Development of a deep learning-based image processing technique for bubble pattern recognition and shape reconstruction in dense bubbly flows
•Novel CNN-based bubble identification algorithm.•Bubbles detection in images with high bubble overlapping.•Accurate determination of bubbles velocities and size distributions.•High potential for the application to bubbly flows with high gas volume fractions. This work presents a Convolutional Neura...
Gespeichert in:
| Veröffentlicht in: | Chemical engineering science Jg. 230; S. 116163 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
02.02.2021
|
| Schlagworte: | |
| ISSN: | 0009-2509, 1873-4405 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Novel CNN-based bubble identification algorithm.•Bubbles detection in images with high bubble overlapping.•Accurate determination of bubbles velocities and size distributions.•High potential for the application to bubbly flows with high gas volume fractions.
This work presents a Convolutional Neural Network (CNN) based method for the shape reconstruction of bubbles in bubbly flows using high-speed camera images. The bubble identification and shape reconstruction adopted a methodology based on a set of anchor points and boxes, where a single anchor point is used for different anchor boxes with various sizes. These anchor points are determined, based on the internal features of the bubble images, which are more easily identifiable, in particular, in regions of the images with high bubble overlapping. This makes possible the application of the procedure to high void fraction bubbly flows. For a given anchor point, different ellipsoidal shapes are suggested as bubble shape candidates and are then correctly chosen by a trained CNN. The CNN training used labeled images from air–water system data set and a hyper-parameter analysis was performed to find the best configuration of the CNN architecture. From this optimal CNN architecture, different high-speed camera acquisitions of bubbly flows were analyzed by the CNN-based bubble shape reconstruction method. In order to gain a better comprehension of the method, experiments were conducted in two gas–liquid systems, air–water and air-aqueous glycerol solution, which resulted in different image parameters, such as brightness, contrast and edge definition. The CNN method trained only with air–water data, showed excellent performance in the cases with air-aqueous glycerol, demonstrating its generalization capability. In addition, the results showed that the deep learning method used in this work is able to detect most of the bubbles present in the high-speed camera images, even in dense bubbly flow configurations. The method developed in this work can be used to further analyze bubbly flows and generate experimental data for the implementation and validation of CFD models. |
|---|---|
| AbstractList | •Novel CNN-based bubble identification algorithm.•Bubbles detection in images with high bubble overlapping.•Accurate determination of bubbles velocities and size distributions.•High potential for the application to bubbly flows with high gas volume fractions.
This work presents a Convolutional Neural Network (CNN) based method for the shape reconstruction of bubbles in bubbly flows using high-speed camera images. The bubble identification and shape reconstruction adopted a methodology based on a set of anchor points and boxes, where a single anchor point is used for different anchor boxes with various sizes. These anchor points are determined, based on the internal features of the bubble images, which are more easily identifiable, in particular, in regions of the images with high bubble overlapping. This makes possible the application of the procedure to high void fraction bubbly flows. For a given anchor point, different ellipsoidal shapes are suggested as bubble shape candidates and are then correctly chosen by a trained CNN. The CNN training used labeled images from air–water system data set and a hyper-parameter analysis was performed to find the best configuration of the CNN architecture. From this optimal CNN architecture, different high-speed camera acquisitions of bubbly flows were analyzed by the CNN-based bubble shape reconstruction method. In order to gain a better comprehension of the method, experiments were conducted in two gas–liquid systems, air–water and air-aqueous glycerol solution, which resulted in different image parameters, such as brightness, contrast and edge definition. The CNN method trained only with air–water data, showed excellent performance in the cases with air-aqueous glycerol, demonstrating its generalization capability. In addition, the results showed that the deep learning method used in this work is able to detect most of the bubbles present in the high-speed camera images, even in dense bubbly flow configurations. The method developed in this work can be used to further analyze bubbly flows and generate experimental data for the implementation and validation of CFD models. |
| ArticleNumber | 116163 |
| Author | Cerqueira, Rafael F.L. Paladino, Emilio E. |
| Author_xml | – sequence: 1 givenname: Rafael F.L. surname: Cerqueira fullname: Cerqueira, Rafael F.L. email: rafaelfc@sinmec.ufsc.br – sequence: 2 givenname: Emilio E. surname: Paladino fullname: Paladino, Emilio E. email: paladino@sinmec.ufsc.br |
| BookMark | eNp9kEtOAzEQRC0UJJLAAdj5AhP8mU9GrFD4SpHYwNqyPe3E0cQebCcoh-DOOIQVC1atrtbrUtUEjZx3gNA1JTNKaH2zmWmIM0ZY3mlNa36GxnTe8KIsSTVCY0JIW7CKtBdoEuMmr01DyRh93cMeej9swSXsDZa4AxhwDzI461aFkhE6bLdyBXgIPpvELOMEeu3sxw6w8QGrnVJ9vsuUIDgcQPuVs8l6h6XrcFzLAX5UF1PY6Z-DddnJRTjBB2x6_xkv0bmRfYSr3zlF748Pb4vnYvn69LK4WxaatU0qFBBJTWskZ7SsdVkrbngHFbBS6ZZQmJdNyXVJWMW00YooJkEZyTgxXcUrPkX09FcHH2MAI4aQM4aDoEQc-xQbkaOKY5_i1Gdmmj-Mtkkes6Qgbf8veXsiIUfaWwgiagtOQ2dzKUl03v5DfwPZL5Xn |
| CitedBy_id | crossref_primary_10_1038_s41524_024_01223_8 crossref_primary_10_3390_e23111476 crossref_primary_10_1016_j_ijmultiphaseflow_2025_105246 crossref_primary_10_1016_j_ces_2025_122472 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104952 crossref_primary_10_21603_2074_9414_2023_3_2448 crossref_primary_10_1016_j_measurement_2024_114826 crossref_primary_10_1016_j_pnucene_2024_105108 crossref_primary_10_1016_j_seppur_2024_130300 crossref_primary_10_1016_j_ces_2022_118059 crossref_primary_10_1016_j_expthermflusci_2022_110804 crossref_primary_10_1016_j_ces_2021_116819 crossref_primary_10_3390_mi12111402 crossref_primary_10_3390_mi13010041 crossref_primary_10_1016_j_cjche_2024_12_018 crossref_primary_10_1021_acs_iecr_4c03245 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104169 crossref_primary_10_1016_j_seppur_2024_130979 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104247 crossref_primary_10_3390_w13172318 crossref_primary_10_2478_amns_2023_2_01039 crossref_primary_10_1016_j_cej_2022_135554 crossref_primary_10_1016_j_flowmeasinst_2023_102471 crossref_primary_10_7717_peerj_cs_798 crossref_primary_10_1016_j_ijthermalsci_2024_109447 crossref_primary_10_1088_1361_6501_acb2e1 crossref_primary_10_1016_j_powtec_2024_119464 crossref_primary_10_1016_j_ces_2022_117613 crossref_primary_10_1016_j_cej_2022_137859 crossref_primary_10_1016_j_apt_2025_104862 crossref_primary_10_1016_j_compchemeng_2022_107904 crossref_primary_10_1016_j_oceaneng_2023_113782 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104337 crossref_primary_10_1016_j_compfluid_2024_106396 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104979 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103673 crossref_primary_10_1038_s41598_021_88334_0 crossref_primary_10_1016_j_cej_2021_132138 crossref_primary_10_1016_j_measurement_2025_117321 crossref_primary_10_1016_j_cherd_2024_08_005 crossref_primary_10_3390_hydrogen4030036 crossref_primary_10_3390_s23146582 crossref_primary_10_1080_00223131_2024_2348023 crossref_primary_10_1063_5_0276508 crossref_primary_10_1016_j_matre_2025_100356 crossref_primary_10_1002_aic_18570 crossref_primary_10_1016_j_cej_2023_142763 crossref_primary_10_1016_j_physa_2024_129602 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104149 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104302 crossref_primary_10_1016_j_flowmeasinst_2025_102892 crossref_primary_10_1016_j_ces_2021_116886 crossref_primary_10_1002_ceat_202400009 |
| Cites_doi | 10.1016/j.expthermflusci.2018.12.008 10.1016/j.minpro.2010.02.001 10.1016/j.ces.2006.10.012 10.3390/en12142735 10.1016/j.ijmultiphaseflow.2016.04.011 10.1016/j.patrec.2012.03.027 10.1007/s00348-009-0797-0 10.1016/j.flowmeasinst.2009.12.003 10.1016/S0017-9310(00)00046-6 10.1016/j.ces.2019.115467 10.1017/S0022112000002743 10.1016/S0894-1777(02)00198-X 10.1088/0957-0233/18/8/028 10.1016/j.ces.2013.02.043 10.1016/j.ijmultiphaseflow.2019.103194 10.1016/j.ces.2016.02.043 10.1016/j.ces.2014.09.036 10.1088/0957-0233/16/9/007 10.1145/2647868.2654889 10.1109/TSMC.1979.4310076 10.1016/S0009-2509(01)00191-9 10.1016/j.ces.2018.05.029 10.1016/S0167-8655(99)00130-0 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ces.2020.116163 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-4405 |
| ExternalDocumentID | 10_1016_j_ces_2020_116163 S0009250920306953 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLY IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCE SDF SDG SDP SES SPC SPCBC SSG SSZ T5K XPP ZMT ~02 ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIDUJ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EJD FEDTE FGOYB HVGLF HZ~ NDZJH R2- SC5 SEW T9H VH1 WUQ Y6R ZY4 ~HD |
| ID | FETCH-LOGICAL-c297t-be0a1f9fa32146c46b3f3de5e24bc901e84743c40252cfcb0b2aebfa230fd5353 |
| ISICitedReferencesCount | 68 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000600281200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0009-2509 |
| IngestDate | Sat Nov 29 07:31:39 EST 2025 Tue Nov 18 22:22:38 EST 2025 Fri Feb 23 02:46:19 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Bubbly flow Convolution neural networks Bubble size distribution |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-be0a1f9fa32146c46b3f3de5e24bc901e84743c40252cfcb0b2aebfa230fd5353 |
| ParticipantIDs | crossref_primary_10_1016_j_ces_2020_116163 crossref_citationtrail_10_1016_j_ces_2020_116163 elsevier_sciencedirect_doi_10_1016_j_ces_2020_116163 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-02 |
| PublicationDateYYYYMMDD | 2021-02-02 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemical engineering science |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Cerqueira, Paladino, Brito, Maliska, Meneghini (b0040) 2019; 102 Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster r-cnn: Towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99. Dhillon, Verma (b0055) 2019 Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T., 2014. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093. Fu, Liu (b0060) 2016; 84 Akhmetbekov, Alekseenko, Dulin, Markovich, Pervunin (b0015) 2010; 48 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Karn, Ellis, Arndt, Hong (b0090) 2015; 122 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A., 2017. Automatic differentiation in pytorch. Cerqueira, Paladino, Ynumaru, Maliska (b0035) 2018; 189 Poletaev, Tokarev, Pervunin (b0130) 2020 Rasband, W.S. et al., 1997. Imagej. Zhang, Jiang, Liu (b0165) 2012; 33 Besagni, Inzoli (b0020) 2016; 146 Da Silva., M.J., Thiele, S., Abdulkareem, L., Azzopardi, B.J., Hampel, U., 2010. High-resolution gas-oil two-phase flow visualization with a capacitance wire-mesh sensor. Flow Measur. Instrument. 21, 191–197. doi:10.1016/j.flowmeasinst.2009.12.003. Acuña, Finch (b0010) 2010; 94 Kulkarni, Joshi, Kumar, Kulkarni (b0105) 2001; 56 Bröder, Sommerfeld (b0030) 2007; 18 Garnier, Lance, Marié (b0065) 2002; 26 Simonnet, Gentric, Olmos, Midoux (b0150) 2007 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b0155) 2014; 15 software available from tensorflow.org. Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167. Lau, Deen, Kuipers (b0110) 2013; 94 Haas, Schubert, Eickhoff, Pfeifer (b0070) 2020; 216 Lobanov, Pakhomov, Terekhov (b0115) 2019; 12 . Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. Chollet, F. et al., 2015. Keras. Zenit, Koch, Sangani (b0160) 2001; 429 Shen, Song, Iguchi, Yamamoto (b0145) 2000; 21 Kim, Fu, Wang, Ishii (b0095) 2000; 43 Honkanen, Saarenrinne, Stoor, Niinimäki (b0075) 2005; 16 Bradski (b0025) 2000 Otsu (b0120) 1979; 20 Garnier (10.1016/j.ces.2020.116163_b0065) 2002; 26 Besagni (10.1016/j.ces.2020.116163_b0020) 2016; 146 10.1016/j.ces.2020.116163_b0045 10.1016/j.ces.2020.116163_b0100 10.1016/j.ces.2020.116163_b0005 Haas (10.1016/j.ces.2020.116163_b0070) 2020; 216 10.1016/j.ces.2020.116163_b0125 10.1016/j.ces.2020.116163_b0080 Bradski (10.1016/j.ces.2020.116163_b0025) 2000 Poletaev (10.1016/j.ces.2020.116163_b0130) 2020 Lobanov (10.1016/j.ces.2020.116163_b0115) 2019; 12 Bröder (10.1016/j.ces.2020.116163_b0030) 2007; 18 10.1016/j.ces.2020.116163_b0085 10.1016/j.ces.2020.116163_b0140 Honkanen (10.1016/j.ces.2020.116163_b0075) 2005; 16 Shen (10.1016/j.ces.2020.116163_b0145) 2000; 21 Lau (10.1016/j.ces.2020.116163_b0110) 2013; 94 Kim (10.1016/j.ces.2020.116163_b0095) 2000; 43 Dhillon (10.1016/j.ces.2020.116163_b0055) 2019 Acuña (10.1016/j.ces.2020.116163_b0010) 2010; 94 Zhang (10.1016/j.ces.2020.116163_b0165) 2012; 33 Zenit (10.1016/j.ces.2020.116163_b0160) 2001; 429 Simonnet (10.1016/j.ces.2020.116163_b0150) 2007 Srivastava (10.1016/j.ces.2020.116163_b0155) 2014; 15 Cerqueira (10.1016/j.ces.2020.116163_b0035) 2018; 189 10.1016/j.ces.2020.116163_b0135 Kulkarni (10.1016/j.ces.2020.116163_b0105) 2001; 56 10.1016/j.ces.2020.116163_b0050 Otsu (10.1016/j.ces.2020.116163_b0120) 1979; 20 Akhmetbekov (10.1016/j.ces.2020.116163_b0015) 2010; 48 Cerqueira (10.1016/j.ces.2020.116163_b0040) 2019; 102 Fu (10.1016/j.ces.2020.116163_b0060) 2016; 84 Karn (10.1016/j.ces.2020.116163_b0090) 2015; 122 |
| References_xml | – volume: 146 start-page: 259 year: 2016 end-page: 290 ident: b0020 article-title: Comprehensive experimental investigation of counter-current bubble column hydrodynamics: Holdup, flow regime transition, bubble size distributions and local flow properties publication-title: Chem. Eng. Sci. – volume: 21 start-page: 21 year: 2000 end-page: 30 ident: b0145 article-title: A method for recognizing particles in overlapped particle images publication-title: Pattern Recogn. Lett. – start-page: 103194 year: 2020 ident: b0130 article-title: Bubble recognition using neural networks: application to the analysis of a two-phase bubbly jet publication-title: Int. J. Multiph. Flow – year: 2019 ident: b0055 article-title: Convolutional neural network: a review of models, methodologies and applications to object detection publication-title: Progress Artif. Intell. – volume: 16 start-page: 1760 year: 2005 end-page: 1770 ident: b0075 article-title: Recognition of highly overlapping ellipse-like bubble images publication-title: Meas. Sci. Technol. Meas. Sci. Technol – reference: Chollet, F. et al., 2015. Keras. – reference: Da Silva., M.J., Thiele, S., Abdulkareem, L., Azzopardi, B.J., Hampel, U., 2010. High-resolution gas-oil two-phase flow visualization with a capacitance wire-mesh sensor. Flow Measur. Instrument. 21, 191–197. doi:10.1016/j.flowmeasinst.2009.12.003. – reference: Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T., 2014. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093. – volume: 94 start-page: 20 year: 2013 end-page: 29 ident: b0110 article-title: Development of an image measurement technique for size distribution in dense bubbly flows publication-title: Chem. Eng. Sci. – volume: 48 start-page: 615 year: 2010 end-page: 629 ident: b0015 article-title: Planar fluorescence for round bubble imaging and its application for the study of an axisymmetric two-phase jet publication-title: Exp. Fluids – reference: Rasband, W.S. et al., 1997. Imagej. – reference: Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167. – volume: 102 start-page: 421 year: 2019 end-page: 451 ident: b0040 article-title: Experimental apparatus and flow instrumentation for the investigation of a quasi-real slug flows in vertical ducts publication-title: Exp. Thermal Fluid Sci. – volume: 122 start-page: 240 year: 2015 end-page: 249 ident: b0090 article-title: An integrative image measurement technique for dense bubbly flows with a wide size distribution publication-title: Chem. Eng. Sci. – year: 2000 ident: b0025 article-title: The OpenCV Library publication-title: Dr. Dobb’s J. Softw. Tools. – volume: 216 start-page: 115467 year: 2020 ident: b0070 article-title: BubCNN: Bubble detection using Faster RCNN and shape regression network publication-title: Chem. Eng. Sci. – reference: Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. – volume: 189 start-page: 1 year: 2018 end-page: 23 ident: b0035 article-title: Image processing techniques for the measurement of two-phase bubbly pipe flows using particle image and tracking velocimetry (PIV/PTV) publication-title: Chem. Eng. Sci. – volume: 84 start-page: 217 year: 2016 end-page: 228 ident: b0060 article-title: Development of a robust image processing technique for bubbly flow measurement in a narrow rectangular channel publication-title: Int. J. Multiph. Flow – volume: 33 start-page: 1543 year: 2012 end-page: 1548 ident: b0165 article-title: A method for recognizing overlapping elliptical bubbles in bubble image publication-title: Pattern Recogn. Lett. – reference: software available from tensorflow.org. – volume: 43 start-page: 4101 year: 2000 end-page: 4118 ident: b0095 article-title: Development of the miniaturized four-sensor conductivity probe and the signal processing scheme publication-title: Int. J. Heat Mass Transf. – volume: 12 year: 2019 ident: b0115 article-title: Experimental and numerical study of the flow and heat transfer in a bubbly turbulent flow in a pipe with sudden expansion publication-title: Energies – volume: 429 start-page: 307 year: 2001 end-page: 342 ident: b0160 article-title: Measurements of the average properties of a suspension of bubbles rising in a vertical channel publication-title: J. Fluid Mech. – reference: Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster r-cnn: Towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99. – volume: 94 start-page: 147 year: 2010 end-page: 158 ident: b0010 article-title: Tracking velocity of multiple bubbles in a swarm publication-title: Int. J. Miner. Process. – volume: 18 start-page: 2513 year: 2007 end-page: 2528 ident: b0030 article-title: Planar shadow image velocimetry for the analysis of the hydrodynamics in bubbly flows publication-title: Meas. Sci. Technol. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: b0155 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Machine Learn. Res. – reference: . – reference: Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A., 2017. Automatic differentiation in pytorch. – reference: Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. – year: 2007 ident: b0150 article-title: Experimental determination of the drag coefficient in a swarm of bubbles publication-title: Chem. Eng. Sci. – volume: 26 start-page: 811 year: 2002 end-page: 815 ident: b0065 article-title: Measurement of local flow characteristics in buoyancy-driven bubbly flow at high void fraction publication-title: Exp. Thermal Fluid Sci. – volume: 56 start-page: 5037 year: 2001 end-page: 5048 ident: b0105 article-title: Application of multiresolution analysis for simultaneous measurement of gas and liquid velocities and fractional gas hold-up in bubble column using LDA publication-title: Chem. Eng. Sci. – volume: 20 start-page: 62 year: 1979 end-page: 66 ident: b0120 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybernet. – ident: 10.1016/j.ces.2020.116163_b0135 – ident: 10.1016/j.ces.2020.116163_b0005 – volume: 102 start-page: 421 year: 2019 ident: 10.1016/j.ces.2020.116163_b0040 article-title: Experimental apparatus and flow instrumentation for the investigation of a quasi-real slug flows in vertical ducts publication-title: Exp. Thermal Fluid Sci. doi: 10.1016/j.expthermflusci.2018.12.008 – volume: 94 start-page: 147 year: 2010 ident: 10.1016/j.ces.2020.116163_b0010 article-title: Tracking velocity of multiple bubbles in a swarm publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2010.02.001 – year: 2007 ident: 10.1016/j.ces.2020.116163_b0150 article-title: Experimental determination of the drag coefficient in a swarm of bubbles publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2006.10.012 – volume: 12 year: 2019 ident: 10.1016/j.ces.2020.116163_b0115 article-title: Experimental and numerical study of the flow and heat transfer in a bubbly turbulent flow in a pipe with sudden expansion publication-title: Energies doi: 10.3390/en12142735 – volume: 84 start-page: 217 year: 2016 ident: 10.1016/j.ces.2020.116163_b0060 article-title: Development of a robust image processing technique for bubbly flow measurement in a narrow rectangular channel publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2016.04.011 – volume: 33 start-page: 1543 year: 2012 ident: 10.1016/j.ces.2020.116163_b0165 article-title: A method for recognizing overlapping elliptical bubbles in bubble image publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2012.03.027 – volume: 48 start-page: 615 year: 2010 ident: 10.1016/j.ces.2020.116163_b0015 article-title: Planar fluorescence for round bubble imaging and its application for the study of an axisymmetric two-phase jet publication-title: Exp. Fluids doi: 10.1007/s00348-009-0797-0 – ident: 10.1016/j.ces.2020.116163_b0050 doi: 10.1016/j.flowmeasinst.2009.12.003 – volume: 43 start-page: 4101 year: 2000 ident: 10.1016/j.ces.2020.116163_b0095 article-title: Development of the miniaturized four-sensor conductivity probe and the signal processing scheme publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(00)00046-6 – volume: 216 start-page: 115467 year: 2020 ident: 10.1016/j.ces.2020.116163_b0070 article-title: BubCNN: Bubble detection using Faster RCNN and shape regression network publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.115467 – ident: 10.1016/j.ces.2020.116163_b0080 – volume: 429 start-page: 307 year: 2001 ident: 10.1016/j.ces.2020.116163_b0160 article-title: Measurements of the average properties of a suspension of bubbles rising in a vertical channel publication-title: J. Fluid Mech. doi: 10.1017/S0022112000002743 – volume: 26 start-page: 811 year: 2002 ident: 10.1016/j.ces.2020.116163_b0065 article-title: Measurement of local flow characteristics in buoyancy-driven bubbly flow at high void fraction publication-title: Exp. Thermal Fluid Sci. doi: 10.1016/S0894-1777(02)00198-X – volume: 18 start-page: 2513 year: 2007 ident: 10.1016/j.ces.2020.116163_b0030 article-title: Planar shadow image velocimetry for the analysis of the hydrodynamics in bubbly flows publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/18/8/028 – volume: 94 start-page: 20 year: 2013 ident: 10.1016/j.ces.2020.116163_b0110 article-title: Development of an image measurement technique for size distribution in dense bubbly flows publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.02.043 – ident: 10.1016/j.ces.2020.116163_b0140 – year: 2000 ident: 10.1016/j.ces.2020.116163_b0025 article-title: The OpenCV Library publication-title: Dr. Dobb’s J. Softw. Tools. – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.ces.2020.116163_b0155 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Machine Learn. Res. – start-page: 103194 year: 2020 ident: 10.1016/j.ces.2020.116163_b0130 article-title: Bubble recognition using neural networks: application to the analysis of a two-phase bubbly jet publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2019.103194 – volume: 146 start-page: 259 year: 2016 ident: 10.1016/j.ces.2020.116163_b0020 article-title: Comprehensive experimental investigation of counter-current bubble column hydrodynamics: Holdup, flow regime transition, bubble size distributions and local flow properties publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2016.02.043 – volume: 122 start-page: 240 year: 2015 ident: 10.1016/j.ces.2020.116163_b0090 article-title: An integrative image measurement technique for dense bubbly flows with a wide size distribution publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.09.036 – ident: 10.1016/j.ces.2020.116163_b0100 – volume: 16 start-page: 1760 year: 2005 ident: 10.1016/j.ces.2020.116163_b0075 article-title: Recognition of highly overlapping ellipse-like bubble images publication-title: Meas. Sci. Technol. Meas. Sci. Technol doi: 10.1088/0957-0233/16/9/007 – ident: 10.1016/j.ces.2020.116163_b0085 doi: 10.1145/2647868.2654889 – volume: 20 start-page: 62 year: 1979 ident: 10.1016/j.ces.2020.116163_b0120 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybernet. doi: 10.1109/TSMC.1979.4310076 – ident: 10.1016/j.ces.2020.116163_b0125 – year: 2019 ident: 10.1016/j.ces.2020.116163_b0055 article-title: Convolutional neural network: a review of models, methodologies and applications to object detection publication-title: Progress Artif. Intell. – volume: 56 start-page: 5037 year: 2001 ident: 10.1016/j.ces.2020.116163_b0105 article-title: Application of multiresolution analysis for simultaneous measurement of gas and liquid velocities and fractional gas hold-up in bubble column using LDA publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(01)00191-9 – volume: 189 start-page: 1 year: 2018 ident: 10.1016/j.ces.2020.116163_b0035 article-title: Image processing techniques for the measurement of two-phase bubbly pipe flows using particle image and tracking velocimetry (PIV/PTV) publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.05.029 – volume: 21 start-page: 21 year: 2000 ident: 10.1016/j.ces.2020.116163_b0145 article-title: A method for recognizing particles in overlapped particle images publication-title: Pattern Recogn. Lett. doi: 10.1016/S0167-8655(99)00130-0 – ident: 10.1016/j.ces.2020.116163_b0045 |
| SSID | ssj0007710 |
| Score | 2.5916498 |
| Snippet | •Novel CNN-based bubble identification algorithm.•Bubbles detection in images with high bubble overlapping.•Accurate determination of bubbles velocities and... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 116163 |
| SubjectTerms | Bubble size distribution Bubbly flow Convolution neural networks Deep learning |
| Title | Development of a deep learning-based image processing technique for bubble pattern recognition and shape reconstruction in dense bubbly flows |
| URI | https://dx.doi.org/10.1016/j.ces.2020.116163 |
| Volume | 230 |
| WOSCitedRecordID | wos000600281200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4405 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007710 issn: 0009-2509 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGKQc4IFa1bPKBE1FGTuxsxwpNBaiqkCjS3CLbsSFVmolmStX-AI78Z56XLMMmQOISjax548jvG_vZ_t73EHohqWCMpyJMNFMhE0SGeaSoOW0iqaQZSZXVmT3OTk7y1ap4N5t96XNhLpusbfOrq6L7r66GNnC2SZ39C3cPPwoN8BmcDk9wOzz_yPETGpBLfqyU6vrqEB9Ds2xVQX1uuDqdyxKwGVODlqvlb34WJqOqs-KbJuHFs4w8dXn7iXfKto76s45W226VM74OdLP2AXsvhNBrE6hRAzHwK_BwFaI28A71xoW0XHPVBEeL48V409UY0r89312e1029DpaL6clFHFmy87jPHVJqRv6Sm6KLEOIyN48qNyvnGQ0ZI8l02o7dfc4PS4A7jThbwPjB9j82i0Ia-Ul0V1n7venLdBWbjVOR0BtoL86SIp-jvcM3y9XbYUnPsoj0JfmMQX89bomC33X08wBnErSc3kV3_G4DHzqU3EMz1d5HtycalA_Q1wle8Fpjjg1e8C5esMULHvGCB7xgwAt2eMEeL3iCFwx4wRYveBcvuG6xxYszvsYWLw_Rh6Pl6avXoa_REcq4yC5CoQiPdKG5KXiVSpYKqmmlEhUzISHWVBD9MCoZhNax1FIQEXMlNAfv6SqhCX2E5u26VfsI5znjgkujV1QxKVJwuk6JiooqUTSn5ACRfmBL6QXsTR2VpuyZimclDEJpfFE6Xxygl4NJ59Rbfvdl1nur9OB3YWUJ0Pq12eN_M3uCbo3_iadoDqOvnqGb8vKi3m6eewB-A2hYrsI |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+deep+learning-based+image+processing+technique+for+bubble+pattern+recognition+and+shape+reconstruction+in+dense+bubbly+flows&rft.jtitle=Chemical+engineering+science&rft.au=Cerqueira%2C+Rafael+F.L.&rft.au=Paladino%2C+Emilio+E.&rft.date=2021-02-02&rft.pub=Elsevier+Ltd&rft.issn=0009-2509&rft.eissn=1873-4405&rft.volume=230&rft_id=info:doi/10.1016%2Fj.ces.2020.116163&rft.externalDocID=S0009250920306953 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon |