Electrodeposition as an attractive method of NiCoP cathode catalyst for alkaline membrane water electrolysis production
•Method of simple one-step catalyst synthesis and deposition developed.•Energy intensive steps and usage of dangerous components avoided.•Performance and stability tests in electrolysis cell provided.•Distribution of relaxation times method applied in EIS data analysis.•Question of appropriate A(M)W...
Gespeichert in:
| Veröffentlicht in: | Chemical engineering journal advances Jg. 23; S. 100837 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.08.2025
|
| Schlagworte: | |
| ISSN: | 2666-8211, 2666-8211 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Method of simple one-step catalyst synthesis and deposition developed.•Energy intensive steps and usage of dangerous components avoided.•Performance and stability tests in electrolysis cell provided.•Distribution of relaxation times method applied in EIS data analysis.•Question of appropriate A(M)WE EIS data treatment addressed.
Phosphide-based materials are among the favourable catalysts due to their promising properties (catalytic activity, stability, and electrical conductivity) for hydrogen evolution reaction in both alkaline and acidic media. This study reports on preparation and subsequent characterisation of a non-platinum NiCoP catalyst for hydrogen evolution reaction (HER) using facile cathodic electrodeposition on a Ni support without toxic phosphorising agents. In the first step, catalyst synthesis optimisation was performed by monitoring the effect of (i) Ni:Co composition and (ii) phosphorus concentration in the deposition solution. Impact of these parameters on the composition as well as the HER electrocatalytic activity of the resulting catalyst was evaluated. Subsequently, the optimised NiCoP catalyst deposited on Ni foam was used as cathode for the HER in an alkaline membrane water electrolyser. It exhibited significant catalytic activity and promising stability. In summary, the cathodic electrodeposition proved to be a feasible method for producing an active and stable NiCoP catalyst for the HER in an alkaline media.
This publication was supported by the following funding bodies: Ministry of Education, Youth and Sports of the Czech Republic, project "The Energy Conversion and Storage", funded as project No. CZ.02.01.01/00/22_008/0004617 by Programme Johannes Amos Commenius, call Excellent Research, Slovak Research and Development Agency under the contract no. APVV 20-0299. Technological Agency of the Czech Republic under the project No TK02030103 “Research and development of a reversible alkaline fuel cell”. [Display omitted] |
|---|---|
| AbstractList | •Method of simple one-step catalyst synthesis and deposition developed.•Energy intensive steps and usage of dangerous components avoided.•Performance and stability tests in electrolysis cell provided.•Distribution of relaxation times method applied in EIS data analysis.•Question of appropriate A(M)WE EIS data treatment addressed.
Phosphide-based materials are among the favourable catalysts due to their promising properties (catalytic activity, stability, and electrical conductivity) for hydrogen evolution reaction in both alkaline and acidic media. This study reports on preparation and subsequent characterisation of a non-platinum NiCoP catalyst for hydrogen evolution reaction (HER) using facile cathodic electrodeposition on a Ni support without toxic phosphorising agents. In the first step, catalyst synthesis optimisation was performed by monitoring the effect of (i) Ni:Co composition and (ii) phosphorus concentration in the deposition solution. Impact of these parameters on the composition as well as the HER electrocatalytic activity of the resulting catalyst was evaluated. Subsequently, the optimised NiCoP catalyst deposited on Ni foam was used as cathode for the HER in an alkaline membrane water electrolyser. It exhibited significant catalytic activity and promising stability. In summary, the cathodic electrodeposition proved to be a feasible method for producing an active and stable NiCoP catalyst for the HER in an alkaline media.
This publication was supported by the following funding bodies: Ministry of Education, Youth and Sports of the Czech Republic, project "The Energy Conversion and Storage", funded as project No. CZ.02.01.01/00/22_008/0004617 by Programme Johannes Amos Commenius, call Excellent Research, Slovak Research and Development Agency under the contract no. APVV 20-0299. Technological Agency of the Czech Republic under the project No TK02030103 “Research and development of a reversible alkaline fuel cell”. [Display omitted] |
| ArticleNumber | 100837 |
| Author | Ďurovič, Martin Bystron, Tomas Bouzek, Karel Hnát, Jaromír Strečková, Magdaléna |
| Author_xml | – sequence: 1 givenname: Jaromír orcidid: 0000-0001-7358-9889 surname: Hnát fullname: Hnát, Jaromír organization: Department of Inorganic Technology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic – sequence: 2 givenname: Martin orcidid: 0000-0002-4977-5742 surname: Ďurovič fullname: Ďurovič, Martin organization: Department of Inorganic Technology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic – sequence: 3 givenname: Tomas orcidid: 0000-0002-1581-247X surname: Bystron fullname: Bystron, Tomas organization: Department of Inorganic Technology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic – sequence: 4 givenname: Magdaléna orcidid: 0000-0002-4090-1124 surname: Strečková fullname: Strečková, Magdaléna organization: Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovak Republic, Slovakia – sequence: 5 givenname: Karel orcidid: 0000-0002-0394-0634 surname: Bouzek fullname: Bouzek, Karel email: bouzekk@vscht.cz organization: Department of Inorganic Technology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic |
| BookMark | eNp9UMtOwzAQtBBIlNIf4OQfaLHdxIklLqgqD6kCDnC2ts5aOKRxZZtW_XschQMnLvvSzszuXJHz3vdIyA1nC864vG0XBltYCCbKPGD1sjojEyGlnNeC8_M_9SWZxdgyxkTN-bLgE3Jcd2hS8A3ufXTJ-Z5CpJBjSgFMcgekO0yfvqHe0he38m_UwNDjkKE7xUStDxS6L-hcP2zvtgFycYSEgeLIn_dcpPss9G0GlWtyYaGLOPvNU_LxsH5fPc03r4_Pq_vN3AhVpbnhViopqqrcqkIqwYxRSpYMlCgAm4JJKBqGleXVFo2CGixK2yihhCk5h-WUiJHXBB9jQKv3we0gnDRnenBPt3pwTw_u6dG9DLobQZgvOzgMOhqHvcHGhfyNbrz7D_4DzPN8yg |
| Cites_doi | 10.1016/j.ccr.2024.216112 10.1002/adfm.201503666 10.1016/j.apsusc.2020.145715 10.1021/acs.chemmater.6b02148 10.1179/095066003225008482 10.1021/ic051004d 10.1016/S0013-4686(00)00549-1 10.1016/j.ijhydene.2022.08.087 10.1016/j.ccr.2022.214956 10.1016/S0360-3199(99)00089-0 10.1002/adfm.201706120 10.1039/C6TA06975D 10.1002/cssc.202000416 10.1002/er.6001 10.1016/j.electacta.2010.10.093 10.1016/j.cej.2021.129686 10.1002/adma.201605502 10.1021/acsaem.0c00733 10.1002/sia.2802 10.1021/acsami.6b07785 10.1016/j.jpowsour.2021.229708 10.1038/ncomms5695 10.1016/j.xcrp.2020.100136 10.1021/acsami.7b13359 10.1002/adfm.202208358 10.1039/D0TA10723A 10.1039/C6TA00575F 10.1016/j.triboint.2009.11.007 10.1016/j.apcatb.2019.118245 10.1039/C9SE01240K 10.1016/j.electacta.2016.08.145 10.1002/cphc.202200012 10.1149/1.1391850 10.1016/j.jcis.2022.04.127 10.1016/j.ijhydene.2008.12.097 10.1016/S0168-583X(00)00686-8 10.1039/C7TA11364A 10.1021/jp5054452 10.1002/adfm.202006484 10.1016/j.jelechem.2019.01.021 10.1016/j.electacta.2019.135488 10.1116/1.5065501 10.1016/j.electacta.2019.03.160 10.1002/cssc.202200027 10.1038/s41598-020-80683-6 10.1016/S0022-0728(00)00317-X 10.1016/j.pnsc.2016.05.014 10.1039/C9TA14037A 10.1002/cctc.201801389 10.1016/j.apsusc.2022.153681 10.1016/j.jpowsour.2025.236597 10.1016/j.electacta.2017.07.165 10.1002/sia.5933 10.1002/adfm.201706847 10.1016/j.ijhydene.2017.02.125 10.1039/C9TA07749A 10.1021/acs.nanolett.4c03410 10.1016/j.cattod.2019.07.001 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s) |
| Copyright_xml | – notice: 2025 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.ceja.2025.100837 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2666-8211 |
| ExternalDocumentID | 10_1016_j_ceja_2025_100837 S2666821125001346 |
| GroupedDBID | 0R~ 6I. AAEDW AAFTH AALRI AAXUO AAYWO ACVFH ADCNI ADVLN AEUPX AEXQZ AFJKZ AFPUW AIGII AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP EBS FDB GROUPED_DOAJ M~E OK1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c297t-c1f6962775b946920cc99650a924aed406a4d0e7f17bec9a8afe6fd9292c511a3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001562356900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2666-8211 |
| IngestDate | Thu Nov 27 01:01:20 EST 2025 Wed Dec 10 14:41:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Structural characterisation Distribution of relaxation times Galvanic NiCoP catalyst deposition Analysis of A(M)WE EIS data Stability testing |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-c1f6962775b946920cc99650a924aed406a4d0e7f17bec9a8afe6fd9292c511a3 |
| ORCID | 0000-0002-4977-5742 0000-0002-4090-1124 0000-0001-7358-9889 0000-0002-1581-247X 0000-0002-0394-0634 |
| OpenAccessLink | http://dx.doi.org/10.1016/j.ceja.2025.100837 |
| ParticipantIDs | crossref_primary_10_1016_j_ceja_2025_100837 elsevier_sciencedirect_doi_10_1016_j_ceja_2025_100837 |
| PublicationCentury | 2000 |
| PublicationDate | August 2025 2025-08-00 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: August 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemical engineering journal advances |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Miller, Bouzek, Hnat, Loos, Bernäcker, Weißgärber, Röntzsch, Meier-Haack (bib0002) 2020; 4 Liu, Gong, Zhang, Zheng, Mao, Liu, Li, Hao (bib0004) 2020; 262 Ďurovič, Hnát, Bouzek (bib0007) 2021; 493 Kim, Cho, Choi, Park (bib0052) 2009; 34 Vincent, Lee, Kim (bib0001) 2021; 11 Baer, Artyushkova, Brundle, Castle, Engelhard, Gaskell, Grant, Haasch, Linford, Powell, Shard, Sherwood, Smentkowski (bib0045) 2019; 37 Weng, Ren, Yuan (bib0021) 2020; 13 Thenuwara, Dheer, Attanayake, Yan, Waghmare, Strongin (bib0016) 2018; 10 Girault, Grosseau-Poussard, Dinhut, Marechal (bib0059) 2001; 174 Djokić (bib0025) 1999; 146 Ye, Wang, Han, Tao (bib0011) 2025; 637 Callejas, Read, Roske, Lewis, Schaak (bib0023) 2016; 28 Cabrera-German, Gomez-Sosa, Herrera-Gomez (bib0048) 2016; 48 Hnát, Plevová, Žitka, Paidar, Bouzek (bib0040) 2017; 248 Pan, Lin, Chen, Liu, Liu (bib0042) 2016; 4 Zhang, Wang, Yu, Wen, Zhu, Yang, Sun, Wang, Hu (bib0013) 2017; 29 Bhunia, Chandra, Sharma, Pradhan, Kim (bib0009) 2023; 478 Mohammadi, Bahari, Ahmadi Daryakenari, Jalali Koldeh, Zhang, Tian, Shen (bib0053) 2022; 47 Wu, Dong, Jiang, Wang, Chen, Wu (bib0026) 2016; 26 Jo, Kwon, Cho, Kim, Eom (bib0029) 2021; 359 Huang, Ouyang, Zou, Li, Liu (bib0024) 2018; 6 Li, Cai, Nie, Tjong (bib0049) 2019; 835 Men, Li, Zhou, Chen, Luo (bib0030) 2020; 1 Wu, Yu, Zhang, McElhenny, Luo, Karim, Chen, Ren (bib0031) 2021; 31 Eftekhari (bib0014) 2017; 42 Jakšić, Vojnović, Krstajić (bib0054) 2000; 45 Munir, Nasir, Haq, Iqbal, Hussain, Qurashi (bib0033) 2024; 521 Kazmi, Iqbal, Kim, Jung (bib0017) 2017; 227 Grosvenor, Wik, Cavell, Mar (bib0044) 2005; 44 Babu, Huang, Anandhababu, Ghausi, Wang (bib0012) 2017; 9 Daly, Barry (bib0034) 2003; 48 Wannasen, Swatsitang, Pinitsoontorn (bib0046) 2021; 45 Qi, Lee (bib0050) 2010; 43 Gong, Zhou, Tsai, Zhou, Guan, Lin, Zhang, Hu, Wang, Yang, Pennycook, Hwang, Dai (bib0055) 2014; 5 Herraiz-Cardona, Ortega, Pérez-Herranz (bib0060) 2011; 56 Biesinger (bib0039) 2022; 597 Gao, Yang, Zhang, Yu, Hua, Li, Dong (bib0018) 2016; 215 Bernasconi, Khalil, Iaquinta, Lenardi, Nobili, Magagnin (bib0043) 2020; 3 Bai, Li, Mao, Li, Dong (bib0036) 2016; 8 Xu, Chen, Han, Wang, Wang, Zheng, Pang, Wang, Li, Xia, Hao (bib0022) 2024; 24 A. Lasia, Modeling of Impedance of Porous Electrodes, 2009, pp. 67-137. Pan, Chen, Lin, Cui, Sun, Liu, Liu (bib0032) 2016; 4 Hitz, Lasia (bib0058) 2001; 500 Zhu, Pei, Liu, Ren, Zhen, Yuan (bib0027) 2015; 25 Elsener, Atzei, Królikowski, Rossi (bib0051) 2008; 40 Anandhababu, Huang, Babu, Wu, Wang (bib0010) 2018; 28 Che, Zhou, Liu, Tan, Li (bib0037) 2021; 9 Chai, Liu, Pei, Wang (bib0035) 2021; 420 Lang, Qadeer, Shen, Zhang, Yang, An, Pan, Zou (bib0019) 2019; 7 Zhang, Li, Hähnel, Naumann, Lin, Azimi, Schweizer, Maijenburg, Wehrspohn (bib0047) 2018; 28 Zhang, Qi, Sun, Chen, Wang, Zhang, Zeng, Chen, Wang, Xu, Ma (bib0006) 2020; 512 Liu, Xu, Yang, Wang, Xia (bib0008) 2023; 33 Burchardt (bib0041) 2000; 25 Anantharaj, Kundu, Noda (bib0020) 2020; 8 Santoro, Lavacchi, Mustarelli, Di Noto, Elbaz, Dekel, Jaouen (bib0003) 2022; 15 Duan, Guo, Gao, Liu, Wang (bib0038) 2022; 622 Zhou, Sun, Shen, Ma, Wang, Zhao (bib0015) 2019; 306 Bergmann, Schlüter (bib0056) 2022; 23 Liu, Lv, Wang, Zhang, Huang, Wang, Liu, Zheng, Dai (bib0005) 2020; 333 Saadi, Carim, Verlage, Hemminger, Lewis, Soriaga (bib0028) 2014; 118 Gao (10.1016/j.ceja.2025.100837_bib0018) 2016; 215 Wu (10.1016/j.ceja.2025.100837_bib0026) 2016; 26 Bernasconi (10.1016/j.ceja.2025.100837_bib0043) 2020; 3 Liu (10.1016/j.ceja.2025.100837_bib0008) 2023; 33 Zhang (10.1016/j.ceja.2025.100837_bib0013) 2017; 29 Anandhababu (10.1016/j.ceja.2025.100837_bib0010) 2018; 28 Huang (10.1016/j.ceja.2025.100837_bib0024) 2018; 6 Pan (10.1016/j.ceja.2025.100837_bib0032) 2016; 4 Callejas (10.1016/j.ceja.2025.100837_bib0023) 2016; 28 Santoro (10.1016/j.ceja.2025.100837_bib0003) 2022; 15 Kazmi (10.1016/j.ceja.2025.100837_bib0017) 2017; 227 Che (10.1016/j.ceja.2025.100837_bib0037) 2021; 9 Lang (10.1016/j.ceja.2025.100837_bib0019) 2019; 7 Qi (10.1016/j.ceja.2025.100837_bib0050) 2010; 43 Miller (10.1016/j.ceja.2025.100837_bib0002) 2020; 4 Ye (10.1016/j.ceja.2025.100837_bib0011) 2025; 637 Munir (10.1016/j.ceja.2025.100837_bib0033) 2024; 521 Mohammadi (10.1016/j.ceja.2025.100837_bib0053) 2022; 47 Grosvenor (10.1016/j.ceja.2025.100837_bib0044) 2005; 44 Hitz (10.1016/j.ceja.2025.100837_bib0058) 2001; 500 Duan (10.1016/j.ceja.2025.100837_bib0038) 2022; 622 Vincent (10.1016/j.ceja.2025.100837_bib0001) 2021; 11 Zhou (10.1016/j.ceja.2025.100837_bib0015) 2019; 306 Bergmann (10.1016/j.ceja.2025.100837_bib0056) 2022; 23 Ďurovič (10.1016/j.ceja.2025.100837_bib0007) 2021; 493 Herraiz-Cardona (10.1016/j.ceja.2025.100837_bib0060) 2011; 56 Wannasen (10.1016/j.ceja.2025.100837_bib0046) 2021; 45 Wu (10.1016/j.ceja.2025.100837_bib0031) 2021; 31 Thenuwara (10.1016/j.ceja.2025.100837_bib0016) 2018; 10 Babu (10.1016/j.ceja.2025.100837_bib0012) 2017; 9 Bai (10.1016/j.ceja.2025.100837_bib0036) 2016; 8 Men (10.1016/j.ceja.2025.100837_bib0030) 2020; 1 Biesinger (10.1016/j.ceja.2025.100837_bib0039) 2022; 597 Cabrera-German (10.1016/j.ceja.2025.100837_bib0048) 2016; 48 Eftekhari (10.1016/j.ceja.2025.100837_bib0014) 2017; 42 Weng (10.1016/j.ceja.2025.100837_bib0021) 2020; 13 Zhu (10.1016/j.ceja.2025.100837_bib0027) 2015; 25 Jakšić (10.1016/j.ceja.2025.100837_bib0054) 2000; 45 Saadi (10.1016/j.ceja.2025.100837_bib0028) 2014; 118 Zhang (10.1016/j.ceja.2025.100837_bib0006) 2020; 512 Liu (10.1016/j.ceja.2025.100837_bib0004) 2020; 262 Baer (10.1016/j.ceja.2025.100837_bib0045) 2019; 37 Elsener (10.1016/j.ceja.2025.100837_bib0051) 2008; 40 Xu (10.1016/j.ceja.2025.100837_bib0022) 2024; 24 Girault (10.1016/j.ceja.2025.100837_bib0059) 2001; 174 Liu (10.1016/j.ceja.2025.100837_bib0005) 2020; 333 10.1016/j.ceja.2025.100837_bib0057 Burchardt (10.1016/j.ceja.2025.100837_bib0041) 2000; 25 Bhunia (10.1016/j.ceja.2025.100837_bib0009) 2023; 478 Kim (10.1016/j.ceja.2025.100837_bib0052) 2009; 34 Jo (10.1016/j.ceja.2025.100837_bib0029) 2021; 359 Chai (10.1016/j.ceja.2025.100837_bib0035) 2021; 420 Li (10.1016/j.ceja.2025.100837_bib0049) 2019; 835 Anantharaj (10.1016/j.ceja.2025.100837_bib0020) 2020; 8 Hnát (10.1016/j.ceja.2025.100837_bib0040) 2017; 248 Pan (10.1016/j.ceja.2025.100837_bib0042) 2016; 4 Djokić (10.1016/j.ceja.2025.100837_bib0025) 1999; 146 Daly (10.1016/j.ceja.2025.100837_bib0034) 2003; 48 Gong (10.1016/j.ceja.2025.100837_bib0055) 2014; 5 Zhang (10.1016/j.ceja.2025.100837_bib0047) 2018; 28 |
| References_xml | – volume: 478 year: 2023 ident: bib0009 article-title: A critical review on transition metal phosphide based catalyst for electrochemical hydrogen evolution reaction: Gibbs free energy, composition, stability, and true identity of active site publication-title: Coord. Chem. Rev. – volume: 48 start-page: 252 year: 2016 end-page: 256 ident: bib0048 article-title: Accurate peak fitting and subsequent quantitative composition analysis of the spectrum of Co 2p obtained with Al Kα radiation: I: cobalt spinel publication-title: Surface Interface Anal. – volume: 25 start-page: 7337 year: 2015 end-page: 7347 ident: bib0027 article-title: Self-Supported Cobalt Phosphide Mesoporous Nanorod Arrays: A Flexible and Bifunctional Electrode for Highly Active Electrocatalytic Water Reduction and Oxidation publication-title: Adv. Funct. Mater. – volume: 28 year: 2018 ident: bib0047 article-title: Bifunctional Heterostructure Assembly of NiFe LDH Nanosheets on NiCoP Nanowires for Highly Efficient and Stable Overall Water Splitting publication-title: Adv. Funct. Mater. – volume: 6 start-page: 7420 year: 2018 end-page: 7427 ident: bib0024 article-title: Ultrathin NiCo2Px nanosheets strongly coupled with CNTs as efficient and robust electrocatalysts for overall water splitting publication-title: J. Mater. Chem. A – volume: 521 year: 2024 ident: bib0033 article-title: Benchmarking stable Electrocatalysts for green hydrogen production: A chemist perspective publication-title: Coord. Chem. Rev. – volume: 5 start-page: 4695 year: 2014 ident: bib0055 article-title: Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis publication-title: Nat. Commun. – volume: 28 start-page: 6017 year: 2016 end-page: 6044 ident: bib0023 article-title: Synthesis, Characterization, and Properties of Metal Phosphide Catalysts for the Hydrogen-Evolution Reaction publication-title: Chem. Mater. – volume: 835 start-page: 81 year: 2019 end-page: 85 ident: bib0049 article-title: Porous Ni3(PO4)2 thin film as a binder-free and low-cost anode of a high-capacity lithium-ion battery publication-title: J. Electroanal. Chem. – volume: 262 year: 2020 ident: bib0004 article-title: Engineering Ni2P-NiSe2 heterostructure interface for highly efficient alkaline hydrogen evolution publication-title: Appl. Catal. B – volume: 24 start-page: 12254 year: 2024 end-page: 12262 ident: bib0022 article-title: Ultrafast Synthesis of Transition Metal Phosphides in Air via Pulsed Laser Shock publication-title: Nano Lett. – volume: 40 year: 2008 ident: bib0051 article-title: Effect of phosphorus concentration on the electronic structure of nanocrystalline electrodeposited Ni–P alloys: an XPS and XAES investigation publication-title: Surface Interf. Anal. – volume: 8 start-page: 4174 year: 2020 end-page: 4192 ident: bib0020 article-title: Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction publication-title: J. Mater. Chem. A – volume: 43 start-page: 810 year: 2010 end-page: 814 ident: bib0050 article-title: XPS study of CMP mechanisms of NiP coating for hard disk drive substrates publication-title: Tribol. Int. – volume: 3 start-page: 6525 year: 2020 end-page: 6535 ident: bib0043 article-title: Nickel Phosphides Fabricated through a Codeposition–Annealing Technique as Low-Cost Electrocatalytic Layers for Efficient Hydrogen Evolution Reaction publication-title: ACS. Appl. Energy Mater. – volume: 174 start-page: 439 year: 2001 end-page: 452 ident: bib0059 article-title: Influence of a chromium ion implantation on the passive behaviour of nickel in artificial sea-water: An EIS and XPS study publication-title: Nuclear Instrum. Method. Phys. Res. Sect. B – volume: 48 start-page: 326 year: 2003 end-page: 338 ident: bib0034 article-title: Electrochemical nickel-phosphorus alloy formation publication-title: Int. Mater. Rev. – volume: 29 year: 2017 ident: bib0013 article-title: Ternary NiCo2 Px Nanowires as pH-Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction publication-title: Adv. Mater. – volume: 7 start-page: 20579 year: 2019 end-page: 20583 ident: bib0019 article-title: A Co–Mo2N composite on a nitrogen-doped carbon matrix with hydrogen evolution activity comparable to that of Pt/C in alkaline media publication-title: J. Mater. Chem. A – volume: 13 start-page: 3357 year: 2020 end-page: 3375 ident: bib0021 article-title: Transition Metal Phosphide-Based Materials for Efficient Electrochemical Hydrogen Evolution: A Critical Review publication-title: ChemSusChem. – volume: 4 start-page: 2114 year: 2020 end-page: 2133 ident: bib0002 article-title: Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions publication-title: Sustain. Energy Fuels. – volume: 45 start-page: 4151 year: 2000 end-page: 4158 ident: bib0054 article-title: Kinetic analysis of hydrogen evolution at Ni–Mo alloy electrodes publication-title: Electrochim. Acta – volume: 56 start-page: 1308 year: 2011 end-page: 1315 ident: bib0060 article-title: Impedance study of hydrogen evolution on Ni/Zn and Ni–Co/Zn stainless steel based electrodeposits publication-title: Electrochim. Acta – volume: 9 start-page: 5833 year: 2021 end-page: 5847 ident: bib0037 article-title: Synthesis of an in situ core–shell interlink ultrathin-nanosheet Fe@FexNiO/Ni@NiyCoP nanohybrid by scalable layer-to-layer assembly strategy as an ultra-highly efficient bifunctional electrocatalyst for alkaline/neutral water reduction/oxidation publication-title: J. Mater. Chem. A – volume: 28 year: 2018 ident: bib0010 article-title: Oriented Growth of ZIF-67 to Derive 2D Porous CoPO Nanosheets for Electrochemical-/Photovoltage-Driven Overall Water Splitting publication-title: Adv. Funct. Mater. – volume: 42 start-page: 11053 year: 2017 end-page: 11077 ident: bib0014 article-title: Electrocatalysts for hydrogen evolution reaction publication-title: Int. J. Hydrogen. Energy – volume: 359 start-page: 35 year: 2021 end-page: 42 ident: bib0029 article-title: Enhanced activity and stability of Co-Ni-P-B catalyst for the hydrogen evolution reaction via predeposition of Co-Ni on a Cu substrate publication-title: Catal. Today – volume: 47 start-page: 34943 year: 2022 end-page: 34954 ident: bib0053 article-title: NiCoP nanoarchitectures: One-step controlled electrodeposition and their application as efficient electrocatalysts for boosting hydrogen evolution reaction publication-title: Int. J. Hydrogen. Energy – volume: 26 start-page: 303 year: 2016 end-page: 307 ident: bib0026 article-title: Electrodeposited synthesis of self-supported Ni-P cathode for efficient electrocatalytic hydrogen generation publication-title: Progress Natural Sci. – volume: 11 start-page: 293 year: 2021 ident: bib0001 article-title: Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production publication-title: Sci. Rep. – volume: 597 year: 2022 ident: bib0039 article-title: Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: Insights from a multi-user facility data review publication-title: Appl. Surf. Sci. – volume: 9 start-page: 38621 year: 2017 end-page: 38628 ident: bib0012 article-title: Mixed-Metal–Organic Framework Self-Template Synthesis of Porous Hybrid Oxyphosphides for Efficient Oxygen Evolution Reaction publication-title: ACS. Appl. Mater. Interfaces. – volume: 10 start-page: 4832 year: 2018 end-page: 4837 ident: bib0016 article-title: Co-Mo-P Based Electrocatalyst for Superior Reactivity in the Alkaline Hydrogen Evolution Reaction publication-title: ChemCatChem. – volume: 512 year: 2020 ident: bib0006 article-title: Facile route of nitrogen doping in nickel cobalt phosphide for highly efficient hydrogen evolution in both acid and alkaline electrolytes publication-title: Appl. Surf. Sci. – volume: 44 start-page: 8988 year: 2005 end-page: 8998 ident: bib0044 article-title: Examination of the Bonding in Binary Transition-Metal Monophosphides MP (M = Cr, Mn, Fe, Co) by X-Ray Photoelectron Spectroscopy publication-title: Inorg. Chem. – reference: A. Lasia, Modeling of Impedance of Porous Electrodes, 2009, pp. 67-137. – volume: 118 start-page: 29294 year: 2014 end-page: 29300 ident: bib0028 article-title: CoP as an Acid-Stable Active Electrocatalyst for the Hydrogen-Evolution Reaction: Electrochemical Synthesis, Interfacial Characterization and Performance Evaluation publication-title: J. Phys. Chem. C – volume: 1 year: 2020 ident: bib0030 article-title: Trends in Alkaline Hydrogen Evolution Activity on Cobalt Phosphide Electrocatalysts Doped with Transition Metals publication-title: Cell Reports Phys. Sci. – volume: 23 start-page: 14 year: 2022 ident: bib0056 article-title: Introducing Alternative Algorithms for the Determination of the Distribution of Relaxation Times publication-title: Chemphyschem. – volume: 25 start-page: 627 year: 2000 end-page: 634 ident: bib0041 article-title: The hydrogen evolution reaction on NiPx alloys publication-title: Int. J. Hydrogen. Energy – volume: 31 year: 2021 ident: bib0031 article-title: Heterogeneous Bimetallic Phosphide Ni2P-Fe2P as an Efficient Bifunctional Catalyst for Water/Seawater Splitting publication-title: Adv. Funct. Mater. – volume: 215 start-page: 609 year: 2016 end-page: 616 ident: bib0018 article-title: Electrochemical fabrication of porous Ni-Cu alloy nanosheets with high catalytic activity for hydrogen evolution publication-title: Electrochim. Acta – volume: 37 year: 2019 ident: bib0045 article-title: Practical Guides for X-Ray Photoelectron Spectroscopy (XPS): First Steps in planning, conducting and reporting XPS measurements publication-title: J. Vacuum Sci. Technol. A, Vacuum, Surfaces, Films – volume: 500 start-page: 213 year: 2001 end-page: 222 ident: bib0058 article-title: Experimental study and modeling of impedance of the her on porous Ni electrodes publication-title: J. Electroanal. Chem. – volume: 227 year: 2017 ident: bib0017 article-title: Catalytic Activity of Urchin-like Ni nanoparticles Prepared by Solvothermal Method for Hydrogen Evolution Reaction in Alkaline Solution publication-title: Electrochim. Acta – volume: 45 start-page: 3075 year: 2021 end-page: 3088 ident: bib0046 article-title: Flexible supercapacitors based on mesoporous nanocrystalline cobalt ammonium phosphates and bacterial cellulose composite electrode publication-title: Int. J. Energy Res. – volume: 333 year: 2020 ident: bib0005 article-title: Improving the HER activity of Ni3FeN to convert the superior OER electrocatalyst to an efficient bifunctional electrocatalyst for overall water splitting by doping with molybdenum publication-title: Electrochim. Acta – volume: 637 year: 2025 ident: bib0011 article-title: Constructing Mo-Co2P/Ni12P5 heterostructures as highly efficient electrocatalysts for overall water splitting publication-title: J. Power. Sources. – volume: 248 start-page: 547 year: 2017 end-page: 555 ident: bib0040 article-title: Anion-selective materials with 1,4-diazabicyclo[2.2.2]octane functional groups for advanced alkaline water electrolysis publication-title: Electrochim. Acta – volume: 33 year: 2023 ident: bib0008 article-title: Rational Design of Transition Metal Phosphide-Based Electrocatalysts for Hydrogen Evolution publication-title: Adv. Funct. Mater. – volume: 15 year: 2022 ident: bib0003 article-title: What is Next in Anion-Exchange Membrane Water Electrolyzers? Bottlenecks, Benefits, and Future publication-title: ChemSusChem. – volume: 34 start-page: 2622 year: 2009 end-page: 2630 ident: bib0052 article-title: Fabrication of porous Co–Ni–P catalysts by electrodeposition and their catalytic characteristics for the generation of hydrogen from an alkaline NaBH4 solution publication-title: Int. J. Hydrogen. Energy – volume: 146 start-page: 1824 year: 1999 ident: bib0025 article-title: Electrodeposition of Amorphous Alloys Based on the Iron Group of Metals publication-title: J. Electrochem. Soc. – volume: 493 year: 2021 ident: bib0007 article-title: Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A comparative review publication-title: J. Power. Sources. – volume: 4 start-page: 14675 year: 2016 end-page: 14686 ident: bib0032 article-title: Cobalt nickel phosphide nanoparticles decorated carbon nanotubes as advanced hybrid catalysts for hydrogen evolution publication-title: J. Mater. Chem. A – volume: 4 start-page: 4745 year: 2016 end-page: 4754 ident: bib0042 article-title: Cobalt phosphide-based electrocatalysts: Synthesis and phase catalytic activity comparison for hydrogen evolution publication-title: J. Mater. Chem. A – volume: 306 start-page: 651 year: 2019 end-page: 659 ident: bib0015 article-title: Fabrication of 3D microporous amorphous metallic phosphides for high-efficiency hydrogen evolution reaction publication-title: Electrochim. Acta – volume: 420 year: 2021 ident: bib0035 article-title: Electrodeposited amorphous cobalt-nickel-phosphide-derived films as catalysts for electrochemical overall water splitting publication-title: Chem. Eng. J. – volume: 8 start-page: 29400 year: 2016 end-page: 29407 ident: bib0036 article-title: One-Step Electrodeposition of Co/CoP Film on Ni Foam for Efficient Hydrogen Evolution in Alkaline Solution publication-title: ACS. Appl. Mater. Interfaces. – volume: 622 start-page: 250 year: 2022 end-page: 260 ident: bib0038 article-title: Electrodeposition of cobalt-iron bimetal phosphide on Ni foam as a bifunctional electrocatalyst for efficient overall water splitting publication-title: J. Colloid. Interface Sci. – volume: 521 year: 2024 ident: 10.1016/j.ceja.2025.100837_bib0033 article-title: Benchmarking stable Electrocatalysts for green hydrogen production: A chemist perspective publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2024.216112 – volume: 25 start-page: 7337 issue: 47 year: 2015 ident: 10.1016/j.ceja.2025.100837_bib0027 article-title: Self-Supported Cobalt Phosphide Mesoporous Nanorod Arrays: A Flexible and Bifunctional Electrode for Highly Active Electrocatalytic Water Reduction and Oxidation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503666 – volume: 512 year: 2020 ident: 10.1016/j.ceja.2025.100837_bib0006 article-title: Facile route of nitrogen doping in nickel cobalt phosphide for highly efficient hydrogen evolution in both acid and alkaline electrolytes publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145715 – volume: 28 start-page: 6017 issue: 17 year: 2016 ident: 10.1016/j.ceja.2025.100837_bib0023 article-title: Synthesis, Characterization, and Properties of Metal Phosphide Catalysts for the Hydrogen-Evolution Reaction publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02148 – volume: 48 start-page: 326 issue: 5 year: 2003 ident: 10.1016/j.ceja.2025.100837_bib0034 article-title: Electrochemical nickel-phosphorus alloy formation publication-title: Int. Mater. Rev. doi: 10.1179/095066003225008482 – volume: 44 start-page: 8988 issue: 24 year: 2005 ident: 10.1016/j.ceja.2025.100837_bib0044 article-title: Examination of the Bonding in Binary Transition-Metal Monophosphides MP (M = Cr, Mn, Fe, Co) by X-Ray Photoelectron Spectroscopy publication-title: Inorg. Chem. doi: 10.1021/ic051004d – volume: 45 start-page: 4151 issue: 25 year: 2000 ident: 10.1016/j.ceja.2025.100837_bib0054 article-title: Kinetic analysis of hydrogen evolution at Ni–Mo alloy electrodes publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(00)00549-1 – volume: 47 start-page: 34943 issue: 82 year: 2022 ident: 10.1016/j.ceja.2025.100837_bib0053 article-title: NiCoP nanoarchitectures: One-step controlled electrodeposition and their application as efficient electrocatalysts for boosting hydrogen evolution reaction publication-title: Int. J. Hydrogen. Energy doi: 10.1016/j.ijhydene.2022.08.087 – volume: 478 year: 2023 ident: 10.1016/j.ceja.2025.100837_bib0009 article-title: A critical review on transition metal phosphide based catalyst for electrochemical hydrogen evolution reaction: Gibbs free energy, composition, stability, and true identity of active site publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214956 – volume: 25 start-page: 627 issue: 7 year: 2000 ident: 10.1016/j.ceja.2025.100837_bib0041 article-title: The hydrogen evolution reaction on NiPx alloys publication-title: Int. J. Hydrogen. Energy doi: 10.1016/S0360-3199(99)00089-0 – volume: 28 issue: 9 year: 2018 ident: 10.1016/j.ceja.2025.100837_bib0010 article-title: Oriented Growth of ZIF-67 to Derive 2D Porous CoPO Nanosheets for Electrochemical-/Photovoltage-Driven Overall Water Splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706120 – volume: 4 start-page: 14675 issue: 38 year: 2016 ident: 10.1016/j.ceja.2025.100837_bib0032 article-title: Cobalt nickel phosphide nanoparticles decorated carbon nanotubes as advanced hybrid catalysts for hydrogen evolution publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06975D – volume: 13 start-page: 3357 issue: 13 year: 2020 ident: 10.1016/j.ceja.2025.100837_bib0021 article-title: Transition Metal Phosphide-Based Materials for Efficient Electrochemical Hydrogen Evolution: A Critical Review publication-title: ChemSusChem. doi: 10.1002/cssc.202000416 – volume: 45 start-page: 3075 issue: 2 year: 2021 ident: 10.1016/j.ceja.2025.100837_bib0046 article-title: Flexible supercapacitors based on mesoporous nanocrystalline cobalt ammonium phosphates and bacterial cellulose composite electrode publication-title: Int. J. Energy Res. doi: 10.1002/er.6001 – volume: 56 start-page: 1308 issue: 3 year: 2011 ident: 10.1016/j.ceja.2025.100837_bib0060 article-title: Impedance study of hydrogen evolution on Ni/Zn and Ni–Co/Zn stainless steel based electrodeposits publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.10.093 – volume: 420 year: 2021 ident: 10.1016/j.ceja.2025.100837_bib0035 article-title: Electrodeposited amorphous cobalt-nickel-phosphide-derived films as catalysts for electrochemical overall water splitting publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129686 – volume: 29 issue: 9 year: 2017 ident: 10.1016/j.ceja.2025.100837_bib0013 article-title: Ternary NiCo2 Px Nanowires as pH-Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction publication-title: Adv. Mater. doi: 10.1002/adma.201605502 – volume: 3 start-page: 6525 issue: 7 year: 2020 ident: 10.1016/j.ceja.2025.100837_bib0043 article-title: Nickel Phosphides Fabricated through a Codeposition–Annealing Technique as Low-Cost Electrocatalytic Layers for Efficient Hydrogen Evolution Reaction publication-title: ACS. Appl. Energy Mater. doi: 10.1021/acsaem.0c00733 – volume: 40 year: 2008 ident: 10.1016/j.ceja.2025.100837_bib0051 article-title: Effect of phosphorus concentration on the electronic structure of nanocrystalline electrodeposited Ni–P alloys: an XPS and XAES investigation publication-title: Surface Interf. Anal. doi: 10.1002/sia.2802 – volume: 8 start-page: 29400 issue: 43 year: 2016 ident: 10.1016/j.ceja.2025.100837_bib0036 article-title: One-Step Electrodeposition of Co/CoP Film on Ni Foam for Efficient Hydrogen Evolution in Alkaline Solution publication-title: ACS. Appl. Mater. Interfaces. doi: 10.1021/acsami.6b07785 – volume: 493 year: 2021 ident: 10.1016/j.ceja.2025.100837_bib0007 article-title: Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A comparative review publication-title: J. Power. Sources. doi: 10.1016/j.jpowsour.2021.229708 – volume: 5 start-page: 4695 issue: 1 year: 2014 ident: 10.1016/j.ceja.2025.100837_bib0055 article-title: Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis publication-title: Nat. Commun. doi: 10.1038/ncomms5695 – volume: 1 issue: 8 year: 2020 ident: 10.1016/j.ceja.2025.100837_bib0030 article-title: Trends in Alkaline Hydrogen Evolution Activity on Cobalt Phosphide Electrocatalysts Doped with Transition Metals publication-title: Cell Reports Phys. Sci. doi: 10.1016/j.xcrp.2020.100136 – volume: 9 start-page: 38621 issue: 44 year: 2017 ident: 10.1016/j.ceja.2025.100837_bib0012 article-title: Mixed-Metal–Organic Framework Self-Template Synthesis of Porous Hybrid Oxyphosphides for Efficient Oxygen Evolution Reaction publication-title: ACS. Appl. Mater. Interfaces. doi: 10.1021/acsami.7b13359 – volume: 33 issue: 7 year: 2023 ident: 10.1016/j.ceja.2025.100837_bib0008 article-title: Rational Design of Transition Metal Phosphide-Based Electrocatalysts for Hydrogen Evolution publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202208358 – volume: 9 start-page: 5833 issue: 9 year: 2021 ident: 10.1016/j.ceja.2025.100837_bib0037 article-title: Synthesis of an in situ core–shell interlink ultrathin-nanosheet Fe@FexNiO/Ni@NiyCoP nanohybrid by scalable layer-to-layer assembly strategy as an ultra-highly efficient bifunctional electrocatalyst for alkaline/neutral water reduction/oxidation publication-title: J. Mater. Chem. A doi: 10.1039/D0TA10723A – volume: 4 start-page: 4745 issue: 13 year: 2016 ident: 10.1016/j.ceja.2025.100837_bib0042 article-title: Cobalt phosphide-based electrocatalysts: Synthesis and phase catalytic activity comparison for hydrogen evolution publication-title: J. Mater. Chem. A doi: 10.1039/C6TA00575F – volume: 43 start-page: 810 issue: 4 year: 2010 ident: 10.1016/j.ceja.2025.100837_bib0050 article-title: XPS study of CMP mechanisms of NiP coating for hard disk drive substrates publication-title: Tribol. Int. doi: 10.1016/j.triboint.2009.11.007 – volume: 262 year: 2020 ident: 10.1016/j.ceja.2025.100837_bib0004 article-title: Engineering Ni2P-NiSe2 heterostructure interface for highly efficient alkaline hydrogen evolution publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.118245 – volume: 4 start-page: 2114 issue: 5 year: 2020 ident: 10.1016/j.ceja.2025.100837_bib0002 article-title: Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions publication-title: Sustain. Energy Fuels. doi: 10.1039/C9SE01240K – volume: 215 start-page: 609 year: 2016 ident: 10.1016/j.ceja.2025.100837_bib0018 article-title: Electrochemical fabrication of porous Ni-Cu alloy nanosheets with high catalytic activity for hydrogen evolution publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.08.145 – volume: 23 start-page: 14 issue: 13 year: 2022 ident: 10.1016/j.ceja.2025.100837_bib0056 article-title: Introducing Alternative Algorithms for the Determination of the Distribution of Relaxation Times publication-title: Chemphyschem. doi: 10.1002/cphc.202200012 – volume: 146 start-page: 1824 issue: 5 year: 1999 ident: 10.1016/j.ceja.2025.100837_bib0025 article-title: Electrodeposition of Amorphous Alloys Based on the Iron Group of Metals publication-title: J. Electrochem. Soc. doi: 10.1149/1.1391850 – volume: 622 start-page: 250 year: 2022 ident: 10.1016/j.ceja.2025.100837_bib0038 article-title: Electrodeposition of cobalt-iron bimetal phosphide on Ni foam as a bifunctional electrocatalyst for efficient overall water splitting publication-title: J. Colloid. Interface Sci. doi: 10.1016/j.jcis.2022.04.127 – volume: 34 start-page: 2622 issue: 6 year: 2009 ident: 10.1016/j.ceja.2025.100837_bib0052 article-title: Fabrication of porous Co–Ni–P catalysts by electrodeposition and their catalytic characteristics for the generation of hydrogen from an alkaline NaBH4 solution publication-title: Int. J. Hydrogen. Energy doi: 10.1016/j.ijhydene.2008.12.097 – volume: 174 start-page: 439 issue: 4 year: 2001 ident: 10.1016/j.ceja.2025.100837_bib0059 article-title: Influence of a chromium ion implantation on the passive behaviour of nickel in artificial sea-water: An EIS and XPS study publication-title: Nuclear Instrum. Method. Phys. Res. Sect. B doi: 10.1016/S0168-583X(00)00686-8 – volume: 6 start-page: 7420 issue: 17 year: 2018 ident: 10.1016/j.ceja.2025.100837_bib0024 article-title: Ultrathin NiCo2Px nanosheets strongly coupled with CNTs as efficient and robust electrocatalysts for overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C7TA11364A – volume: 118 start-page: 29294 issue: 50 year: 2014 ident: 10.1016/j.ceja.2025.100837_bib0028 article-title: CoP as an Acid-Stable Active Electrocatalyst for the Hydrogen-Evolution Reaction: Electrochemical Synthesis, Interfacial Characterization and Performance Evaluation publication-title: J. Phys. Chem. C doi: 10.1021/jp5054452 – volume: 31 issue: 1 year: 2021 ident: 10.1016/j.ceja.2025.100837_bib0031 article-title: Heterogeneous Bimetallic Phosphide Ni2P-Fe2P as an Efficient Bifunctional Catalyst for Water/Seawater Splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202006484 – volume: 835 start-page: 81 year: 2019 ident: 10.1016/j.ceja.2025.100837_bib0049 article-title: Porous Ni3(PO4)2 thin film as a binder-free and low-cost anode of a high-capacity lithium-ion battery publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2019.01.021 – volume: 333 year: 2020 ident: 10.1016/j.ceja.2025.100837_bib0005 article-title: Improving the HER activity of Ni3FeN to convert the superior OER electrocatalyst to an efficient bifunctional electrocatalyst for overall water splitting by doping with molybdenum publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.135488 – ident: 10.1016/j.ceja.2025.100837_bib0057 – volume: 227 year: 2017 ident: 10.1016/j.ceja.2025.100837_bib0017 article-title: Catalytic Activity of Urchin-like Ni nanoparticles Prepared by Solvothermal Method for Hydrogen Evolution Reaction in Alkaline Solution publication-title: Electrochim. Acta – volume: 37 year: 2019 ident: 10.1016/j.ceja.2025.100837_bib0045 article-title: Practical Guides for X-Ray Photoelectron Spectroscopy (XPS): First Steps in planning, conducting and reporting XPS measurements publication-title: J. Vacuum Sci. Technol. A, Vacuum, Surfaces, Films doi: 10.1116/1.5065501 – volume: 306 start-page: 651 year: 2019 ident: 10.1016/j.ceja.2025.100837_bib0015 article-title: Fabrication of 3D microporous amorphous metallic phosphides for high-efficiency hydrogen evolution reaction publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.03.160 – volume: 15 issue: 8 year: 2022 ident: 10.1016/j.ceja.2025.100837_bib0003 article-title: What is Next in Anion-Exchange Membrane Water Electrolyzers? Bottlenecks, Benefits, and Future publication-title: ChemSusChem. doi: 10.1002/cssc.202200027 – volume: 11 start-page: 293 issue: 1 year: 2021 ident: 10.1016/j.ceja.2025.100837_bib0001 article-title: Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production publication-title: Sci. Rep. doi: 10.1038/s41598-020-80683-6 – volume: 500 start-page: 213 issue: 1 year: 2001 ident: 10.1016/j.ceja.2025.100837_bib0058 article-title: Experimental study and modeling of impedance of the her on porous Ni electrodes publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(00)00317-X – volume: 26 start-page: 303 issue: 3 year: 2016 ident: 10.1016/j.ceja.2025.100837_bib0026 article-title: Electrodeposited synthesis of self-supported Ni-P cathode for efficient electrocatalytic hydrogen generation publication-title: Progress Natural Sci. doi: 10.1016/j.pnsc.2016.05.014 – volume: 8 start-page: 4174 issue: 8 year: 2020 ident: 10.1016/j.ceja.2025.100837_bib0020 article-title: Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/C9TA14037A – volume: 10 start-page: 4832 issue: 21 year: 2018 ident: 10.1016/j.ceja.2025.100837_bib0016 article-title: Co-Mo-P Based Electrocatalyst for Superior Reactivity in the Alkaline Hydrogen Evolution Reaction publication-title: ChemCatChem. doi: 10.1002/cctc.201801389 – volume: 597 year: 2022 ident: 10.1016/j.ceja.2025.100837_bib0039 article-title: Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: Insights from a multi-user facility data review publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.153681 – volume: 637 year: 2025 ident: 10.1016/j.ceja.2025.100837_bib0011 article-title: Constructing Mo-Co2P/Ni12P5 heterostructures as highly efficient electrocatalysts for overall water splitting publication-title: J. Power. Sources. doi: 10.1016/j.jpowsour.2025.236597 – volume: 248 start-page: 547 year: 2017 ident: 10.1016/j.ceja.2025.100837_bib0040 article-title: Anion-selective materials with 1,4-diazabicyclo[2.2.2]octane functional groups for advanced alkaline water electrolysis publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.07.165 – volume: 48 start-page: 252 issue: 5 year: 2016 ident: 10.1016/j.ceja.2025.100837_bib0048 article-title: Accurate peak fitting and subsequent quantitative composition analysis of the spectrum of Co 2p obtained with Al Kα radiation: I: cobalt spinel publication-title: Surface Interface Anal. doi: 10.1002/sia.5933 – volume: 28 issue: 14 year: 2018 ident: 10.1016/j.ceja.2025.100837_bib0047 article-title: Bifunctional Heterostructure Assembly of NiFe LDH Nanosheets on NiCoP Nanowires for Highly Efficient and Stable Overall Water Splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706847 – volume: 42 start-page: 11053 issue: 16 year: 2017 ident: 10.1016/j.ceja.2025.100837_bib0014 article-title: Electrocatalysts for hydrogen evolution reaction publication-title: Int. J. Hydrogen. Energy doi: 10.1016/j.ijhydene.2017.02.125 – volume: 7 start-page: 20579 issue: 36 year: 2019 ident: 10.1016/j.ceja.2025.100837_bib0019 article-title: A Co–Mo2N composite on a nitrogen-doped carbon matrix with hydrogen evolution activity comparable to that of Pt/C in alkaline media publication-title: J. Mater. Chem. A doi: 10.1039/C9TA07749A – volume: 24 start-page: 12254 issue: 39 year: 2024 ident: 10.1016/j.ceja.2025.100837_bib0022 article-title: Ultrafast Synthesis of Transition Metal Phosphides in Air via Pulsed Laser Shock publication-title: Nano Lett. doi: 10.1021/acs.nanolett.4c03410 – volume: 359 start-page: 35 year: 2021 ident: 10.1016/j.ceja.2025.100837_bib0029 article-title: Enhanced activity and stability of Co-Ni-P-B catalyst for the hydrogen evolution reaction via predeposition of Co-Ni on a Cu substrate publication-title: Catal. Today doi: 10.1016/j.cattod.2019.07.001 |
| SSID | ssj0002811341 |
| Score | 2.299302 |
| Snippet | •Method of simple one-step catalyst synthesis and deposition developed.•Energy intensive steps and usage of dangerous components avoided.•Performance and... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 100837 |
| SubjectTerms | Analysis of A(M)WE EIS data Distribution of relaxation times Galvanic NiCoP catalyst deposition Stability testing Structural characterisation |
| Title | Electrodeposition as an attractive method of NiCoP cathode catalyst for alkaline membrane water electrolysis production |
| URI | https://dx.doi.org/10.1016/j.ceja.2025.100837 |
| Volume | 23 |
| WOSCitedRecordID | wos001562356900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2666-8211 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002811341 issn: 2666-8211 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2666-8211 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002811341 issn: 2666-8211 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwgEOiKdaKJUP3Fapss7D8bHqQz1A1cOCeoucxEG73U1W2ZCWC7-Vn9Kxx06WtiB64BJlrdiJMt9OxuPP3xDyMQ8Dv4wl91gmpQff28ITXGQeuEFfQkQsmJEv_vqJn50lFxfifDT65fbCdAteVcn1tVj9V1NDGxhbb519gLn7QaEBzsHocASzw_GfDH-MhW0K5fhYupQM_Itl25odUZ2yZaNNsmB2WJ-PtXYrdBibXM6PdYvUysWlNDHoUi1hSg0nV1IrKtrCOShlskLBWGdcJ3ngVAjUoHbYa1RY1kEfy59WZrF-gosisqmX5vdRzxo28a5eNehm5vTI7jFyouE6mQAP3SB_YNoTngxbuVHY57Lu8DbY-VshF8gRwOrhLvHBop52Z_0jhBaxlzDrq9U9bdbBs2DDQ2sxI5SZufPxwDzGfD9Xc61IxaL94eLflbpvfUF7XqOjzM1TPUaqx0hxjEfkMeOR0KTDzz-HLCBLJlpRT1dAdE9ud3YhCfH2o9wfPW1ERNMX5LmdytADhOBLMlLVK_JsQ-DyNbm6A0Yq11TCsQcjRTDSuqQGjNSCkTowUgAjdWCkDozUgJFugpEOYHxDvpwcTw9PPVvqw8uZ4K2XT8pYl4HiUSbCWDA_z2EiHvlSsFCqAqJOGRa-4uWEg9MRMpGlissCYnuWw5RBBm_JVlVXapvQRCRZptMIvijDTLGMS86CIs8SJXgRyB0ydq8wXaGiS_pnu-2QyL3l1MakGGumgJq_9Hv3oLu8J08HhO-Srbb5rj6QJ3nXztbNnskT7Rng3ABm-K5P |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrodeposition+as+an+attractive+method+of+NiCoP+cathode+catalyst+for+alkaline+membrane+water+electrolysis+production&rft.jtitle=Chemical+engineering+journal+advances&rft.au=Hn%C3%A1t%2C+Jarom%C3%ADr&rft.au=%C4%8Eurovi%C4%8D%2C+Martin&rft.au=Bystron%2C+Tomas&rft.au=Stre%C4%8Dkov%C3%A1%2C+Magdal%C3%A9na&rft.date=2025-08-01&rft.issn=2666-8211&rft.eissn=2666-8211&rft.volume=23&rft.spage=100837&rft_id=info:doi/10.1016%2Fj.ceja.2025.100837&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ceja_2025_100837 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-8211&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-8211&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-8211&client=summon |