A note on the exact solution of the minimum squared load assignment problem

The problem of finding a fair assignment of tasks to agents that minimizes the total sum of squared workloads was introduced by Karsu and Azizoglu (2019) as the Minimum Squared Load Assignment Problem (MSLAP). To solve this problem, the authors developed a tailored branch-and-bound algorithm. While...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & operations research Ročník 159; s. 106309
Hlavní autori: Schulze, Philipp, Walter, Rico
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.11.2023
Predmet:
ISSN:0305-0548
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The problem of finding a fair assignment of tasks to agents that minimizes the total sum of squared workloads was introduced by Karsu and Azizoglu (2019) as the Minimum Squared Load Assignment Problem (MSLAP). To solve this problem, the authors developed a tailored branch-and-bound algorithm. While this algorithm was shown to produce better results than CPLEX on a mixed binary linear programming formulation of the MSLAP, about 71% of the 1200 benchmark instances yet remained unsolved. In this note, we test two state-of-the-art solvers on different mathematical programming formulations of the MSLAP. Our computational results show that the performance of the solvers is heavily dependent on the type of mathematical optimization model. The best results are obtained when the MSLAP is expressed as a quadratically-constrained program. Such a formulation allows one of the solvers to find and verify an optimal solution for every problem in the existing benchmark data sets within just a few seconds per problem, on average. Additional experiments on large-sized instances demonstrate that the solvers’ performances remain at a high level. •The minimum squared load assignment problem is analyzed.•(Mixed) binary linear and nonlinear mathematical programming formulations are presented.•Comprehensive computer experiments with different solvers are conducted.•Optimal solutions for all 1200 problems in the benchmark data sets of Karsu and Azizoglu are found.•New sets of large-sized test problems are generated.
AbstractList The problem of finding a fair assignment of tasks to agents that minimizes the total sum of squared workloads was introduced by Karsu and Azizoglu (2019) as the Minimum Squared Load Assignment Problem (MSLAP). To solve this problem, the authors developed a tailored branch-and-bound algorithm. While this algorithm was shown to produce better results than CPLEX on a mixed binary linear programming formulation of the MSLAP, about 71% of the 1200 benchmark instances yet remained unsolved. In this note, we test two state-of-the-art solvers on different mathematical programming formulations of the MSLAP. Our computational results show that the performance of the solvers is heavily dependent on the type of mathematical optimization model. The best results are obtained when the MSLAP is expressed as a quadratically-constrained program. Such a formulation allows one of the solvers to find and verify an optimal solution for every problem in the existing benchmark data sets within just a few seconds per problem, on average. Additional experiments on large-sized instances demonstrate that the solvers’ performances remain at a high level. •The minimum squared load assignment problem is analyzed.•(Mixed) binary linear and nonlinear mathematical programming formulations are presented.•Comprehensive computer experiments with different solvers are conducted.•Optimal solutions for all 1200 problems in the benchmark data sets of Karsu and Azizoglu are found.•New sets of large-sized test problems are generated.
ArticleNumber 106309
Author Schulze, Philipp
Walter, Rico
Author_xml – sequence: 1
  givenname: Philipp
  surname: Schulze
  fullname: Schulze, Philipp
  email: philipp.schulze@uni-jena.de
– sequence: 2
  givenname: Rico
  surname: Walter
  fullname: Walter, Rico
  email: rico.walter@uni-jena.de
BookMark eNp9kMtOAzEMRbMoEm3hA9jlB6Y4k3l0xKqqeIlKbGAd5eGBVDNJSVIEf09KWbGoN5avfKzrOyMT5x0ScsVgwYA119uF9mFRQsnz3HDoJmQKHOoC6mp5TmYxbiFXW7IpeVpR5xNS72h6R4pfUica_bBPNku-_1VH6-y4H2n82MuAhg5eGipjtG9uRJfoLng14HhBzno5RLz863Pyenf7sn4oNs_3j-vVptBl16ZCA6hac8U7jaY3YGqooKyWpjNGNqapEVSlumXH6rblxijNlKqaxui821fA56Q93tXBxxiwF9omeTCcgrSDYCAOOYityDmIQw7imEMm2T9yF-wow_dJ5ubIYH7p02IQUVt02bsNqJMw3p6gfwAupXr3
CitedBy_id crossref_primary_10_3390_urbansci8040240
crossref_primary_10_1016_j_cor_2025_107186
Cites_doi 10.1016/j.ejor.2005.09.014
10.1016/j.cor.2019.02.011
10.1080/00207543.2021.1934589
10.1016/j.ejor.2015.02.035
10.1016/j.ejor.2005.09.032
10.1016/j.cor.2020.104975
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cor.2023.106309
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
ExternalDocumentID 10_1016_j_cor_2023_106309
S0305054823001739
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
186
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQXK
AARIN
AAXKI
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABDPE
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABUCO
ABXDB
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEFWE
AEHXG
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ARUGR
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSO
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
UAO
UPT
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c297t-c00b5c3b39cedfd0d5040248d9dda6d65e0b4b98915773ddbc1bb466dcd0df403
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001034337300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-0548
IngestDate Tue Nov 18 21:16:35 EST 2025
Sat Nov 29 07:20:13 EST 2025
Tue Dec 03 03:44:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Assignment problem
Mathematical programming formulations
Workload balancing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-c00b5c3b39cedfd0d5040248d9dda6d65e0b4b98915773ddbc1bb466dcd0df403
ParticipantIDs crossref_citationtrail_10_1016_j_cor_2023_106309
crossref_primary_10_1016_j_cor_2023_106309
elsevier_sciencedirect_doi_10_1016_j_cor_2023_106309
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationTitle Computers & operations research
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gurobi (b3) 2021
Pentico (b7) 2007; 176
Karsu, Azizoglu (b4) 2019; 106
Bektaş, Letchford (b1) 2020; 120
CPLEX (b2) 2022
Loiola, de Abreu, Boaventura-Netto, Hahn, Querido (b6) 2007; 176
Karsu, Morton (b5) 2015; 245
Walter, Schulze (b8) 2022; 60
Karsu (10.1016/j.cor.2023.106309_b4) 2019; 106
CPLEX (10.1016/j.cor.2023.106309_b2) 2022
Pentico (10.1016/j.cor.2023.106309_b7) 2007; 176
Walter (10.1016/j.cor.2023.106309_b8) 2022; 60
Bektaş (10.1016/j.cor.2023.106309_b1) 2020; 120
Gurobi (10.1016/j.cor.2023.106309_b3) 2021
Loiola (10.1016/j.cor.2023.106309_b6) 2007; 176
Karsu (10.1016/j.cor.2023.106309_b5) 2015; 245
References_xml – volume: 60
  start-page: 4654
  year: 2022
  end-page: 4667
  ident: b8
  article-title: On the performance of task-oriented branch-and-bound algorithms for workload smoothing in simple assembly line balancing
  publication-title: Int. J. Prod. Res.
– volume: 176
  start-page: 774
  year: 2007
  end-page: 793
  ident: b7
  article-title: Assignment problems: A golden anniversary survey
  publication-title: European J. Oper. Res.
– year: 2021
  ident: b3
  article-title: Gurobi Optimizer Reference Manual. Version 9.1
– volume: 106
  start-page: 76
  year: 2019
  end-page: 90
  ident: b4
  article-title: An exact algorithm for the minimum squared load assignment problem
  publication-title: Comput. Oper. Res.
– volume: 245
  start-page: 343
  year: 2015
  end-page: 359
  ident: b5
  article-title: Inequity averse optimization in operational research
  publication-title: European J. Oper. Res.
– year: 2022
  ident: b2
  article-title: IBM ILOG CPLEX Optimization Studio 22.1.0 documentation
– volume: 176
  start-page: 657
  year: 2007
  end-page: 690
  ident: b6
  article-title: A survey for the quadratic assignment problem
  publication-title: European J. Oper. Res.
– volume: 120
  year: 2020
  ident: b1
  article-title: Using
  publication-title: Comput. Oper. Res.
– year: 2022
  ident: 10.1016/j.cor.2023.106309_b2
– year: 2021
  ident: 10.1016/j.cor.2023.106309_b3
– volume: 176
  start-page: 774
  year: 2007
  ident: 10.1016/j.cor.2023.106309_b7
  article-title: Assignment problems: A golden anniversary survey
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2005.09.014
– volume: 106
  start-page: 76
  year: 2019
  ident: 10.1016/j.cor.2023.106309_b4
  article-title: An exact algorithm for the minimum squared load assignment problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2019.02.011
– volume: 60
  start-page: 4654
  year: 2022
  ident: 10.1016/j.cor.2023.106309_b8
  article-title: On the performance of task-oriented branch-and-bound algorithms for workload smoothing in simple assembly line balancing
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2021.1934589
– volume: 245
  start-page: 343
  year: 2015
  ident: 10.1016/j.cor.2023.106309_b5
  article-title: Inequity averse optimization in operational research
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2015.02.035
– volume: 176
  start-page: 657
  year: 2007
  ident: 10.1016/j.cor.2023.106309_b6
  article-title: A survey for the quadratic assignment problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2005.09.032
– volume: 120
  year: 2020
  ident: 10.1016/j.cor.2023.106309_b1
  article-title: Using lp-norms for fairness in combinatorial optimisation
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2020.104975
SSID ssj0000721
Score 2.429199
Snippet The problem of finding a fair assignment of tasks to agents that minimizes the total sum of squared workloads was introduced by Karsu and Azizoglu (2019) as...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106309
SubjectTerms Assignment problem
Mathematical programming formulations
Workload balancing
Title A note on the exact solution of the minimum squared load assignment problem
URI https://dx.doi.org/10.1016/j.cor.2023.106309
Volume 159
WOSCitedRecordID wos001034337300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0305-0548
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000721
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF_0KqIPVc-K1Sr74JPHQZLdTXYfD6m0CkVshXsL2Y9oyzU570MO_3pnv5LgFyr4Ei5LdnPMbzKZnfxmBqEXlTaZdNntNIUNSkbyaSW5nqospVXNCOxJpGs2UZyd8flcvAsdsteunUDRNHy3E8v_CjWMAdg2dfYv4O4WhQH4DaDDEWCH4x8BP5s0rf327_mLZmeTIOMdIyPAFhS53l5P1p-3joC-aCs9ATf68qMnB4Q2M0PPNbZ_WDtlaZdmFUh0oVxQF1Y-V5-2i6-mj9YsB0H70AbkPejfMN6QkZB41wXBYiJMzzpyyVeWA8h80czOsPpa3z8YaR8vuAIZ24KsGYGRnCSifyN1PMFzu65dFjZKYDqIuIn2soIJPkJ7s9Pj-Zv-pVu4FLvuf8QP2I7K992Nfu6CDNyKi_toP-wH8Mzj-ADdMM0Y3Y7pCGN0L8odBys8RncHNSQforczbPHGbYMBWezwxhFv3NZuNOCNA97Y4o17vHHA-wB9eH188epkGjpkwLMkis1UJYlkikgilNG1TjQDm5xRroXWVa5zZhJJpeAiZUVBtJYqlZLmuVZwbU0T8giNmrYxjxHOiSmklCwxlFPwKSWvudKqTpmxp-oQJVFopQrl420Xk0UZeYJXJci5tHIuvZwP0ctuytLXTvndxTQiUQbnzzt1JajNr6c9-bdpT9GdXreP0Giz2ppn6Jb6srlcr54H5foGIu1-Mw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+note+on+the+exact+solution+of+the+minimum+squared+load+assignment+problem&rft.jtitle=Computers+%26+operations+research&rft.au=Schulze%2C+Philipp&rft.au=Walter%2C+Rico&rft.date=2023-11-01&rft.pub=Elsevier+Ltd&rft.issn=0305-0548&rft.volume=159&rft_id=info:doi/10.1016%2Fj.cor.2023.106309&rft.externalDocID=S0305054823001739
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon