.015.
Gong, Xu, Zhang, Guo, Yang (b0175) 2020; 24
Li, Zhang, Kwong, Li, Wang (b0250) 2014; 18
Rambabu, Vadakkepat, Tan, Jiang (b0005) 2020; 50
Ruan, Yu, Zheng, Zou (b0165) 2017; 58
Zhang, Li (b0215) 2007; 11
Jiang, Wang, Qiu, Guo, Gao, Tan (b0160) 2020
10.1016/j.ins.2021.04.055_b0180
Zhang (10.1016/j.ins.2021.04.055_b0215) 2007; 11
Wang (10.1016/j.ins.2021.04.055_b0205) 2018; 22
Chen (10.1016/j.ins.2021.04.055_b0060) 2018; 22
10.1016/j.ins.2021.04.055_b0020
10.1016/j.ins.2021.04.055_b0100
Li (10.1016/j.ins.2021.04.055_b0245) 2018; 48
Rong (10.1016/j.ins.2021.04.055_b0150) 2019; 49
Goh (10.1016/j.ins.2021.04.055_b0185) 2009; 13
Cao (10.1016/j.ins.2021.04.055_b0075) 2020; 24
Ruan (10.1016/j.ins.2021.04.055_b0165) 2017; 58
Zhou (10.1016/j.ins.2021.04.055_b0195) 2014; 44
Majumder (10.1016/j.ins.2021.04.055_b0035) 2018; 9
Yi (10.1016/j.ins.2021.04.055_b0135) 2019; 23
10.1016/j.ins.2021.04.055_b0170
10.1016/j.ins.2021.04.055_b0015
10.1016/j.ins.2021.04.055_b0010
Li (10.1016/j.ins.2021.04.055_b0110) 2019; 27
Wang (10.1016/j.ins.2021.04.055_b0240) 2020; 50
Jiang (10.1016/j.ins.2021.04.055_b0160) 2020
Li (10.1016/j.ins.2021.04.055_b0145) 2009; 13
Chi (10.1016/j.ins.2021.04.055_b0090) 2016; 24
Gee (10.1016/j.ins.2021.04.055_b0055) 2017; 47
Jiang (10.1016/j.ins.2021.04.055_b0070) 2016; 24
Rambabu (10.1016/j.ins.2021.04.055_b0005) 2020; 50
Li (10.1016/j.ins.2021.04.055_b0250) 2014; 18
Li (10.1016/j.ins.2021.04.055_b0210) 2018; 2018
Guo (10.1016/j.ins.2021.04.055_b0045) 2018; 15
10.1016/j.ins.2021.04.055_b0200
Gong (10.1016/j.ins.2021.04.055_b0175) 2020; 24
Pandey (10.1016/j.ins.2021.04.055_b0040) 2019
10.1016/j.ins.2021.04.055_b0120
Gee (10.1016/j.ins.2021.04.055_b0190) 2017; 47
Farina (10.1016/j.ins.2021.04.055_b0225) 2004; 8
Zhang (10.1016/j.ins.2021.04.055_b0095) 2020; 24
Guo (10.1016/j.ins.2021.04.055_b0130) 2020; 24
Jiang (10.1016/j.ins.2021.04.055_b0140) 2017; 21
10.1016/j.ins.2021.04.055_b0030
Ismayilov (10.1016/j.ins.2021.04.055_b0025) 2018; 2018
Muruganantham (10.1016/j.ins.2021.04.055_b0080) 2016; 46
Liu (10.1016/j.ins.2021.04.055_b0065) 2019; 27
10.1016/j.ins.2021.04.055_b0230
10.1016/j.ins.2021.04.055_b0155
Ding (10.1016/j.ins.2021.04.055_b0235) 2019; 3
Ben Said (10.1016/j.ins.2021.04.055_b0125) 2010; 14
10.1016/j.ins.2021.04.055_b0105
Ou (10.1016/j.ins.2021.04.055_b0220) 2019; 85
Nag (10.1016/j.ins.2021.04.055_b0085) 2018; 26
Hasan (10.1016/j.ins.2021.04.055_b0050) 2019
Helbig (10.1016/j.ins.2021.04.055_b0115) 2016
References_xml – reference: F. Zou, G. Yen, L. Tang, A knee-guided prediction approach for dynamic multi-objective optimization, Inf. Sci. 509. doi:10.1016/j.ins.2019.09.016.
– volume: 24
  start-page: 750
  year: 2020
  end-page: 764
  ident: b0130
  article-title: Novel interactive preference-based multiobjective evolutionary optimization for bolt supporting networks
  publication-title: IEEE Trans. Evol. Comput.
– reference: S. Majumder, M. Kar, S. Kar, T. Pal, Uncertain programming models for multi-objective shortest path problem with uncertain parameters, Soft Comput. 24. doi:10.1007/s00500-019-04423-3.
– volume: 24
  start-page: 260
  year: 2020
  end-page: 274
  ident: b0095
  article-title: Novel prediction strategies for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 2018
  start-page: 103
  year: 2018
  end-page: 108
  ident: b0025
  article-title: Dynamic multi-objective workflow scheduling for cloud computing based on evolutionary algorithms
  publication-title: IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion)
– volume: 27
  start-page: 849
  year: 2019
  end-page: 860
  ident: b0110
  article-title: Interactive decomposition multiobjective optimization via progressively learned value functions
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 49
  start-page: 3362
  year: 2019
  end-page: 3374
  ident: b0150
  article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems
  publication-title: IEEE Trans. Cybern.
– volume: 50
  start-page: 4732
  year: 2020
  end-page: 4745
  ident: b0240
  article-title: A hybrid multiobjective memetic algorithm for multiobjective periodic vehicle routing problem with time windows
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
– volume: 24
  start-page: 142
  year: 2020
  end-page: 156
  ident: b0175
  article-title: A similarity-based cooperative co-evolutionary algorithm for dynamic interval multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 909
  year: 2014
  end-page: 923
  ident: b0250
  article-title: Stable matching-based selection in evolutionary multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 15
  start-page: 1891
  year: 2018
  end-page: 1903
  ident: b0045
  article-title: Robust dynamic multi-objective vehicle routing optimization method
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
– reference: J. Molina, L. Santana-Quintero, A. Hernndez-Daz, C. Coello, R. Caballero, G-dominance: reference point based dominance for multiobjective metaheuristics, Eur. J. Oper. Res. 197 (2009) 685–692. doi:10.1016/j.ejor.2008.07.015.
– volume: 58
  start-page: 631
  year: 2017
  end-page: 647
  ident: b0165
  article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
– volume: 2018
  start-page: 379
  year: 2018
  end-page: 384
  ident: b0210
  article-title: Integrating region preferences in multiobjective evolutionary algorithms based on decomposition
  publication-title: Tenth International Conference on Advanced Computational Intelligence (ICACI)
– volume: 8
  start-page: 425
  year: 2004
  end-page: 442
  ident: b0225
  article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications
  publication-title: IEEE Trans. Evol. Comput.
– volume: 13
  start-page: 284
  year: 2009
  end-page: 302
  ident: b0145
  article-title: Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii
  publication-title: IEEE Trans. Evol. Comput.
– volume: 22
  start-page: 378
  year: 2018
  end-page: 393
  ident: b0205
  article-title: Integrating weight assignment strategies with nsga-ii for supporting user preference multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– reference: R. Liu, J. Li, J. fan, C. Mu, L. Jiao, A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization, Eur. J. Oper. Res. 261. doi:10.1016/j.ejor.2017.03.048.
– volume: 26
  start-page: 3743
  year: 2018
  end-page: 3754
  ident: b0085
  article-title: Robust multiobjective optimization with robust consensus
  publication-title: IEEE Trans. Fuzzy Syst.
– reference: S. Majumder, S. Kar, T. Pal, Rough fuzzy quadratic minimum spanning tree problem, Expert Syst. 36. doi:10.1111/exsy.12364.
– reference: A. Nebro, A.B. Ruiz, C. Barba-Gonzlez, J. Garca-Nieto, M. Luque, J. Aldana Montes, Indm 2: interactive dynamic multi-objective decision making using evolutionary algorithms, Swarm Evol. Comput. 40. doi:10.1016/j.swevo.2018.02.004.
– volume: 22
  start-page: 157
  year: 2018
  end-page: 171
  ident: b0060
  article-title: Dynamic multiobjectives optimization with a changing number of objectives
  publication-title: IEEE Trans. Evol. Comput.
– volume: 47
  start-page: 4223
  year: 2017
  end-page: 4234
  ident: b0190
  article-title: Solving multiobjective optimization problems in unknown dynamic environments: an inverse modeling approach
  publication-title: IEEE Trans. Cybern.
– volume: 47
  start-page: 461
  year: 2017
  end-page: 472
  ident: b0055
  article-title: A benchmark test suite for dynamic evolutionary multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 25
  ident: b0035
  article-title: Multi-criteria shortest path for rough graph, Journal of Ambient Intelligence and Humanized
  publication-title: Computing
– start-page: 1
  year: 2020
  end-page: 12
  ident: b0160
  article-title: A fast dynamic evolutionary multiobjective algorithm via manifold transfer learning
  publication-title: IEEE Trans. Cybern.
– reference: M. Orouskhani, D. Shi, X. Cheng, A fuzzy adaptive dynamic nsga-ii with fuzzy-based borda ranking method and its application to multimedia data analysis, IEEE Trans. Fuzzy Syst. (2020) 1–1. doi:10.1109/TFUZZ.2020.2979119.
– start-page: 361
  year: 2019
  end-page: 365
  ident: b0040
  article-title: Multi-objective optimisation of dynamic responses for a rail freight wagon using regression models
  publication-title: 2019 IEEE 18th International Conference on Cognitive Informatics Cognitive Computing (ICCI*CC)
– volume: 27
  start-page: 1037
  year: 2019
  end-page: 1051
  ident: b0065
  article-title: Developing multiobjective equilibrium optimization method for sustainable uncertain supply chain planning problems
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 3
  start-page: 36
  year: 2019
  end-page: 48
  ident: b0235
  article-title: Dynamic evolutionary multiobjective optimization for raw ore allocation in mineral processing
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b0215
  article-title: Moea/d: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 13
  start-page: 103
  year: 2009
  end-page: 127
  ident: b0185
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– reference: K. Deb, U. N, K. Sindhya, Dynamic multi-objective optimization and decision-making using modified nsga-ii: a case study on hydro-thermal power scheduling, 2007, pp. 803–817. doi:10.1007/978-3-540-70928-260.
– reference: S. Jiang, S. Yang, X. Yao, K.C. Tan, M. Kaiser, N. Krasnogor, Benchmark functions for the cec’2018 competition on dynamic multiobjective optimization, Tech. rep., Newcastle University (2018). doi:dora.dmu.ac.uk/handle/2086/15156.
– reference: J. Dutta, P. Barma, A. Mukherjee, S. Kar, T. De, A multi-objective open set orienteering problem, Neural Comput. Appl. 32. doi:10.1007/s00521-020-04798-7.
– start-page: 1256
  year: 2016
  end-page: 1261
  ident: b0115
  article-title: Key challenges and future directions of dynamic multi-objective optimisation
  publication-title: 2016 IEEE Congress on Evolutionary Computation (CEC)
– reference: M. Jiang, Z. Wang, H. Hong, G.G. Yen, Knee point based imbalanced transfer learning for dynamic multi-objective optimization, IEEE Trans. Evol. Comput. (2020) 1–1. doi:10.1109/TEVC.2020.3004027.
– volume: 24
  start-page: 305
  year: 2020
  end-page: 319
  ident: b0075
  article-title: Evolutionary dynamic multiobjective optimization assisted by a support vector regression predictor
  publication-title: IEEE Trans. Evol. Comput.
– volume: 23
  start-page: 788
  year: 2019
  end-page: 802
  ident: b0135
  article-title: ar-moea: a novel preference-based dominance relation for evolutionary multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2019
  end-page: 6
  ident: b0050
  article-title: Design and development of a benchmark for dynamic multi-objective optimisation problem in the context of deep reinforcement learning
  publication-title: 2019 22nd International Conference on Computer and Information Technology (ICCIT)
– reference: Z. Liang, S. Zheng, Z. Zhu, Hybrid of memory and prediction strategies for dynamic multiobjective optimization, Inf. Sci. 485. doi:10.1016/j.ins.2019.01.066.
– volume: 24
  start-page: 708
  year: 2016
  end-page: 723
  ident: b0070
  article-title: Fuzzy multiobjective modeling and optimization for one-shot multiattribute exchanges with indivisible demand
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 46
  start-page: 2862
  year: 2016
  end-page: 2873
  ident: b0080
  article-title: Evolutionary dynamic multiobjective optimization via kalman filter prediction
  publication-title: IEEE Trans. Cybern.
– volume: 85
  year: 2019
  ident: b0220
  article-title: A pareto-based evolutionary algorithm using decomposition and truncation for dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
– volume: 21
  start-page: 65
  year: 2017
  end-page: 82
  ident: b0140
  article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 48
  start-page: 3359
  year: 2018
  end-page: 3370
  ident: b0245
  article-title: Integration of preferences in decomposition multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 24
  start-page: 71
  year: 2016
  end-page: 81
  ident: b0090
  article-title: Learning of fuzzy cognitive maps with varying densities using a multiobjective evolutionary algorithm
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 50
  start-page: 5099
  year: 2020
  end-page: 5112
  ident: b0005
  article-title: A mixture-of-experts prediction framework for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 44
  start-page: 40
  year: 2014
  end-page: 53
  ident: b0195
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 14
  start-page: 801
  year: 2010
  end-page: 818
  ident: b0125
  article-title: The r-dominance: a new dominance relation for interactive evolutionary multicriteria decision making
  publication-title: IEEE Trans. Evol. Comput.
– volume: 24
  start-page: 708
  issue: 3
  year: 2016
  ident: 10.1016/j.ins.2021.04.055_b0070
  article-title: Fuzzy multiobjective modeling and optimization for one-shot multiattribute exchanges with indivisible demand
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2015.2476516
– volume: 21
  start-page: 65
  issue: 1
  year: 2017
  ident: 10.1016/j.ins.2021.04.055_b0140
  article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2574621
– volume: 23
  start-page: 788
  issue: 5
  year: 2019
  ident: 10.1016/j.ins.2021.04.055_b0135
  article-title: ar-moea: a novel preference-based dominance relation for evolutionary multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2884133
– ident: 10.1016/j.ins.2021.04.055_b0100
  doi: 10.1016/j.ins.2019.09.016
– volume: 2018
  start-page: 379
  year: 2018
  ident: 10.1016/j.ins.2021.04.055_b0210
  article-title: Integrating region preferences in multiobjective evolutionary algorithms based on decomposition
  publication-title: Tenth International Conference on Advanced Computational Intelligence (ICACI)
– volume: 13
  start-page: 284
  issue: 2
  year: 2009
  ident: 10.1016/j.ins.2021.04.055_b0145
  article-title: Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.925798
– volume: 15
  start-page: 1891
  issue: 6
  year: 2018
  ident: 10.1016/j.ins.2021.04.055_b0045
  article-title: Robust dynamic multi-objective vehicle routing optimization method
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2017.2685320
– ident: 10.1016/j.ins.2021.04.055_b0200
  doi: 10.1016/j.ejor.2017.03.048
– volume: 24
  start-page: 71
  issue: 1
  year: 2016
  ident: 10.1016/j.ins.2021.04.055_b0090
  article-title: Learning of fuzzy cognitive maps with varying densities using a multiobjective evolutionary algorithm
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2015.2426314
– volume: 58
  start-page: 631
  year: 2017
  ident: 10.1016/j.ins.2021.04.055_b0165
  article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.008
– volume: 24
  start-page: 750
  issue: 4
  year: 2020
  ident: 10.1016/j.ins.2021.04.055_b0130
  article-title: Novel interactive preference-based multiobjective evolutionary optimization for bolt supporting networks
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2951217
– ident: 10.1016/j.ins.2021.04.055_b0180
  doi: 10.1007/978-3-540-70928-2_60
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.ins.2021.04.055_b0215
  article-title: Moea/d: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– ident: 10.1016/j.ins.2021.04.055_b0020
  doi: 10.1111/exsy.12364
– volume: 50
  start-page: 5099
  issue: 12
  year: 2020
  ident: 10.1016/j.ins.2021.04.055_b0005
  article-title: A mixture-of-experts prediction framework for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2909806
– volume: 27
  start-page: 1037
  issue: 5
  year: 2019
  ident: 10.1016/j.ins.2021.04.055_b0065
  article-title: Developing multiobjective equilibrium optimization method for sustainable uncertain supply chain planning problems
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2018.2851508
– ident: 10.1016/j.ins.2021.04.055_b0155
  doi: 10.1007/s00500-019-04423-3
– start-page: 361
  year: 2019
  ident: 10.1016/j.ins.2021.04.055_b0040
  article-title: Multi-objective optimisation of dynamic responses for a rail freight wagon using regression models
– volume: 24
  start-page: 305
  issue: 2
  year: 2020
  ident: 10.1016/j.ins.2021.04.055_b0075
  article-title: Evolutionary dynamic multiobjective optimization assisted by a support vector regression predictor
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2925722
– volume: 22
  start-page: 157
  issue: 1
  year: 2018
  ident: 10.1016/j.ins.2021.04.055_b0060
  article-title: Dynamic multiobjectives optimization with a changing number of objectives
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2669638
– volume: 26
  start-page: 3743
  issue: 6
  year: 2018
  ident: 10.1016/j.ins.2021.04.055_b0085
  article-title: Robust multiobjective optimization with robust consensus
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2018.2848261
– volume: 3
  start-page: 36
  issue: 1
  year: 2019
  ident: 10.1016/j.ins.2021.04.055_b0235
  article-title: Dynamic evolutionary multiobjective optimization for raw ore allocation in mineral processing
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– volume: 14
  start-page: 801
  issue: 5
  year: 2010
  ident: 10.1016/j.ins.2021.04.055_b0125
  article-title: The r-dominance: a new dominance relation for interactive evolutionary multicriteria decision making
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2041060
– volume: 47
  start-page: 4223
  issue: 12
  year: 2017
  ident: 10.1016/j.ins.2021.04.055_b0190
  article-title: Solving multiobjective optimization problems in unknown dynamic environments: an inverse modeling approach
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2602561
– volume: 49
  start-page: 3362
  issue: 9
  year: 2019
  ident: 10.1016/j.ins.2021.04.055_b0150
  article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2842158
– volume: 24
  start-page: 260
  issue: 2
  year: 2020
  ident: 10.1016/j.ins.2021.04.055_b0095
  article-title: Novel prediction strategies for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2922834
– volume: 13
  start-page: 103
  issue: 1
  year: 2009
  ident: 10.1016/j.ins.2021.04.055_b0185
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.920671
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.ins.2021.04.055_b0035
  article-title: Multi-criteria shortest path for rough graph, Journal of Ambient Intelligence and Humanized
  publication-title: Computing
– start-page: 1256
  year: 2016
  ident: 10.1016/j.ins.2021.04.055_b0115
  article-title: Key challenges and future directions of dynamic multi-objective optimisation
  publication-title: 2016 IEEE Congress on Evolutionary Computation (CEC)
  doi: 10.1109/CEC.2016.7743931
– start-page: 1
  year: 2020
  ident: 10.1016/j.ins.2021.04.055_b0160
  article-title: A fast dynamic evolutionary multiobjective algorithm via manifold transfer learning
  publication-title: IEEE Trans. Cybern.
– volume: 18
  start-page: 909
  issue: 6
  year: 2014
  ident: 10.1016/j.ins.2021.04.055_b0250
  article-title: Stable matching-based selection in evolutionary multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2293776
– ident: 10.1016/j.ins.2021.04.055_b0170
  doi: 10.1016/j.ins.2019.01.066
– volume: 24
  start-page: 142
  issue: 1
  year: 2020
  ident: 10.1016/j.ins.2021.04.055_b0175
  article-title: A similarity-based cooperative co-evolutionary algorithm for dynamic interval multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2912204
– ident: 10.1016/j.ins.2021.04.055_b0015
  doi: 10.1007/s00521-020-04798-7
– volume: 2018
  start-page: 103
  year: 2018
  ident: 10.1016/j.ins.2021.04.055_b0025
  article-title: Dynamic multi-objective workflow scheduling for cloud computing based on evolutionary algorithms
  publication-title: IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion)
  doi: 10.1109/UCC-Companion.2018.00042
– volume: 44
  start-page: 40
  issue: 1
  year: 2014
  ident: 10.1016/j.ins.2021.04.055_b0195
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2245892
– ident: 10.1016/j.ins.2021.04.055_b0105
  doi: 10.1016/j.swevo.2018.02.004
– start-page: 1
  year: 2019
  ident: 10.1016/j.ins.2021.04.055_b0050
  article-title: Design and development of a benchmark for dynamic multi-objective optimisation problem in the context of deep reinforcement learning
– volume: 22
  start-page: 378
  issue: 3
  year: 2018
  ident: 10.1016/j.ins.2021.04.055_b0205
  article-title: Integrating weight assignment strategies with nsga-ii for supporting user preference multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2778560
– volume: 47
  start-page: 461
  issue: 2
  year: 2017
  ident: 10.1016/j.ins.2021.04.055_b0055
  article-title: A benchmark test suite for dynamic evolutionary multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– ident: 10.1016/j.ins.2021.04.055_b0010
  doi: 10.1109/TEVC.2020.3004027
– volume: 46
  start-page: 2862
  issue: 12
  year: 2016
  ident: 10.1016/j.ins.2021.04.055_b0080
  article-title: Evolutionary dynamic multiobjective optimization via kalman filter prediction
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2490738
– volume: 50
  start-page: 4732
  issue: 11
  year: 2020
  ident: 10.1016/j.ins.2021.04.055_b0240
  article-title: A hybrid multiobjective memetic algorithm for multiobjective periodic vehicle routing problem with time windows
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
  doi: 10.1109/TSMC.2018.2861879
– ident: 10.1016/j.ins.2021.04.055_b0120
  doi: 10.1016/j.ejor.2008.07.015
– ident: 10.1016/j.ins.2021.04.055_b0030
  doi: 10.1109/TFUZZ.2020.2979119
– volume: 48
  start-page: 3359
  issue: 12
  year: 2018
  ident: 10.1016/j.ins.2021.04.055_b0245
  article-title: Integration of preferences in decomposition multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2859363
– volume: 27
  start-page: 849
  issue: 5
  year: 2019
  ident: 10.1016/j.ins.2021.04.055_b0110
  article-title: Interactive decomposition multiobjective optimization via progressively learned value functions
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2018.2880700
– volume: 8
  start-page: 425
  issue: 5
  year: 2004
  ident: 10.1016/j.ins.2021.04.055_b0225
  article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.831456
– ident: 10.1016/j.ins.2021.04.055_b0230
– volume: 85
  year: 2019
  ident: 10.1016/j.ins.2021.04.055_b0220
  article-title: A pareto-based evolutionary algorithm using decomposition and truncation for dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105673
SSID ssj0004766
Score 2.488863
Snippet Most of the existing dynamic multi-objective evolutionary algorithms (DMOEAs) are effective, which focuses on searching for the approximation of Pareto-optimal...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 175
SubjectTerms Changing preference point
Dynamic multi-objective evolutionary algorithms (DMOEAs)
Reference points
The region of interest (ROI)
Title Dynamic multi-objective optimization algorithm based decomposition and preference
URI https://dx.doi.org/10.1016/j.ins.2021.04.055
Volume 571
WOSCitedRecordID wos000684796000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Lb9MwGLdKxwEOaAzQBmzyAXGgihS7duIcJxjaJjSBNKSKSxQ_Slt1ydQ10_bf73NsJ-l4CJC45O2m8vfL9_L3QOjNWHMizZTb7HYwUIxQUcalAislnhaSGJbIhtKf0rMzMZlknweDOuTCXC_TshQ3N9nlfyU1XANi29TZvyB3-6NwAY6B6LAFssP2jwj_wfWYd6GCUSUXjqWNKmAOFz7rclQsv1er-Xp2MbJiTI-0sbHlPoArFA_wqYB9_dVnLzVPeeF51SGj4efFqu680cYH_M7LWd0KgG9V7RJCOmSezoPfelbVt5UXp94bQUkbbuVdZCFNZiOK0-qkkTVenNBxnFakNEqoa9UVWDF37Vg8MyUp78ll4tqK_sDynfdhAXaKrb5OSVO5Nrxqo5K2XZhubCgwc-OxYOwB2qIpz8QQbR2eHE1Ou4Ta1C1yh_8dlsObwMB7L_q5QtNTUs630RNvXeBDh4qnaGDKHfS4V3NyB-37TBX8FveIiT2Pf4a-ePzge_jBffzgFj-4wQ_ewA8G_OAOP8_R149H5--PI993I1I0S9eRYjItQPCQWAmlE0LgNAMBHScK-L22WjmcG0k5HCthdBYrqqdFxrUkU83HL9CwrEqzizDcZUpIJmlcMJUlRUIZZxL2WnBgA3soDpOXK1-U3vZGWeYh-nCRw3zndr7zmOUw33voXTvk0lVk-d3DLFAk91-FUxVzgM-vh738t2Gv0KPum3iNhutVbfbRQ3W9nl-tDjzI7gAWEZ2k
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+multi-objective+optimization+algorithm+based+decomposition+and+preference&rft.jtitle=Information+sciences&rft.au=Hu%2C+Yaru&rft.au=Zheng%2C+Jinhua&rft.au=Zou%2C+Juan&rft.au=Jiang%2C+Shouyong&rft.date=2021-09-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=571&rft.spage=175&rft.epage=190&rft_id=info:doi/10.1016%2Fj.ins.2021.04.055&rft.externalDocID=S0020025521003844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon